
1
Initializing Neural Networks using Decision
Trees

Arunava Banerjee

1.1 Introduction

The task of inductive learning from examples is to �nd an approximate def-
inition for an unknown function f(x), given training examples of the form
hxi; f(xi)i. Existing algorithms to solve this problem follow either of two
basic approaches. Decision tree methods, such as ID3 (Quinlan, 1986) and
CART (Breiman, Friedman, Olshen, and Stone, 1984) construct trees whose
leaves are labeled with the predicted classi�cation. The connectionist meth-
ods, on the other hand, apply neural network learning algorithms such as
the perceptron algorithm (Rosenblatt, 1958), and the error-backpropagation
algorithm (Rumelhart, Hinton and Williams, 1986) that learn through in-
cremental changes of weights in a network consisting of elementary units
called neurons.
Comparative studies (Mooney, Shavlik, Towell, and Gove, 1989; Weiss,

and Kapouleas, 1989) have shown that whereas the decision tree algorithms
run signi�cantly faster during training, the connectionist methods almost
always perform better at classifying novel examples in the presence of noisy
data.
The studies have also demonstrated that when comparisons are con�ned

strictly to the connectionist approach, the back-propagation algorithm out-
performs the perceptron algorithm in classifying real world datasets because
real world datasets are often not linearly separable.
Back-propagation however, su�ers from a host of drawbacks. First, it is

extremely slow to train. Second, and more important, variable parameters
like learning rate, momentum, and network topology a�ect the accuracy of
the resulting classi�er. Setting these parameters to their respective optimal
values is a painstaking and time-consuming process.
When it comes to solving real-world problems, restrictions on time and

accuracy become of utmost importance. This is to say that most applica-
tions require accurate real-time solutions to their respective problems. The
methods mentioned above either come short of attaining the required accu-
racy for classifying novel examples, or train far too slowly to be functional
in such environments.

2 Banerjee

This paper describes an algorithm which is much faster than back-prop-
agation, and at the same time matches it in accuracy in classifying novel
examples. The key idea is to construct a decision tree, convert it into an
equivalent network, and then tune the network by training it over the same
dataset for a short period of time.
Many researchers have proposed converting decision trees into equivalent

neural networks - see for example (Utgo�, 1989), (Sethi, 1990), (Brent,
1991), and (Cios and Liu, 1992). The di�erence in our approach lies in the
fact that whereas all these methods generate networks that classify as accu-
rately as the input decision trees, our method, aided by subsequent tuning,
outperforms the decision tree in its accuracy in classifying new examples.
Towell and Shavlik (1993) advance a technique of symbolic rules to neural

network conversion and subsequent training, that resembles our approach.
The conversion algorithm they employ is however, distinct and the resultant
network has a di�erent topology. Whereas the depth of the network in their
approach depends upon the input ruleset, our approach creates a network
with a �xed depth.
This paper is structured as follows. Section 1.2 demonstrates how a neu-

ral network may be derived from a decision tree. In addition, it highlights
certain other advantages of the proposed method. Section 1.3 clari�es the
algorithm by converting an example decision tree into an equivalent neural
network. In section 1.4 experimental results pertaining to three di�erent do-
mains are presented and the new approach is compared to back-propagation
and ID3 in their context. Section 1.5 discusses future research directions
based on some known shortcomings of this approach, and section 1.6 presents
concluding remarks.

1.2 The Conversion Technique

As has already been stated, the central idea of the technique is to apply a
decision tree (created by any decision tree algorithm, for example ID3) to
initialize the neural network. This network is subsequently trained using a
connectionist method on the dataset to achieve an improved predictive ac-
curacy. In this paper, C4.5 has been chosen as a proto-typical representative
of the decision tree approach. Similarly, Back-propagation (Bp) has been
chosen as a representative of the connectionist approach.

Initializing Neural Networks using Decision Trees 3

The new technique has three major advantages. First, the initial network
performs almost as well as the decision tree on which it is based. In other
words, even before the process of subsequent training starts, the network is
a considerably accurate classi�er of the dataset. Second, the procedure that
converts the decision tree into a neural network also speci�es the network
topology. This eliminates the guess work that goes into the creation of a
network topology. Third, as will be demonstrated through the experiments,
this technique fares better than the best network classi�er and decision
tree, even when the values for momentum and learning rates are frozen
across datasets. Consequently, one could eliminate the process of repeated
training required to �nd the optimal values for such parameters, and at the
same time retain the accuracy of the classi�er.
An informal sketch of the technique is presented next. This is followed by

the actual algorithm.

1.2.1 Informal Sketch

The technique presented in this paper converts uni-variate decision trees
into equivalent neural networks. The network that is created has three
layers (two hidden layers and one output layer). The two hidden layers are
called the literal layer and the conjunction layer. The output layer is also
called the disjunction layer.
Any data point is assumed to be an element of Rn tagged with a concept

class that is a member of the set f1, 2, ..., Mg. In other words, each example
is assumed to be a vector of length (n + 1) that comprises of n real valued
attributes and an integral class that takes a value between 1 and M.
The network generated by the technique has exactly n input nodes and

M output nodes. The n input nodes correspond to the n attributes in an
example, and the ordinality of the node in the output layer that has the
maximum activation corresponds to the classi�cation of the example.
The technique �rst creates a decision tree by applying C4.5 on the dataset.

This is followed by a phase of the creation of the actual network. Corre-
sponding to each node in the decision tree, the technique requires the con-
struction of a node in the literal layer that replicates the decision of that
node in the tree.
The next phase involves the creation of nodes that correspond to branches

in the tree. This is accomplished by assigning one node in the conjunction
layer to each branch such that the node replicates the decision of that branch

4 Banerjee

in the tree. The penultimate phase corresponds to the act of grouping
together all branches that are assigned to the same output class. This is
achieved by allocating one node each in the output (disjunction) layer to
a class, and by associating with it all nodes in the conjunction layer that
correspond to the branches for that class.
In the �nal phase, a set of weak edges is superimposed on the network.

These edges connect each node in a layer to every node in the previous and
the next layer that remain disconnected from it after the previous step.

1.2.2 The Formal Algorithm

The validity of the technique is based on the assumption that each node in
the generated network performs a hyperplane test of the form

b+
nX

j=1

wjxj > 0? (1.1)

and replies with a zero or one depending on whether the test succeeds.
Here, b corresponds to the bias of the node, wj corresponds to the weight
on the input edge j, and xj to the value of the input on edge j. In order to
facilitate the subsequent training using Bp, the hard threshold is softened
by replacing it with a sigmoid of the form

f(~x) =
1

1 + e�k:(b+
P

wjxj)
(1.2)

where k characterizes the softness 1 of the threshold.
The algorithm is as follows.

Begin

1 Initialize parameters � and � to 5.0 and 0.025 respectively. 2

2 Run C4.5 on the training dataset to generate a decision tree.

3 Traverse the decision tree to create a dnf (disjunctive normal form)
formula for each class.

4 Eliminate all redundant literals from each disjunct.

1The smaller the value of k, the softer is the threshold
2What these parameters represent is explained further on in the paper.

Initializing Neural Networks using Decision Trees 5

5 For each distinct literal of the form hattribi > hvaluei, 3 create a hidden
unit in the literal layer with a bias of -� � hvaluei. Connect it to the input
unit corresponding to hattribi with a weight of �. Connect it to all other
input units with weights +� or -� with equal probabilities.

6 For each literal of the form hattribi < hvaluei, repeat step 5 with the
signs for the bias and weights inverted.

7 For each disjunct in a class, create a new hidden unit in the conjunction
layer. Connect it to all relevant hidden units in the literal layer with weights
�. Connect it to the rest of the hidden units in the literal layer with weights
+� or -� with equal probabilities. Set the bias to -�*(2n-1)/2, where n
stands for the number of relevant hidden units in the literal layer. (In e�ect,
each node represents an AND.)

8 For each class, create an output unit and connect it to the relevant
hidden units in the conjunction layer with weights �. Connect it to the rest
of the hidden units in the conjunction layer with weights +� or -� with equal
probabilities. Set the bias to -�*1/2. (Each node is e�ectively an OR.)

End

� and � may be treated as parameters to this technique. The values for
these were �xed by cross validating on an arti�cially created dataset. Values
for momentum and learning rate were �xed similarly to 0.1 and 0.3. These
values were subsequently frozen across datasets.

1.3 Example

Figure 1.1 depicts a typical decision tree that might be generated by running
C4.5 on a training dataset comprising of examples with two attributes and
two output classes. The classi�er could be expressed equivalently, as the
following rules in disjunctive normal form.

(X < 2:5)_ ((X >= 2:5)^ (Y < 1:3))) Class : 1: (1.3)

3Literals of the form hattribi = hvaluei can be converted to hattribi > hvalue � �i ^
hattribi < hvalue+ �i

6 Banerjee

(X >= 2:5)^ (Y >= 1:3)) Class : 2: (1.4)

1

1 2

X < 2.5 X >= 2.5

Y < 1.3 Y >= 1.3

Figure 1.1
A typical decision tree.

The technique creates four nodes in the literal layer that correspond to
(X < 2:5), (X >= 2:5), (Y < 1:3), and (Y >= 1:3). The literal (X < 2:5) is
characterized by the hidden node that has a bias of 12.5 and a weight of -5.0
on the input edge from X . The other nodes in the literal layer represent, in
order, (X >= 2:5), (Y < 1:3), and (Y >= 1:3).
Three nodes are generated in the conjunction layer; one each for (X < 2:5),

(X >= 2:5)^ (Y < 1:3) and (X >= 2:5)^ (Y >= 1:3). For each such node,
the weights on the edges from relevant nodes in the literal layer are set to

Initializing Neural Networks using Decision Trees 7

5.0, and the bias of the node is set to �(5n � 2:5), where n denotes the
number of literals in the disjunct.
Two nodes are created in the output (disjunction) layer, one each for the

two classes. The execution of this step is almost identical to the previous
step. The only di�erence is that in this case, the bias of the nodes are set
uniformly to �2:5. A �nal step connects each node in a layer to nodes in
the previous and the next layer that remain disconnected from it after the
mentioned procedure. The weights on these edges are set to +0:025 and
�0:025 with equal probabilities. Figure 1.2 depicts the skeletal network
generated prior to the �nal step. Any classi�er that can be reduced to a
propositional ruleset of the form shown may be converted into an equivalent
neural network using the given method.

X Y

-5.0 5.0 -5.0 5.0

12.5 -12.5 6.5 -6.5

5.0 5.0 5.0 5.0 5.0

 -2.5 -7.5 -7.5

5.0 5.0 5.0

 -2.5 -2.5

(Class: 1) (Class: 2)

Figure 1.2
The skeletal neural network.

8 Banerjee

1.4 Experiments and Results

The new technique was compared to C4.5 and two separate instances of
Bp. The �rst network consisted of a single hidden layer with as many
hidden units as were created by the new technique (strawman:1), and the
second network employed the same topology as the network created by the
technique (strawman:2). In both cases, weights on the edges were initialized
randomly.
Experiments were conducted on three separate benchmark datasets. The

�rst dataset was Iris, the second was a thyroid gland dataset donated to
the UCI machine learning repository by Stefan Aeberhard and the third
was a glass identi�cation database donated to the UCI repository by Vina
Spiehler.
In all experiments a 5-fold cross validation was performed with each train-

ing conducted thrice. Results were then averaged over the �fteen runs. Bp
remained in a permutation mode of training through all the experiments.
The values of momentum and learning rate for the network created by the
technique were �xed at 0.1 and 0.3 respectively, across datasets. However,
for the other networks, good values for momentum and learning rates were
chosen. The number of epochs where the networks achieved their best pre-
dictive accuracies were also noted. Finally, statistical signi�cance tests were
conducted to calibrate the classi�cation accuracy of the various networks.
The results are presented graphically in �gures 1.3, 1.4, and 1.5, and

in a tabular form in �gure 1.6. Figures 1.3 through 1.5 contain curves
corresponding to the classi�cation accuracy of each of the three networks.
The curves represent the error rates for each network trained over a speci�c
number of epochs, averaged over �fteen runs. The range of epochs presented
in the �gures are restricted to a region where the optimal performance of the
all the networks were observed. The performance of C4.5 on these datasets
are noted in �gure 1.6.

1.4.1 Iris Dataset

When run on the Iris dataset, C4.5 generated a tree with an expected error
rate of 8:5%. All three networks that were trained on the same dataset,
however, surpassed C4.5 in accuracy for classifying novel examples. The
new technique when trained to its optimal state, generated the best classi�er
with an expected error rate of 3:88%. The accuracy of the new technique

Initializing Neural Networks using Decision Trees 9

was found to be signi�cantly higher than strawman:2, but not signi�cantly
higher than strawman:1 (with a con�dence level of 99%). The new technique
also reached its optimal state quicker than the other networks. Whereas
strawman:1 and strawman:2 achieved their optimal states at 220 and 320
epochs respectively, the technique arrived at its optimal state at 140 epochs.
Finally, the network with the same number of hidden units as used by the
technique (strawman:1) performed better than the network with the same
topology as the technique (strawman:2).

Iris Dataset

New technique

Strawman:1

Strawman:2

Percentage Error

Number of Epochs3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

17.00

0.00 100.00 200.00 300.00

Figure 1.3
Results from the iris dataset.

10 Banerjee

1.4.2 Thyroid Gland Dataset

In this case, the new technique performed signi�cantly better than C4.5
and the two other networks. The technique created a classi�er with an
expected error rate of 3:68% that surpassed, by far, the 4:37%, 5:08%, and
8:2% error rate classi�ers created by strawman:2, strawman:1, and C4.5
respectively. Moreover, strawman:2 outperformed strawman:1 in this case
unlike the previous instance.

Thyroid Gland Dataset

New Technique

Strawman: 1

Strawman: 2

Percentage Error

3Number of Epochs x 103.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

0.00 0.50 1.00 1.50

Figure 1.4
Results from the thyroid gland dataset.

Initializing Neural Networks using Decision Trees 11

1.4.3 Glass Identi�cation Database

The Glass identi�cation database has been known to be a dataset wherein
C4.5 typically performs better than Bp. Results from experiments on this
dataset, however, demonstrated that the new technique achieved a predictive
accuracy that surpassed C4.5 and both the strawmen, the di�erence being
signi�cant to a 99% con�dence level. This result could be attributed to the
network's initialization through C4.5 (28:3% error.).

Glass Identification Database

New Technique

Strawman: 1

Strawman: 2

Percentage Error

3Number of Epochs x 1024.00

26.00

28.00

30.00

32.00

34.00

36.00

38.00

40.00

42.00

44.00

46.00

48.00

50.00

0.50 1.00 1.50 2.00 2.50 3.00

Figure 1.5
Results from the glass identi�cation dataset.

One must note that the new technique performed better than the ri-
val methods in spite of the basis for comparison being biased against it.
Whereas the learning rate and momentum for the technique were frozen

12 Banerjee

across datasets, good values for the parameters were chosen for the other
methods.
Actual numerical values that were obtained through the experiments are

recorded in a tabular form in �gure 1.6. Results indicate that the com-
plete process of �nding the optimal values for momentum and learning rate
through repeated training and cross validation can be discarded by apply-
ing, instead, the �xed parameter version of the new technique. Results also
indicate that the e�cacy of the technique can not be attributed to either the
topology or the initial weights in isolation. It happens to be the consequence
of the mutually supportive e�ects of both.

IRIS
THYROID
GLAND
DATASET

 GLASS
IDENTIFICATION
 DATABASE

C4.5

Bp
with
same no:
of hidden
units

Bp
with
same
network
topology

New
technique

Expected error =
8.5%

Best lrate = 0.7
Best momentum=0.5

Expected error=
3.97%
after 220 epochs

Best lrate = 0.7
Best momentum=0.5

Expected error=
4.56%
after 320 epochs

Expected error=
3.88%
after 140 epochs

Expected error=
8.2%

Best lrate = 1.0
Best momentum=0.7

Expected error=
5.08%
after 600 epochs

Best lrate = 1.0
Best momentum= 0.7

Expected error=
4.37%
after 1500 epochs

Expected error=
3.68%
after 700 epochs

Expected error=
28.3%

Best lrate = 0.8
Best momentum =0.6

Expected error=
30.21%
after 800 epochs

Best lrate = 0.8
Best momentum=0.6

Expected error=
29.94%
after 800 epochs

Expected error=
27.57%
after 1000 epochs

(Fixed lrate
and
momentum of
0.3 and 0.1
respectively)

Figure 1.6
Complete tabulated results.

Initializing Neural Networks using Decision Trees 13

1.5 Future Research

In spite of the fact that the results from the experiments were quite promis-
ing, the new technique has been found to su�er from certain drawbacks.
In all the experimented datasets, the decision trees generated by C4.5 were
fairly small; trees that had fewer than 25 nodes. It is however, not very
di�cult to conceive of a dataset where any decision tree algorithm performs
poorly and creates a complex tree with over a 100 internal nodes. Since,
in the new technique the number of hidden units increase linearly with the
number of internal nodes in the decision tree, it would not be at all sur-
prising if the technique created a very large network topology for certain
datasets.
Applying the technique to multi-variate decision trees provides only a

partial solution to this problem. Even though the hypothesis space for multi-
variate decision trees is richer than that for uni-variate trees, it nevertheless
remains weaker than the hypothesis space for a network with at least one
hidden layer. This is to say that the initial network generated by any decision
tree approach has many more nodes than is actually required to classify the
dataset. The only solution to this problem lies in pruning the decision tree.
Methods for pruning thus need to be investigated in this context.

1.6 Conclusions

To summarize, a host of drawbacks have been identi�ed with the Bp algo-
rithm. First, it is extremely slow to train. Second and more important, there
does not exist any formal technique that can decide beforehand the network
topology and parameter settings that would be optimal for the network to
classify a given dataset. This paper presents a novel technique that takes a
decision tree classi�er and transforms it into a network topology that clas-
si�es data almost as well as the tree. This process not only provides a good
classi�er to start with, but also chooses a suitable topology for the network.
A short period of training then creates a classi�er that is more accurate than
Bp, and at the same time, runs faster. Finally, experimental comparisons
against C4.5 and Bp demonstrate the e�cacy of this new technique.

14 Banerjee

Acknowledgments

I would like to thank Haym Hirsh for stimulating discussions on this topic.
I would also like to thank Jyoti Parmar for her critiques on an earlier draft
of this paper.

