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Abstract

The framework within which Tsuda proposes his solution for transitory dynamics between

attractor states is flawed from a neurological perspective. We present a more genuine framework

and discuss the roles that external input and synaptic modulations play in the evolution of the

dynamics of neuronal systems. Chaotic itinerancy, it is argued, is not necessary for transitory

dynamics.
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The dynamics of Hopfield Networks (Hopfield, 1982) are a far cry from that of systems of

neurons in the brain. The existence of the energy function ensures that under the guidance of an

asynchronous update rule, such networks relax to fixed point attractors. This behavior is not in

conformance with that observed in systems of neurons in the brain where limit cycles, let alone

stable fixed points, are not encountered. Tsuda’s efforts at introducing complex dynamics into such

model networks are commendable. His solution, however, is suspect.

Tsuda’s system (Tsuda, 1991, 1994) is an otherwise standard Hopfield Network without the

symmetric coupling constraint, endowed with an additional class of specialized nodes that by his

own account, is primarily responsible for the system’s unconventional dynamics. It therefore stands

to reason that we take a closer look at these nodes.

Roughly speaking, the nodes in the noted class stay dynamically inactive (imparting a constant

bias) as the remainder of the system approaches an attractor. If the remainder of the system settles on
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a fixed point, these nodes spring into action and attempt to dislodge it from that state. The dynamics

of the overall system is itinerant when this attempt meets success. Although this constitutes an

elegant example of an artificial neural network, the claim of biological relevance seems contrived.

The specialized nodes, in essence, maintain a record of the activity of the system from the most

recent instance when it attained a state of equilibrium (however long ago this might have been), and

persistently relay this information to the remainder of the network for as long as it takes for it to

attain its next state of equilibrium. These are exceptional qualities that cannot be ascribed to any

class of neurons in the brain, axonal tuft cells or otherwise.

These observations also throw doubt on the second category of systems that Tsuda proposes

(systems that manifest SCND attractors). Both the unstable ”driving” network that displays chaotic

itinerancy, as well as the multistable ”receiving” network that admits multiple fixed point attractors,

are untenable from a neurological perspective.

The above arguments are not intended to make a case against chaos in systems of neurons in

the brain. On the contrary, our own investigations into the dynamics of systems of spiking neurons

(Banerjee, 2001a, 2001b) indicate that under normal operational conditions (the state of sparse ac-

tivity typically observed in the brain), the behavior of such systems is almost surely chaotic; stable

periodic, stable quasiperiodic, and stable fixed point behavior almost surely do not occur. Fur-

thermore, analysis of the phase-space structure of these systems has revealed that attractors in such

systems are potentially anisotropic (in our framework several Milnor attractors are combined to form

one generalized topological attractor, hence the anisotropy).

Our views are, however, diametrically opposed when it comes to the question ofthe role of

chaosin neuronal systems. Ingrained in this question is the position that chaos is a likelyremedy

for any of a number of difficult situations that the brain might face during its regular course of

activity. This outlook is harmful for it presumes other modes of behavior (such as stable periodic

or fixed point behavior) in the brain, all of which remain unsubstantiated after several decades of

intensive experimental research (in this regard, the revised views in (Freeman & Skarda, 1990) are

noteworthy). An unfortunate consequence of this outlook has been the creation of several spurious

issues with regard to the dynamic aspects of memory. The physical realization of semantic memory

is considered different from that of episodic memory based on the erroneous assumption that the

former is represented as a fixed point attractor. Although their physical realizations might indeed be

different, if such is the case the differences will be found elsewhere.

In what follows, we highlight the profound difficulties that lie before us on the road to a clearer

understanding of the dynamics of neuronal systems.

First, any analysis is inherently incomplete should the impact of external input on the neuronal

system not be considered. Neuronal systems do not operate in isolation. Whereas the study of

an isolated system (or one that receives an initial input following which the dynamics evolves in
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isolation) does provide insight into the general tendencies of its dynamics, the interplay between the

dynamics and the input remains obscure. To illustrate, any cortical column is incessantly bombarded

by input from neighboring cortical columns as well as the thalamus. When the impact of this input

is taken into consideration, the problem takes on an added dimension of complexity. What was

heretofore dynamics in a domain of static attractors, is transformed, at the very least, into dynamics

in a domain of evolving attractors. This follows from the observation that input into the system can

be regarded as a bifurcation parameter. In this perpetually changing domain, attractors drift, new

ones originate, some coalesce, and some disappear. Transition between attractors is effected either

by the catastrophic birth of a new attractor around the dynamic state of the system, or by the smooth,

albeit relatively fast, drift of an attractor in a manner such that the dynamic state of the system is

overtaken by its realm of attraction.

Second, the impact of synaptic modulations on a neuronal system complements the impact of

the external input, since it too can be regarded as a bifurcation parameter. The deliberations in

the previous paragraph, therefore, apply equally well here. Even if the rules that govern synaptic

modulations prove to be simple, the corresponding impact on the structures in the phase-space of

the neuronal system will, in all likelihood, be non-trivial.

The resultant scenario is therefore one of profound complexity.
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