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Huanglongbing (HLB) disease is a critical infection which has dangerously affected the

citrus production in Florida and has also been observed in California and Texas. No active

treatment for this infection has been reported yet and the HLB infected tree will eventually

die. However, early identification and removal of the HLB affected trees will secure the

healthy trees in the grove. Accumulation of starch on infected leaves is an early symptom

of HLB. Starch can rotate the polarisation plane of light in a certain waveband. A cus-

tomised vision sensor was developed based on this characteristic to identify the HLB

symptom. The vision sensor images were compared with the images captured by a colour

camera to demonstrate the improvement achieved in this method. Also, the starch accu-

mulation identification was studied for citrus leaves before and after being ground. The

results showed an enhanced HLB identification performance using the developed vision

sensor.

© 2014 IAgrE. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Huanglongbing (HLB), also called “citrus greening” or “yellow

shoot disease”, is an extremely lethal infection of citrus trees

first discovered in 2004 on the American continent in Brazil

(Halbert, 2005), and later in Florida in August 2005 (Texeira

et al., 2005). Shortly after, HLB infection spread over the
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entire state of Florida and is now present in Texas (Kunta

et al., 2012), and California (Kumagai et al., 2014). Presently,

there are no effective treatments and infected trees will

eventually die after a few years. Nevertheless, early HLB

detection and removal of the infected trees will prevent other

healthy trees in the grove from acquiring the disease. Com-

mon symptoms of HLB are chlorosis and mottling of the

leaves, uneven fruit colouring, and unevenly shaped and
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bitter tasting fruit. The yellowish/blotchy symptom of HLB-

infected leaves resembles that of some nutrient deficiencies

(especially zinc deficiency), making it difficult to distinguish

from such deficiencies. Additional molecular analysis is

usually required for an accurate diagnosis (Albrecht &

Bowman, 2008). However, HLB leaf symptomatology de-

velops from the accumulation of starch in the leaf tissue, a

property that can be exploited for diagnostic means (Takushi

et al., 2007).

Futch, Weingarten, and Irey (2009) showed that the accu-

racy of a human-based HLB diagnosis by visual inspection

would not be greater than 59%. Gonzalez, Reyes-De-Corcuera,

and Etxeberria (2012) showed that the level of starch in a citrus

leaf can be measured in a laboratory to expose its HLB status.

However, qrt-PCR test was reported as the most accurate

laboratory-based HLB diagnosis method (Hansen, Trumble,

Stouthamer, & Paine, 2008). Although both the qrt-PCR and

the starch measurement methods are comparatively accu-

rate, they need sample collection and preparation which are

extremely time-consuming and labour-intensive, and cannot

be employed for constant grove monitoring.

Spectroscopy methods have been widely used by re-

searchers for plant status monitoring (Xie, Li, Nie, & He, 2013).

Mishra, Ehsani, Albrigo, and Lee (2007) evaluated the capa-

bility of near-infrared, red, and green spectral bands in HLB

identification. Later, they designed an optical sensor with the

ability to measure the citrus trees' reflectance at 970 nm,

870 nm, 670 nm, and 570 nm. Using this sensor, they realised

that they can achieved an accuracy of over 95% if the tree's
reflectance is measured multiple times (Mishra, Karimi,

Ehsani, & Albrigo, 2011). The mid-infrared band was found

to have potential to determine the HLB status of ground citrus

leaves (Hawkins et al., 2010). Sankaran, Ehsani, and Etxeberria

(2010) showed that the reflection of a ground citrus leaf in

mid-infrared band could identify not only its HLB status, but

also its nutrient deficiency status with an accuracy of over

90%. It was shown in another study that aside from HLB and

nutrient deficiency status, other citrus diseases could also be

identified by analysing the ground leaf's reflection in the near-

infrared, with true positive rates between 92% and 99%

(Windham et al., 2011).

Kim et al. (2009) analysed digital microscopic images of

citrus leaves to classify them into several classes including

two HLB, two healthy, and three nutrient deficiency classes.

They achieved an overall accuracy of 87% using the textural

descriptors extracted from the images.

Li, Lee, Wang, Ehsani, and Yang (2012) also employed

airborne multispectral (MS) and hyperspectral (HS) images to

identify the HLB infected areas in the grove. Li, Lee, Li, et al.

(2012) compared different airborne MS and HS image anal-

ysismethods for HLB detection. They showed that the spectral

information divergence (SID) method had the best accuracy.

Later Li, Lee, Wang, Ehsani, and Yang (2014) employed an

spectral angle mapping (SAM) method and their extended

approach resulted in an accuracy of 86% for HLB detection. In

another study, images acquired by a multiband imaging

sensor mounted on an UAV (six-rotor helicopter) were used to

detect HLB infected trees. Accuracies ranging from 67% to 85%

were achieved in HLB infection identification using this

method (Garcia-Ruiz et al., 2013).
It was shown in our previous study (Pourreza, Lee, Raveh,

Ehsani, & Etxeberria, 2014) that the unique starch character-

istic of rotating the polarisation plane of light can be effec-

tively used in identification of starch accumulation in an HLB

infected citrus leaf. A customised image acquisition system

was developed for this purpose and it was able to clearly

highlight the HLB infected areas on citrus leaves; however, its

HLB detection accuracy within the zinc deficient samples was

not as good. In this study, another vision sensor was devel-

oped to improve the efficiency of the first prototype and add

more capabilities. The main objective of this study was to

evaluate the HLB identification performance of the proposed

vision sensor and confirm its efficiency. The specific goals

were to (1) assess the improvement in HLB identification

achieved by using narrow band illumination and polarising

filters in comparison with a natural imaging condition, and (2)

compare the effect of starch accumulation on the images of

citrus leaves before and after being ground.
2. Materials and methods

2.1. Data collection

Two sample sets of Hamlin sweet orange leaves were

collected from citrus trees at the Citrus Research and Educa-

tion Center (CREC), University of Florida (Lake Alfred, Florida).

There were 60 citrus leaves in the first sample set of 20 HLB-

positive, 20 HLB-negative, 10 zinc-deficient HLB-positive, and

10 zinc-deficient HLB-negative samples. This sample set was

used for comparing the images acquired by the proposed

vision sensor with the images of the same samples that were

obtained with another colour camera. The second sample set

included another 30 samples, of 10 HLB-positive, 10 HLB-

negative, 7 zinc-deficient HLB-positive, and 3 zinc-deficient

HLB-negative. The second sample set was created to

compare the images of the samples with the images of the

same leaves after grinding. A qrt-PCR examination (Hansen

et al., 2008) was performed on all the 90 samples in both

sample sets to confirm the HLB status of the leaves. The qrt-

PCR test was done in the U.S. Sugar Corporation's Southern

Gardens processing plant (Clewiston, FL).

2.2. Image acquisition

According to the results of the previous study (Pourreza, Lee,

Raveh, Hong,&Kim, 2013), starch in the HLB infected leaf was

able to rotate the light polarisation mainly around 600 nm.

These results were used to develop a vision-based sensor

with the ability to highlight the symptomatic areas on an HLB

infected leaf which contained excessive amount of starch.

The vision sensor included a monochrome camera (DMK

23G445, TheImagingSource, Bremen, Germany) with high

sensitivity at 591 nm, and 10 high power (10 W) narrow band

LEDs (LS4-00A100, LED Engin, San Jose, California) concen-

trated at 591 nm which were mounted in a 13 � 19 � 15 cm

wooden box (Fig. 1). Five LED drivers (RCD-48, RECOM,

Brooklyn, New York) were used to power the LEDs. A wide

lens with a 6 mm focal length was used for the camera to

maximise its depth of field. Also one linear polariser was

http://dx.doi.org/10.1016/j.biosystemseng.2014.11.013
http://dx.doi.org/10.1016/j.biosystemseng.2014.11.013


Fig. 1 e Image acquisition system including the camera,

lens, polarising filters and LED panel enclosed in a wooden

box.
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installed in front of the camera's lens, and another polarising

film (visible linear polarising laminated film, Edmund Optics,

Barrington, New Jersey) with a perpendicular direction to the

camera's filter was fixed in front of the LED panel (Fig. 1).

Using this setting, the camera only receives the minimum

reflection.
2.3. Imaging conditions evaluation

Images of citrus leaves in the first sample set were acquired

with the vision sensor in a completely dark room from a dis-

tance of 80 cm because the minimum number of saturated

pixels were achieved at this distance while pixel values were

well distributed within the entire dynamic range. Therefore,

the leaf samples only received the narrow band polarised light

produced by the sensor. In order to evaluate the HLB identi-

fication efficiency of the sensor, another set of images from

the same sample set were created using an RGB camera (EOS

Rebel T2i, Canon, Tokyo, Japan) and with common indoor

fluorescent light. All the RGB images were captured in the

manual mode with a shutter speed of 0.04 s, a focal ratio of

F4.5, and sensitivity of ISO800 to confirm the imaging condi-

tion uniformity and prevent the effect of camera settings on

the evaluation results. The histograms of the red, green, blue,

and grey (average of red, green, and blue) components of the

RGB colour space and relative luminance (Y), blue-difference

(Cb), and red-difference (Cr) components of YCbCr colour

spacewere extracted from the symptomatic areas on each leaf

and compared to the same symptomatic areas on the images

captured by the vision sensor. Also mean and standard devi-

ation features of the leaf area were extracted from the vision

sensor images and the six colour components of the colour

images, to visualise the samples in a 2-dimensional space and

evaluate the separability of the four classes of HLB-positive,

zinc-deficient HLB-positive, zinc-deficient HLB-negative, and

HLB-negative leaves. A maximum margin approach (Bishop,

2006) was employed to determine the optimum thresholds

between each pair of classes for the scatter plot of the samples

images acquired by the vision sensor.
2.4. Discriminant analysis

In order to compare the separability of the four classes in the

two imaging conditions, Fisher ratio was used as the sepa-

rability index and it was calculated using the features

extracted from the vision sensor images and all seven com-

ponents of the RGB images (red, green, blue, grey, Y, Cb, Cr).

Fisher ratio defines the ratio of the between-class variability

to the within-class difference (Han, Lee, & Bien, 2013).

Equation (1) shows the Fisher ratio for one feature in a 2-class

problem.

Fij ¼
�
mi � mj

�2

�
s2
i þ s2

j

� (1)

where mi and mj are the means and si and sj are the standard

deviations in class i and j. Fij shows the degree of the class

separability in the direction of the corresponding feature.

However, in order to improve the identification accuracy, two

features (grey values' mean and standard deviation) were

employed in this experiment and the effect of the two on a

single separability index was needed. Therefore, a Fisher's
linear discriminant analysis (LDA) was used to reduce the

dimension of the feature vector to one dimensional for each

pair of classes (Bishop, 2006) and then the Fisher ratio was

calculated for the corresponding pair of classes. In Fisher's
LDA (equation (2)), a function is employed to project the vector

x down to a one-dimension vector (y).

y ¼ wTx (2)

The projection method in Fisher's LDA was employed

because it optimises the weight vector (w) by maximising the

separation between the projected classes and minimising

variation within each projected class (equation (3)).

wfS�1
W ðm2 �m1Þ (3)

where SW is the total within class covariance matrix, and m1

andm2 are themeans of class one and two respectively. Using

this projection, the Fisher ratio was computed between each

pair of classes; however, the dataset included four classes and

consequently a single separability index was required to

describe the separability for all four classes. For this purpose,

the arithmetic average of Fisher ratios for all possible pairs of

classes was computed (equation (4)) and considered as the

general separability index (F) for comparison of HLB identifi-

cation efficiencies between the sensor images and the RGB

images.

F ¼

PC
i

PC
j

PiPjFij

CðC� 1ÞP
C

i

PC
j

PiPj

(4)

where Pi and Pj are proportional to the number of samples in

classes i and j, and C indicates the number of classes.

2.5. Sample condition evaluation

In this part, the images of the leaves in the second sample set

were compared to the same samples after being ground, to

http://dx.doi.org/10.1016/j.biosystemseng.2014.11.013
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Table 1 e The cycle threshold (CT) values measured for the citrus leaves in the first sample set.

HLB Negative HLB-positive Zn Def. HLB-negative Zn Def. HLB-positive

ID CT Value ma sb ID CT Value m s ID CT Value m s ID CT Value m s

21 40.0 38.3 5.7 41 28.0 48.5 14.8 1 40.0 84.7 65.8 2 24.9 100.4 42.6

22 40.0 28.4 4.2 42 23.2 51.5 14.9 3 37.7 110.3 65.7 6 23.3 114.8 37.1

23 40.0 49.5 8.0 43 25.4 78.7 38.9 4 40.0 89.4 58.6 8 23.6 121.0 44.1

24 40.0 26.5 3.7 44 32.3 59.7 18.8 5 40.0 107.9 58.6 9 22.6 213.8 59.0

25 40.0 20.9 4.7 45 21.9 63.8 26.9 7 40.0 121.4 85.4 11 27.8 102.9 62.4

26 40.0 26.8 4.9 46 21.5 49.3 13.6 10 40.0 127.5 77.5 13 24.6 140.9 65.7

27 40.0 28.0 3.2 47 22.3 46.2 12.7 12 40.0 119.4 82.2 14 23.2 134.5 64.3

28 40.0 26.3 4.8 48 26.5 53.4 13.5 15 40.0 98.0 55.3 18 22.1 98.7 44.5

29 40.0 23.1 3.8 49 24.4 52.2 23.7 16 40.0 128.6 69.2 19 24.3 162.1 64.5

30 40.0 23.7 3.8 50 23.1 51.8 15.6 17 40.0 89.3 63.7 20 21.4 162.3 49.7

31 40.0 35.8 4.0 51 21.9 81.2 23.0

32 40.0 34.3 5.1 52 30.8 47.8 21.1

33 40.0 30.2 4.8 53 24.8 56.1 18.7

34 36.5 29.3 6.0 54 22.0 76.0 17.8

35 40.0 33.7 4.7 55 22.7 57.5 11.0

36 40.0 26.2 5.6 56 23.2 64.1 17.3

37 40.0 31.9 5.3 57 26.6 69.0 15.5

38 40.0 36.6 5.1 58 21.9 103.5 39.9

39 40.0 41.8 4.5 59 22.8 47.8 12.1

40 40.0 34.3 6.6 60 21.9 52.9 18.4

a m is the grey values' mean of the image captured by the vision sensor.
b s is the grey values' standard deviation of the image captured by the vision sensor.
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investigate whether the starch in ground infected leaves can

be identified as accurately as in unground leaves. For the

grinding process, the samples were first placed in a ceramic

mortar and freeze-dried with liquid nitrogen (Sankaran et al.,

2010) and then they were ground using a ceramic pestle.

Histograms of the whole leaf area were acquired and

compared with the histograms of the ground leaves. Also the

grey values' means and standard deviations were extracted

from both sample sets before and after being ground to visu-

alise the samples in a 2-dimentional space. The separability

indices (Fisher ratio) as explained in the previous section were

calculated for comparison purposes.

All the feature extractions and analyses were conducted in

MATLAB (version R2011a, MathWorks, Natick, MA), and Excel

(Microsoft Office, Microsoft, Redmond, Washington) was used

to visualise the samples in scatter plots.
Table 2 e The cycle threshold (CT) values measured for the cit

HLB Negative HLB-positive

ID CT Value ma sb ID CT Value m s I

21 40.0 23.3 8.2 1 23.5 74.9 32.1 1

22 40.0 27.6 9.5 2 23.1 106.7 37.3 1

23 40.0 27.8 9.1 3 24.0 79.8 27.8 1

24 40.0 20.9 6.7 4 25.0 90.1 42.6

25 40.0 22.8 8.7 5 23.4 58.5 19.1

26 40.0 28.7 8.3 6 23.9 118.9 39.9

27 40.0 37.8 8.9 7 23.1 84.8 26.0

28 40.0 23.2 8.7 8 22.4 88.3 36.4

29 40.0 27.5 9.0 9 24.4 86.5 45.1

30 40.0 18.8 9.1 10 24.9 70.2 39.9

a m is the grey values’ mean of the image captured by the vision sensor b
b s is the grey values’ standard deviation of the image captured by the v
3. Results and discussion

3.1. Dataset validation

The number of required cycles for the fluorescent intensity to

reach the threshold is considered as the cycle threshold (CT)

in a qrt-PCR test. Li, Hartung, and Levy (2006) suggested the CT

value of 33 to decide about the HLB status of a sample. Ac-

cording to their study, a CT value smaller than 33 indicates the

HLB-positive status while a CT value over 33 shows no HLB

infection. The measured CT values for the citrus leaves in the

first sample set are given in Table 1. Within the zinc-deficient

class, 10 samples had the CT values below 33 and the rest of

the samples in this class had CT values over 33. Therefore, the

zinc-deficient class was divided into two subclasses of zinc-
rus leaves in the second sample set.

Zn Def. HLB-negative Zn Def. HLB-positive

D CT Value m s ID CT Value m s

4 36.0 85.6 37.3 11 29.0 133.5 42.0

7 34.7 82.7 51.3 12 21.7 145.4 46.4

9 34.7 85.7 52.3 13 22.2 100.3 38.3

15 23.2 145.5 55.0

16 24.0 97.9 31.0

18 29.0 131.4 45.9

20 23.6 87.1 54.6

efore grinding.

ision asensor before grinding.

http://dx.doi.org/10.1016/j.biosystemseng.2014.11.013
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Fig. 2 e Scatter plots of samples in four classes based on their grey values features and cycle threshold (CT) values: (a) grey

values' means and CTs, and (b) grey values' standard deviations and CTs.
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deficient HLB-positive and zinc-deficient HLB-negative

classes.

Table 2 shows the CT values for the leaves in the second

sample set. Seven samples within the zinc-deficient class had

CT values smaller than 33 and three zinc-deficient samples

had CT values greater than 33. So they were subcategorised

into zinc-deficient HLB-positive and zinc-deficient HLB-nega-

tive classes, respectively.

In order to examine the relationships between the grey

value features (means and standard deviations) and CT

values, two correlation analyses were conducted in MINITAB

(version 15, Minitab Inc., State College, Pennsylvania). Pearson

coefficients of �0.493 and �0.244 were determined for the

correlations betweenmeans and CTs, and standard deviations

and CTs, respectively. Since the coefficients were negative in

both correlation analyses, it can be concluded that the CT
Fig. 3 e Colour photos of leaves' samples in four classes and th

vision sensor and extracted from the colour images. Cb ¼ blue

interpretation of the references to colour in this figure legend, t
values generally tended to increase as the grey value features

decreased. The absolute coefficient value also tells the

strength of a relationship between two variables where a

perfect relationship is indicated by one, and zero means no

relationship at all. Since the obtained Pearson coefficients

were closer to zero than one, it can be concluded that there is

no strong relationship between CT values and the grey values

features. This can be also inferred from the scatter plots in

Fig. 2. Basically, there is no direct correlation between degree

of symptoms of a given leaf sample and its CT value. The

bacteria are very unevenly distributed throughout an HLB

affected tree, so variations per sample can be quite large.

Additionally, HLB symptomsmay show in different ways, so it

is impossible to definewhich symptoms show up first as being

correlated with CT values (Gottwald, 2010). The vision sensor

in this paper was designed to highlight the accumulation of
eir corresponding monochrome images captured by the

difference (YCbCr), and Cr ¼ red difference (YCbCr). (For

he reader is referred to the web version of this article.)

http://dx.doi.org/10.1016/j.biosystemseng.2014.11.013
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Fig. 4 e Histograms of four classes' symptomatic areas: (a) vision sensor images, (b) colour images of blue difference (Cb)

component of YCbCr, (c) colour images of red difference (Cr) component of YCbCr, and (d) colour images of green component

of RGB. HLBþ ¼ infected with Huanglongbing, Zn Def. HLBþ ¼ zinc deficient and infected with Huanglongbing, Zn Def.

HLB¡ ¼ zinc deficient but not infected with Huanglongbing, and HLB¡ ¼ healthy.
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starch; however, starch can vary drastically over a certain

threshold, and it is impractical to correlate the starch accu-

mulation to CT value in a single sample. However, the CT

value can be correlated to the number of symptomatic areas

on an entire tree including roots. The amount of starch

accumulation indicates that HLB infection is present some-

where in the tree and this can be away from the bacterial

infection, while the CT value reveals the level of infection in

that particular leaf sample. As the correlation analyses

confirmed, there were no strong correlations between CT

values and grey values' means or standard deviations. The

method presented in this paper was not meant to be quanti-

tative in terms of bacteria but rather in terms of the presence

of HLB infection in a tree.

3.2. Comparison of imaging conditions

Four sample images (one from each class) acquired with the

vision sensor and their corresponding colour components
Table 3e Percentage overlap between the histograms of every p
and top three components of colour images: HLBþ ¼ infected
infected with Huanglongbing; Zn Def. HLB¡ ¼ zinc deficient b

Vision sensor

HLBþ Zn Def. HLBþ Zn Def. HLB�
HLB� 1.74% 0.00% 0.00%

HLBþ 11.87% 12.01%

Zn Def. HLBþ 80.98%

Red difference (Cr) component of YCbCr

HLB� 22.37% 4.06% 4.07%

HLBþ 51.66% 46.22%

Zn Def. HLBþ 67.36%
extracted from the colour images are shown in Fig. 3. The

healthy, HLB-positive, and zinc-deficient symptomatic areas

appeared more distinctive in the images acquired with the

vision sensor, compared to the other colour components. The

separability indices (arithmetic averages of Fisher ratios) of

0.528, 0.201, 0.196, 0.136, 0.135, 0.134, 0.114, 0.003 were ach-

ieved for vision sensor, Cb component (YCbCr), Cr component

(YCbCr), green component (RGB), Y component (YCbCr), grey

component (RGB), red component (RGB), and blue component

(RGB) respectively. The separability index achieved for the

vision sensor is more than 2.5 times greater than the runner

up in the ranking which was the Cb component of colour

images. This result confirmed the exceptional capability of the

vision sensor to highlight HLB symptoms and differentiate it

from HLB-negative and zinc-deficient areas.

The normalised histograms of the symptomatic areas in

the images acquired with the vision sensor and top three

components of colour images are shown in Fig. 4. In order to

conduct a valid comparison, the same symptomatic areas on
air of classes in the images acquiredwith the vision sensor
with Huanglongbing; Zn Def. HLBþ ¼ zinc deficient and
ut not infected with Huanglongbing; and HLB¡ ¼ healthy.

Blue difference (Cb) component of YCbCr

HLBþ Zn Def. HLBþ Zn Def. HLB�
HLB� 56.21% 1.29% 0.44%

HLBþ 14.62% 12.23%

Zn Def. HLBþ 76.05%

Green component of RGB

HLB� 19.98% 4.92% 1.88%

HLBþ 54.75% 38.68%

Zn Def. HLBþ 77.45%

http://dx.doi.org/10.1016/j.biosystemseng.2014.11.013
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Fig. 5 e Scatter plots of samples in four classes based on their means and standard deviations: (a) vision sensor images, (b)

colour images of blue difference (Cb) component of YCbCr, (c) colour images of red difference (Cr) component of YCbCr, (d)

colour images of green component of RGB. HLBþ¼ infected with Huanglongbing, Zn Def. HLBþ¼ zinc deficient and infected

with Huanglongbing, Zn Def. HLB¡ ¼ zinc deficient but not infected with Huanglongbing, and HLB¡ ¼ healthy. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the leaf images were marked and used for creating the his-

tograms. The pixel values belonging to different symptomatic

areas were well distributed on the grey scale range (0e255) in

the images of the vision sensor, while they are concentrated in

limited ranges of grey values for the Cb and Cr components.

Table 3 includes the exact overlap percentages between every

pair of classes for the vision sensor images and the top three

colour images components. Comparing to the colour compo-

nents, the vision sensor histograms had minimum overlaps

between every pair of classes except for the pair of HLBþ/

HLB� within the zinc deficient class. HLB-negative symp-

tomatic area had zero overlap with zinc deficient classes and

only 1.74% overlap with HLB-positive symptomatic areas in
Fig. 6 e Comparison of the pairwise Fisher ratios (as the

separability indices) achieved using mean and standard

deviation features for the vision sensor and top three

colour components: Cb ¼ blue difference (YCbCr), and

Cr ¼ red difference (YCbCr).
the images of the vision sensor while these percentages

increased notably for the colour components.

The scatter plots of leaf areas in the vision sensor and the

top three components of the colour images are illustrated in

Fig. 5. As the plots suggest, the four classes of leaf samples are

more distinctive in the images of the vision sensor compared

to the colour image components. The thresholds in the vision

sensor scatter plot divided the four classes with maximum

possible margin and minimum number of mis-classified

samples. In order to find the best thresholds, the maximum

marginmethodwas applied in three steps sequentially. At the

first step, it determined the optimum threshold between HLB-

negative samples and the rest of the dataset. At the second

step, the threshold between HLB-positive and zinc-deficient

samples was acquired. Finally, at the third step, the best

separating threshold between HLB-positive and HLB-negative

samples within the zinc-deficient class was obtained. The

HLB-negative samples in the vision sensor images had smaller

means (from 20 to 50) compared to the other classes. There

were neither HLB nor zinc deficiency symptomatic areas on

the HLB-negative leaves. Therefore, they reflected the polar-

ised light with the same polarisation planar direction as they

were illuminated with and this reflection was filtered by the

polarising filter in front of the camera. The means of HLB-

negative samples in other colour components, however,

were over 68 which usually overlapped with the samples in

other classes because the illumination and reflectionwere not

filtered out by the image acquisition process. The HLB-positive

samples, on the other hand, had greatermeans and SDs in the

vision sensor scatter plot compared to the HLB-negative

samples. Starch accumulation in the HLB-positive samples

rotated the polarisation plane of light and, therefore, the

symptomatic areas were brighter in the vision sensor images.

http://dx.doi.org/10.1016/j.biosystemseng.2014.11.013
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The zinc deficiency areas had the brightest pixels in the vision

sensor images, while in the other colour components, their

pixel values overlapped with other classes. Zinc-deficient

leaves contain starch (with different molecular properties

from that of HLB-positive leaves) at some level higher than

healthy leaves but less than HLB-positive leaves (Gonzalez,

Reyes, & Etxeberria, 2011). This might be one explanation for

the high pixel values at zinc-deficient symptomatic areas.

Within the zinc deficient super class, the HLB-positive sam-

ples had greatermeans and smaller SDs compared to the HLB-

negative sample in vision sensor images. The zinc-deficient

HLB-positive samples included both zinc deficiency and HLB

symptoms so they had larger means. On the other hand, the

pixel values belonging to the HLB symptomatic areas (mid-

grey pixels) filled the gap between zinc deficient areas (bright

pixels) and healthy parts (dark pixels) and as a result, the HLB-

positive samples had smaller SDs in the zinc-deficient super

class. The zinc-deficient HLB-negative samples had greater

SDs in colour components as well, but their means were an-

alogues to the HLB-positive samples which affects the classi-

fication accuracy. It can be concluded from the scatter plots in

Fig. 5 that the vision sensor provided the best separation be-

tween the four classes.

The pairwise Fisher ratios for the vision sensor and the top

three components of colour images are illustrated in Fig. 6.

Since the dataset included four different classes, a total of six

pairwise comparisons were conducted. The vision sensor had

better separability indices between the HLB-positive class and

both zinc-deficient sub classes as well as between HLB-

negative and zinc-deficient HLB-negative classes. The vision

sensor and all three colour components presented
Fig. 8 e Scatter plots of samples in four classes based on their m

grinding. HLBþ ¼ infected with Huanglongbing, Zn Def. HLBþ
HLB¡ ¼ zinc deficient but not infected with Huanglongbing, an
comparable separability between HLB-positive and HLB-

negative classes, still a better separability can be seen in the

scatter plot of the vision sensor (Fig. 5). The separability

indices between the HLB-positive and HLB-negative classes

within the zinc deficient class were relatively smaller

compared to the other pairs of classes; while the green

component produced slightly better separability than the

vision sensor. It is likely that starch in the zinc-deficient HLB-

positive samples is more of a mixture of HLB-positive and

zinc-deficient properties, which is more difficult to discern.
3.3. Comparison of sample conditions

The normalised histograms of the entire leaf areas (not just

the symptomatic areas) in the vision sensor images are shown

in Fig. 7 before and after grinding and in four different classes.

It can be seen in the normalised histograms that the leaf im-

ages became brighter after grinding.

In general, the back side of the citrus leaf is brighter than

its front side, probably due to the thinner cuticle and more

compact epidermis. After grinding, both sides of the leaves

were mixed so the ground leaves looked brighter. The histo-

grams of HLB-negative samples were noticeably detectable

from the other classes in both plots. The histogramof the HLB-

positive samples was comparable to the zinc-deficient HLB-

negative class before grinding; but after grinding the HLB-

positive samples became brighter. The accumulated starch

was more visible after grinding and this could be a reason for

more brightness in ground leaf images. According to Fig. 7,

zinc-deficient HLB-positive samples were the brightest class

both before grinding and after grinding. Including both HLB
ean and standard deviation (a) before grinding, and (b) after

¼ zinc deficient and infected with Huanglongbing, Zn Def.

d HLB¡ ¼ healthy.

http://dx.doi.org/10.1016/j.biosystemseng.2014.11.013
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and zinc deficiency symptomsmade them brighter on average

compared to the other classes.

The scatter plots of samples before and after grinding are

illustrated in Fig. 8. As the histograms in Fig. 7 also suggest, the

grey value means generally increased after grinding but the

range of SD variation decreased. Before grinding, themeans of

the HLB-positive samples were close to the means of the zinc-

deficient HLB-negative leaves; however, after being ground

their means were more similar to the zinc-deficient HLB-

positive samples. This is another reason that supports the

unique starch characteristic of rotating the polarisation plane

of light and becoming brighter in the images acquired by the

vision sensor. Since the samples from both HLB positive and

zinc-deficient HLB-positive classes included excessive levels

of starch, and their starch contentwasmore visible after being

ground, they had more high-intensity pixels and conse-

quently greater grey value means also.

The pairwise Fisher ratios before and after grinding are

plotted in Fig. 9. The separability indices (arithmetic averages

of Fisher ratios) of 0.415, and 0.559 were achieved for samples

before and after being ground, respectively. According to

Fig. 9, the HLB-positive and HLB-negative samples were better

separated in the ground leaf images, regardless of their zinc

deficiency. Again that was due tomore visibility of starch after

grinding. HLB-positive and zinc-deficient HLB-positive classes

were hardly separable after grinding (Fisher ratio < 0.1). On

average, the grey value means increased by 72% for HLB-

positive samples after grinding, while this percentage was

about 32% for zinc deficient samples. One reason might be

that HLB symptom overrode zinc deficiency symptom in zinc-

deficient HLB-positive ground leaves, and as a result only HLB

symptoms could be seen after grinding. On the other hand, the

average of grey value SDs increased by 7% for the HLB-positive

samples after grinding, while it decreased by 25% for the zinc-

deficient leaves. In other words, after grinding the zinc-

deficient leaves had smoother images, while there was more

contrast in the images of the HLB-positive samples which

happened due to the increased difference between the pixel

values of HLB symptomatic and healthy areas. This was
Fig. 9 e The pairwise fisher ratio and arithmetic average of

Fisher ratio as the separability index achieved using mean

and standard deviation features before and after grinding:

HLBþ¼ infected with Huanglongbing; Zn Def. HLBþ¼ zinc

deficient and infected with Huanglongbing; Zn Def.

HLB¡ ¼ zinc deficient but not infected with

Huanglongbing; and HLB¡ ¼ healthy.
another proof supporting the outstanding capability of the

vision sensor to highlight the starch accumulation in citrus

leaf.

The separability index between the HLB-positive and zinc-

deficient HLB-negative samples did not change much after

being ground. However, a large increase in the Fisher ratio is

apparent for the pair of HLB-negative and zinc-deficient HLB-

negative classes which also influenced the increased arith-

metic average of the Fisher ratios for ground leaves. It can be

concluded that the four classes were generally better sepa-

rated after grinding; however, the separability before grinding

was acceptable enough for a non-destructive on-the-go HLB

diagnosis application.

Among different HLB identification approaches, aerial im-

aging systems can conduct the quickest diagnosis on a large

scale grove (Li, Lee, Li, et al., 2012); however, compared to the

method introduced in this study, airborne image analysis is

less accurate, more costly, and more complicated. The

laboratory-based diagnosis methods such as qrt-PCR test

(Hansen et al., 2008) and starchmeasurement (Gonzalez et al.,

2012) can perform the most accurate HLB identification;

however, these methods can be only conducted in a labora-

tory, they are time consuming and they need an additional

step of sample collection, while the vision sensor in this paper

can handle a real-time on-the-go diagnosis. Also it can be

easily equipped with a Differential Global Positioning System

(DGPS) to produce the HLB status map of the grove.
4. Conclusion

A new prototype vision sensor was introduced in this study

whichwas able to recognise HLB infectionwith high accuracy.

One of the main advantages of this vision sensor was the

ability to highlight the symptomatic areas by employing a

customised illumination system and proper use of polarising

filters. The other important advantage was the non-

destructive diagnosis capability of this sensor in which no

sample preparation was required. Two experiments were

designed to assess these two features of the sensor. The re-

sults confirmed that the narrow band polarised illumination

at 591 nm significantly increased the diagnosis accuracy.

Additionally, it was shown that grinding the citrus leaf sam-

ples could increase the separability index; however, the im-

ages of unground leaves were informative enough for a non-

destructive on-the-go diagnosis application. Another advan-

tage of this sensor was its affordability. This sensor included a

few inexpensive components which makes it a reasonably

priced approach for every citrus grower. The total cost of the

sensor components was less than 1000 US$. This sensor can

help growers conduct a constant monitoring of their grove

and prevent huge losses from major and incurable HLB

infection.
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