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Abstract

We present a new, robust and computationally efficient

method for estimating the probability density of the intensity

values in an image. Our approach makes use of a continu-

ous representation of the image and develops a relation be-

tween probability density at a particular intensity value and

image gradients along the level sets at that value. Unlike

traditional sample-based methods such as histograms, min-

imum spanning trees (MSTs), Parzen windows or mixture

models, our technique expressly accounts for the relative

ordering of the intensity values at different image locations

and exploits the geometry of the image surface. Moreover,

our method avoids the histogram binning problem and re-

quires no critical parameter tuning. We extend the method

to compute the joint density between two or more images.

We apply our density estimation technique to the task of

affine registration of 2D images using mutual information

and show good results under high noise.

1. Introduction

Ever since the pioneering work of Viola and Wells in

[9] and Maes et al in [7], mutual information based im-

age registration techniques have gained popularity, partic-

ularly in the field of medical imaging. The process of esti-

mating the probability density function (both marginal and

joint) of the intensity values in the images to be registered,

lies at the core of all MI-based techniques. Current density

estimation techniques include histogramming, Parzen win-

dows and Gaussian mixture models (GMMs). Despite their

simplicity and popularity, histogram-based methods suffer

from the binning problem, due to the absence of a princi-

pled method to estimate the “optimal” number of bins in

the marginal and joint histograms, or to relate the number

of bins to a particular image size. A smaller than optimal
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number of bins is known to yield an over-smoothed den-

sity estimate, whereas an excess in the same number pro-

duces an estimate that is highly sparse and prone to noise.

Furthermore, histograms are not differentiable. Continu-

ous histograms (obtained by fitting say, a spline between

the values in the chosen bins) do bring in differentiability,

but they do not overcome the binning problem, as the shape

of the final density will vary depending on how many bins

were chosen to start with. Parzen windowing [9] does not

suffer from the binning problem, but it requires careful se-

lection of the σ parameter of the kernel, as well as the ker-

nel function itself. The σ parameter can be estimated by

maximum likelihood methods, but this process is compu-

tationally demanding, especially because the value of the

parameter changes across the iterations of the registration

process. Furthermore, there is the problem of maintaining

consistency between the σ values of the marginal and joint

densities. Lastly, the process of calculation of density es-

timates at M points, using Gaussians centered at M other

points, has a complexity of O(M2), which is inefficient for

large M . Methods such as the Fast Gauss Transform (FGT)

[10] produce an approximation which can be computed in

linear time, but they require a prior clustering step. Also,

one needs to take into account the growth of the approxima-

tion error across the iterations of the registration process.

GMMs have been used for MI based registration in [4].

They also do avoid the binning problem, but they are a

computationally inefficient density estimator. They require

the estimation of a large number of parameters (the means

and covariance matrices of the component Gaussians and

their relative weights) and the optimization is highly prone

to local minima. Also, one is confronted with the issue

of choosing an “optimal” number of mixture components.

This number, again, may change across the different iter-

ations of the image registration process (for the joint den-

sity).

Another popular method in MI-based image registration

is to estimate entropy directly, by-passing the actual den-

sity estimation process, as has been done by Ma et al. [6].



They create a minimal spanning tree to estimate the joint

and marginal entropies of a set of samples drawn from a

pair of images. However, the entropy involved here is the

Renyi entropy (as against the Shannon entropy which was

used in [9] and [7]). The construction of the MST itself has

a time complexity of O(E log E) where E is the number

of edges in the fully connected graph in which each image

pixel is a vertex. This renders the method computationally

expensive as the MST has to be created at every step of the

registration process. Therefore, one needs to resort to some

form of thresholding in order to reduce the complexity of

the graph. Alternative entropic graphs such as k-nearest

neighbor graphs [1] could also be used to compute Renyi

entropy, but they have a quadratic time complexity in the

number of nodes.

A point to be noted is that none of the above-mentioned

techniques explicitly take into account the geometry of the

“surface” of the image, and thus ignore the relative order-

ing of the intensity values at different image locations. In

the work presented here, we drop the notion of an image as a

discrete set of pixels, and treat it as a continuous entity. We

then proceed to relate image gradients to probability den-

sity. For a single image, we see that the cumulative distri-

bution function at a particular intensity value α is equal to

the ratio of the total area of all regions in the image whose

intensity is less than or equal to α, to the total area of the

image. (Note that the boundary of such regions could be

level curves of the image or the boundary of the image it-

self). The derivative of this ratio w.r.t. the intensity change

yields the probability density at that intensity value. We

also present a method to ascertain the joint density of a pair

of images, by looking at the area of intersection of a pair of

level curves (at nearby intensity levels with infinitesimally

small intensity difference) in the first image, with a similar

pair from the second. Next, we also determine the probabil-

ity distributions by considering successive level curves with

a non-zero intensity difference. With this theoretical devel-

opment, we estimate image entropy and mutual informa-

tion, and use these calculated values for the task of register-

ing 2D images. We empirically show the robustness of our

technique and the smoothness of the information-theoretic

optimization functions w.r.t. the transformation. A point to

underline is that our technique requires no setting of critical

parameters, and neither does it rely on any form of sam-

pling. To the best of our knowledge, the only work other

than ours to adopt such a geometric approach to density es-

timation is that by Kadir and Brady in [3]1. However unlike

[3], we explicitly take into account the effect of singularities

in the density estimate and present a solution (see Sections

(2.3) and (2.4)), and also apply the technique to MI-based

registration.

The paper is organized as follows. In Section (2), we

1This was brought to our notice after the acceptance of this paper.

present the complete theoretical treatment of our method,

followed by a discussion of some practical issues. Sec-

tion (3) presents in detail the experimental results. A few

salient features of the technique as well as directions for fu-

ture work are discussed in Section (4).

2. Theory

In this section, we describe our method for estimating

the marginal image density, followed by the joint density

given a pair of images.

2.1. Estimating the Marginal Densities

Consider the 2D gray-scale image intensity to be a con-

tinuous, scalar-valued function of the spatial variables, rep-

resented as z = I(x, y). Consider a random experiment

whose outcome is a location in the image. Let the proba-

bilty distribution associated with the experiment be uniform

on location. This distribution on location induces a corre-

sponding probability distribution on intensity. The cumula-

tive distribution at a certain intensity level α is equal to the

ratio of the total area of all regions whose intensity is less

than or equal to α to the total area of the image (denoted as

A). This can be written as follows:

Pr(z < α) =
1

A

∫∫

z<α

dxdy. (1)

Now, the probability density at α is the derivative of the

cumulative distribution. This is equal to the difference in

the areas enclosed within two level curves that are separated

by an intensity difference of ∆α (or equivalently, the area

enclosed between two level curves of intensity α and α +
∆α), per unit difference, as ∆α → 0 (see Figure (1)). The

formal expression for this is:

p(α) =
1

A
lim

∆α→0

∫∫

z<α+∆α
dxdy −

∫∫

z<α
dxdy

∆α
. (2)

Hence, we have

p(α) =
1

A

d

dα

∫∫

z=α

dxdy. (3)

We can now adopt a change of variables from the spatial

coordinates x and y to u(x, y) and I(x, y), where u and

I are the directions parallel and perpendicular to the level

curve of intensity α, respectively. Observe that I points in

the direction parallel to the image gradient, or the direction

of maximum intensity change. Noting this fact, we now

obtain the following:

p(α) =
1

A

∫

z=α

du

∣

∣

∣

∣

∂x
∂I

∂y
∂I

∂x
∂u

∂y
∂u

∣

∣

∣

∣

. (4)

Note that in this equation, dα and dI have “canceled” each

other out, as they both stand for intensity change. Upon a



series of algebraic manipulations, we are now left with the

following expression for p(α):

p(α) =
1

A

∫

z=α

du
√

( ∂I
∂x

)2 + ( ∂I
∂y

)2
. (5)

From the above expression, one can make two important

observations. Firstly, each point on a given level curve con-

tributes a certain measure to the density at that intensity.

The density contribution for a given intensity value at a lo-

cation (x, y) is inversely proportional to the magnitude of

the gradient at that point. In other words, in regions of

high intensity gradient, the area between two level curves at

nearby intensity levels would be small, as compared to that

in regions of lower image gradient (see Figure (1)). When

the gradient value at a point is zero (owing to the existence

of a peak, a valley or a saddle point), the density at that

point tends to infinity. (The practical repercussions of this

situation are discussed later on in the paper). Secondly, the

density at an intensity level can be estimated by traversing

the level curve(s) at that intensity and integrating the recip-

rocal of the gradient magnitude. One can obtain an estimate

of the density at several intensity levels (at intensity spac-

ing of h from each other) across the entire intensity range

of the image. Such an estimate does not suffer from the bin-

ning problem, as here, an explicit relation between intensity

and the spatial coordinates has been exploited. Therefore,

as h becomes smaller and smaller (i.e. as the number of

bins N increases), the density estimate becomes increas-

ingly accurate. Au contraire, a naive histogram calculation

leaves most of the bins empty. This scenario is clearly il-

lustrated in Figure (2), where we plot histogram envelopes

of the face image on the left side of Figure (7), comparing

our method to the standard histogram for 32, 64, 128, and

256 bins, given a 100 by 100 image of 256 intensity levels.

Yet another fact to note is that we are adopting a continuous

representation of the image. This is quite unlike the stan-

dard histogram which assumes an image to be discrete and

flat within each pixel, and in which each pixel contributes

to one and only one bin.

Outer Curve: α+∆α

Inner Curve: α

Flatter areas of

the image

Areas of higher gradients

Figure 1. p(α) ∝ area of hatched region

2.2. Estimating the Joint Density

Consider two images represented as z1 = I1(x, y) and

z2 = I2(x, y), whose overlap area is A. Their cumulative
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Figure 2. Comparison of conventional 1D histograms (TOP half of

each sub-figure) to the proposed density estimator (BOTTOM half

of each sub-figure)

distribution at intensity values (α1, α2) is equal to the ratio

of the total area of all regions whose intensity in I1 is less

than or equal to α1 and whose intensity in I2 is less than or

equal to α2, to the total overlap area. The probability den-

sity p(α1, α2) in this case is the second order derivative of

the cumulative distribution. Consider a pair of level curves

from I1 having intensity values α1 and α1 + ∆α1, and an-

other pair from I2 having intensity α2 and α2+∆α2. Let us

denote the region enclosed between the level curves of I1 at

α1 and α1 +∆α1 as P and the region enclosed between the

level curves of I2 at α2 and α2+∆α2 as Q. Then p(α1, α2)
can geometrically be interpreted as the area of P

⋂

Q, di-

vided by ∆α1∆α2, in the limit as ∆α1 and ∆α2 tend to

zero. The regions P , Q and also P
⋂

Q (hatched region)

are shown in Figure (3). Using a technique very similar to

that shown in equations (2) to (4), we obtain the joint prob-

ability density as follows:

p(α1, α2) =
1

A

∂2

∂α1∂α2

∫∫

C

du1du2

∣

∣

∣

∣

∣

∂x
∂u1

∂y
∂u1

∂x
∂u2

∂y
∂u2

∣

∣

∣

∣

∣

(6)

where C represents the locus of all points where z1 = α1

and z2 = α2. Here u1 and u2 represent directions along the

corresponding level curves of the two images I1 and I2. To

obtain a complete expression for the pdf in terms of gradi-

ents, it would be highly intuitive to follow purely geometric

reasoning. One can observe that the joint probability den-

sity p(α1, α2) is the sum total of “contributions” at every

intersection between the level curves of I1 at α1 and those

of I2 at α2. Each contribution is nothing but the area of

parallelogram ABCD (see Figure (4)) at the level curve in-

tersection, as the intensity differences ∆α1 and ∆α2 shrink

to zero. (We consider a parallelogram here, because we are



approximating the level curves locally as straight lines). Let

the coordinates of the point B be (x̃, ỹ) and the magnitude

of the gradient of I1 and I2 at this point be g1(x̃, ỹ) and

g2(x̃, ỹ). Also, let θ(x̃, ỹ) be the angle between the gradi-

ents of the two images at B. Observe that the intensity dif-

ference between the two level curves of I1 is ∆α1. Then,

using the definition of gradient, the perpendicular distance

between the two level curves of I1 is given as ∆α1

g1(x̃,ỹ) . Look-

ing at triangle CDE (wherein DE is perpendicular to the

level curves) we can now deduce that the length CD (or

equivalently AB) is given as

|AB| =
∆α1

g1(x̃, ỹ) sin θ(x̃, ỹ)
. (7)

Similarly, the length CB is given by

|CB| =
∆α2

g2(x̃, ỹ) sin θ(x̃, ỹ)
. (8)

Now, the area of the parallelogram is equal

to |AB||CB| sin θ(x̃, ỹ), which evaluates to
∆α1∆α2

g1(x̃,ỹ)g2(x̃,ỹ) sin θ(x̃,ỹ) . With this, we finally obtain

the following expression for the joint density:

p(α1, α2) =
1

A

∫∫

C

du1du2

g1(x, y)g2(x, y) sin θ(x, y)
. (9)

It is easy to show through algebraic manipulations that

equations (6) and (9) are equivalent formulations of the

joint probability density p(α1, α2). Thus, we see that

p(α1, α2) can be computed by summing up the values of
1

g1(x,y)g2(x,y) sin θ(x,y) (i.e. the density contribution) at all

points where the level curve of I1 at α1 and that of I2 at

α2 intersect. These results could also have been derived

following an algebraic method, i.e. by manipulation of

Jacobians, as was done while deriving the expression for

the marginal densities. Furthermore, the derivation for the

marginals could also have proceeded following geometric

intuitions.

It is worth mentioning that the formula derived above tal-

lies beautifully with intuition in the following ways. Firstly,

the area of the parallelogram ABCD (and hence the joint

density) in regions of high gradient (in either or both im-

age(s)) is smaller as compared to that in the case of regions

with lower gradients. Secondly, the area of parallelogram

ABCD (and hence the joint density) is maximum in the

case where the gradients of the two images are parallel or

completely align, and the least when they are orthogonal

(see Figure (5)). Lastly, the determinant of the Jacobian in

equation (6) is equal to the area of the parallelogram in Fig-

ure (4), which is equal to the cross product of the vectors

AB and CB along the corresponding level curves. This

treatment could be easily extended to the case of joint den-

sity between d > 2 images, by using the concept of the

wedge product or using similar geometric intuition to ob-

tain the area between d intersecting pairs of level curves

(see Figure (6) for the case of three images). The joint den-

sity tends to infinity in the case where either (or both) gra-

dient(s) is (are) zero, or when the two gradients align, so

that sin θ is zero. The repercussions of this phenomenon

are discussed in the following section.

Level Curves of Image 1

at levels α1 and α1+∆α1 

Level Curves of Image 2

at levels α2 and α2+∆α2 

Region P

Region Q

Intersection of P and Q

Figure 3. Intersection of level curves of I1 and I2: p(α1, α2) ∝
area of hatched region.
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Level Curves of I1

at α1 and α1+∆α1

The level curves of I1 and I2

make an angle θ  w.r.t. each other

E

Level Curves of I2

at α2 and α2+∆α2 

length(CE) = ∆α1/g1(x,y);

intensity spacing = ∆α1

Figure 4. Parallelogram approximation: pdf contribution ∝
area(ABCD)

Figure 5. Area of parallelogram increases as angle between level

curves decreases (top to bottom). Level curves of I1 and I2 are

shown in black and red lines respectively.

Level Curves of I1

Level Curves of I2

Level Curves of I3

Figure 6. Joint probability contribution in the case of three images.

2.3. Practical Issues

In the two preceding sub-sections, we observed the di-

vergence of the marginal density in regions of zero gradient.



We also noticed the divergent behavior of the joint density

in regions where either (or both) image gradient(s) is (are)

zero, or when the gradients completely align. A practical

solution would be to observe that in such regions, the cu-

mulative distribution is actually non-differentiable, and that

it might be beneficial to calculate probability distributions

(as opposed to densities) in such areas. The gradient goes

to zero in regions of the image that are flat in terms of in-

tensity, and also at peaks, valleys and saddle points on the

image surface. We can ignore the latter three cases as they

are a finite number of points within a continuum. In any

region that is flat, there exists one and only one intensity

value. The contribution to the probability at a particular in-

tensity in a flat region is proportional to the total area of that

flat region. More ad hoc approaches could involve simply

“weeding out” the flat regions altogether. All such methods

require the choice of appropriate thresholds to distinguish

between flat and non-flat regions. The nature of the den-

sity surface is highly dependent on the threshold values cho-

sen. Too high a threshold leads to loss of useful image data

(owing to the fact that non-flat regions are implicitly being

flattened), whereas too low a threshold allows the flatter re-

gions of the image to completely dominate regions of high

gradient in terms of density contribution. This has serious

ramifications in the computation of entropy, which is re-

quired for image registration. As such there is no principled

method to obtain an “optimal” threshold. Also, following

this path would cause us to deal with a mixture of densities

and distributions.

2.4. Work­around: Probability Distributions

A robust work-around to solve this conundrum, is to

switch entirely to probability distributions everywhere by

introducing a non-zero lower bound on the “values” of ∆α1

and ∆α2. Effectively, this means that we always look at

parallelograms representing the intersection between pairs

of level curves from the two images, separated by non-zero

intensity difference, denoted as, say, h. Since these paral-

lelograms have finite areas, we have circumvented the situ-

ation of choosing thresholds to prevent the values from be-

coming unbounded, and the probability at α1, α2, denoted

as p̂(α1, α2) is obtained from the areas of such parallelo-

grams. Note that, throughout this paper, we denote proba-

bility distributions using the operator p̂ and densities using

the operator p. Later on in the paper, we shall show that the

switch to distributions is principled and does not reduce our

technique to standard histogramming in any manner what-

soever. Also, note that we deal with these issues in detail

unlike the work in [3].

The notion of an image as a continuous entity is one of

the pillars of our approach. While any continuous image

representation would hold good, we adopt a locally linear

formulation in this paper, for the sake of simplicity. For

Figure 7. A face image and its noisy, rotated version

(a) 32 bins: standard (b) 32 bins: our method

(c) 64 bins: standard (d) 64 bins: our method

(e) 128 bins: standard (f) 128 bins: our method

(g) 256 bins: standard (h) 256 bins: our method

Figure 8. Comparison of standard joint histograms to our new joint

density estimator

each image grid point, we estimate the intensity values at

its four neighbors within a horizontal or vertical distance

of 0.5 pixels. We then divide each square defined by these

neighbors into a pair of triangles. The intensities within

each triangle can be represented as a planar patch, which is

given by the equation z1 = A1x + B1y + C1 in I1. The

values A1, B1 and C1 can be calculated by solving three

simultaneous equations. Iso-intensity lines at levels α1 and

α1 + h within this triangle are represented by the equation

A1x + B1y + C1 = α1 and A1x + B1y + C1 = α1 + h.

Similar equations exist for the the iso-intensity lines of I2 at

intensities α2 and α2 + h, within a triangle of correspond-

ing location. The contribution from this triangle to the joint

probability at (α1, α2), i.e. p̂(α1, α2) is the area bounded

by the two pairs of parallel lines, clipped against the body

of the triangle itself, as shown in Figure (9(a)). In the case



that the corresponding gradients from the two images are

parallel (or coincident), they enclose an infinite area be-

tween them, which when clipped against the body of the

triangle, yields a closed polygon of finite area, as shown in

Figure (9(b)). When both the gradients are zero (which can

be considered to be a special case of gradients being paral-

lel), the probability contribution is equal to the area of the

entire triangle. In the case where the gradient of only one of

the images is zero, the contribution is equal to the area en-

closed between the parallel iso-intensity lines of the other

image, clipped against the body of the triangle (see Figure

(9(c))). Observe that we still have to treat flat regions and

regions where the gradients from the two images align, in

a special manner, even though we have switched to distri-

butions. The basic difference is that now we neither have

to select thresholds, nor do we need to deal with a mixture

of densities and distributions. The other major advantage

is added robustness to noise, as we are now working with

probabilities instead of their derivatives, i.e. densities.

The issue that now arises is how the value of h may be

chosen. It should be noted that although there is no “opti-

mal” h, our density estimate would get more and more accu-

rate as the value of h is reduced. This, again, is in complete

contrast to standard histogramming, as has been mentioned

before. In Figure (8), we have shown plots of our joint den-

sity estimate and compared it to standard histograms for N

equal to 32, 64, 128 and 256 bins in each image (i.e. 322,

642 etc. bins in the joint), which illustrate our point clearly.

On an average, we saw that the standard histograms had a

far greater number of empty bins than our density estimator,

for the same number of intensity levels.

(a) (b)

INFINITY

(c)

Figure 9. (a) Probability contribution ∝ area of parallelogram be-

tween level curves clipped against the triangle, i.e. half-pixel. (b)

Case of parallel gradients. (c) Case when the gradient of one im-

age is zero (dotted level lines) and that of the other is non-zero

(solid level lines). In each case, probability contribution ∝ area of

the hatched region.

2.5. Image Entropy

We are ultimately interested in using the developed the-

ory to calculate MI which requires us to calculate the (Shan-

non) joint entropy of the images, which in turn is calculated

from the probability distributions p̂(α1, α2) as described in

the previous section. A major concern would be that, in the

limit as h → 0, the Shannon entropy does not approach the

continuous entropy, but becomes unbounded [2]. There are

two ways to deal with this situation. Firstly, a normalized

version of the joint entropy (NJE) obtained by dividing the

Shannon joint entropy (JE) by log N , could be employed in-

stead of the Shannon joint entropy itself. As h → 0 and the

Shannon entropy tends toward +∞, NJE would still remain

relatively stable, owing to the division by log N , which

would also tend toward +∞. In fact, any pair of images

that has a uniform joint probability distribution, as calcu-

lated by our method, will have the maximum possible joint

entropy value, which is log N2. From this, it is clear that for

such an image pair, NJE will therefore have an upper bound

of 2, and that no image pair can have an NJE value greater

than 2. Alternatively (and this is the more principled strat-

egy), we observe that unlike the case with Shannon entropy,

the continuous mutual information is indeed the limit of the

discrete mutual information as h → 0 (see [2] for an elegant

proof). With this observation in mind, we need not concern

ourselves with the unbounded nature of Shannon entropy in

the limit. In fact, as N increases, we effectively obtain an

increasingly better approximation to the continuous mutual

information.

3. Experiments

We now proceed to explore our algorithm from the point

of view of image registration. In our first experiment, we

considered the simplest case of a single rotation between a

pair of images. The aim was to iteratively rotate one of the

images in a brute-force manner so that it was optimally reg-

istered with the other based on some criterion. The follow-

ing four measures were calculated as required criteria: Joint

Entropy between the two images, i.e. JE, MI, normalized

MI (NMI) and the measure ρ defined in [11]. Of all these

four measures, MI is the only measure whose continuous

version is the limit of the discrete version. We calculated

JE, NMI and ρ only because we know that h here is non-

zero. JE (needed while computing all the other three mea-

sures) was calculated from the joint probability estimated

as described in Section (2). The marginal probabilities were

computed by summing up the joint probability matrix row-

wise or column-wise (analogous to integration). Not only

was this more efficient than following the procedure in Sec-

tion (2.1), but this also helped ensure a consistency between

the joints and the marginals. The marginal probabilities thus

estimated were used in the marginal entropy calculation.

The first experiment was performed on the face image

shown in Figure (7) and its −15 degree rotated version. A

noise of variance 0.1 was added2 to the latter and it was

then blurred slightly. We then sought to register the original

2using the “imnoise” function of MATLAB



clean face image with its noisy rotated version by perform-

ing a brute force search (between −25 to 0 degrees) for the

angle of rotation, so as to minimize JE and ρ, or to maxi-

mize MI and NMI. For each angle, the values of the afore-

mentioned four entropic measures were calculated, using

the standard histograms as well as our method (both with

128 bins). A trajectory of all these quantities was then plot-

ted to visualize the nature of their variation w.r.t. the rota-

tion (see Figure(11)). This process was repeated exactly as

stated with the noise level raised to 0.8 and the same amount

of blurring (see Figure (12)). From these graphs, especially

Figure (12), one can appreciate the superior noise resistance

of our method, due to the smoother trajectories of JE and

MI. NMI and ρ had similar trajectories which have been

omitted to save space. Smoothness of objective function is

of paramount importance if brute force search is to be aban-

doned for more efficient search mechanisms3. Moreover,

our method predicted the transformation parameters more

accurately as seen in Table (1).

The standard histogram methods will no doubt perform

better when the number of bins is reduced. However, we

wish to emphasize that there is no way of correctly predict-

ing the number of bins in standard histograms. Also, in

practical registration systems, situations could arise where

a large number of bins is essential for accurate rigid/affine

registration, and even more so in non-rigid settings. One

such example is the registration of depth maps to color im-

ages of the same object, where very small depth changes

do correspond to significant changes in intensity. Also,

see Section (4) for further comparison between standard

histograms and the proposed strategy and the fundamental

point of departure between these two methods.

The second experiment was aimed at demonstrating the

use of our method for affine image registration. For this, we

chose a synthetically generated MR-PD slice and an MR-

T2 slice, both obtained from the BrainWeb simulator [5].

Both slices were initially in complete alignment with one

another. The T2 slice was given an affine transformation,

with an in-plane rotation of θ = −20 degrees, a scaling

in both directions by a factor of s = −0.3 and t = −0.3
respectively, and a translation in the X and Y directions by

tx = 2 and ty = 2 pixels respectively (see [11] for details of

the affine matrix). In our experiments, the angle φ was set to

0 for simplicity. Following the transformation, the T2 slice

was treated with zero mean Gaussian noise of variance 0.1.

The images are shown in Figure (10). A multi-resolution

brute force search was performed for the optimal parame-

ters, within an angular range of [−24,−12], a translation of

[−3, 3] and a scale range of [−0.5, 0.5]. The affine trans-

formation was applied to the PD slice so as to optimally

3Indeed, our method is not tied to the brute-force search, and could

work with any optimization technique. Brute-force search was employed

only to do a fair comparison with standard histogram based MI.

Metric Predicted Angle

- Our Method. Std. Hist.

JE −18◦ −25◦

MI −15◦ −21◦

NMI −15◦ −21◦

ρ −15◦ −25◦

Table 1. Angle predicted using JE, MI, NMI and ρ, ground truth =

−15, noise σ = 0.8

align it with the T2 slice, by seeking the maximum of the

MI value. With our method, the estimated parameters (i.e.

the maximum of MI) were θ = −18 degrees, a translation

of 3 pixels along both X and Y , and a scale of −0.2 along

both X and Y . With the standard histograms, the maximum

of MI occurred at an angle of θ = −12 degrees, a scale of

s = 0.5 and t = 0.4, and translations of 0 and 3 pixels. For

both methods, the number of bins used was 128. Clearly

our method outperformed the standard histogram.

Figure 10. (a) An MR-PD slice (b) An MR-T2 slice (c) MR-T2

slice, synthetically warped (d) Warped MR-T2 slice with noise
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Figure 11. Comparison of the trajectory of JE and MI w.r.t. rota-

tion, computed with standard histograms as well our method, noise

σ = 0.1

4. Discussion

In this paper, we have presented a new procedure for esti-

mation of the probability density of image intensity, which

has its foundations in the notion of images as continuous

functions of the spatial coordinates. Our method directly

relates probability density to image gradients. The adopted

notion enables us to solve the so-called binning problem

completely, while calculating both the marginals as well as
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Figure 12. Comparison of the trajectory of JE and MI w.r.t. rota-

tion, computed with standard histograms as well our method, noise

σ = 0.8

the joint probabilities. Our method divides an image into

piecewise linear patches (two in each pixel). Each triangle

can contribute to the joint probability at N2 pairs of inten-

sity levels in the worst case. Therefore, the approach has

a computational complexity of O(SN2) for registration of

two images with S pixels and N chosen intensity levels per

image. As such, it is more efficient than the Parzen window

estimator which is quadratic in the number of samples, or

the MST method which requires an O(E log E) creation of

the spanning tree, E itself being quadratic in S. The tech-

nique we have proposed requires no parameter tuning or

choosing of any kernel function centered around randomly

drawn (i.i.d.) samples, unlike the existing methods. Rather,

every point in the image contributes to the density estimate

in our technique. Furthermore, our technique innately in-

corporates spatial information into the density estimate, un-

like histograms, Parzen windows or GMMs, all of which

are highly global. This essentially means that given a dig-

ital image (for which we use a continuous representation),

the ordering of the pixel values is exploited in our method

and changes in the ordering would affect our density esti-

mate. Other methods ignore such information. A further

merit of our method is its superior resistance to noise as

compared to standard histograms, as has been demonstrated

empirically in the experimental section. The reason for this

is that noise causes votes in standard histograms to errati-

cally switch over from one bin to another. In our case, the

effects of noise are spread out over several bins without any

discontinuous switching.

In this paper, we have preferred to remain within the am-

bit of Shannon entropy (and related measures) as it is the

most widely used entropy formulation. As such, it is triv-

ial to calculate the Renyi entropy from our distribution es-

timates. It is also trivial to calculate cumulative distribu-

tions and use the highly robust cross-cumulative residual

entropy (CCRE) [8] for registration. The main difference

between this paper and [8] is that the latter presents yet

another sampling-based technique that does not exploit the

relative positioning of intensities.

Our future work would involve application of the new

density estimator to non-rigid image registration. On the

theoretical front, we note that our technique in its present

form is not differentiable, which is essential for finding the

analytic derivatives required for the efficient (and accurate)

implementation of gradient-based search methods. Though

we do have a continuous formulation already as described in

Section (2), further work is required to deal with flat regions

and aligned gradients, without sacrificing differentiability

(which is the unfortunate consequence of switching to dis-

tributions). Furthermore, although our approach finds im-

mediate application in group-wise registration of multiple

images, the overall computational cost would be exponen-

tial in the number of images. These issues pose interesting

challenges for future research.
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