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Abstract

Consider a supervised learning problem in which examples contain both numerical- and text-
valued features. To use traditional feature-vector-based learning methods, one could treat the
presence or absence of a word as a Boolean feature and use these binary-valued features together
with the numerical features. However, the use of a text-classification system on this is a bit more
problematic—in the most straight-forward approach each number would be considered a distinct
token and treated as a word. This paper presents an alternative approach for the use of text
classification methods for supervised learning problems with numerical-valued features in which
the numerical features are converted into bag-of-words features, thereby making them directly
usable by text classification methods. We show that even on purely numerical-valued data the
results of text classification on the derived text-like representation outperforms the more naive
numbers-as-tokens representation and, more importantly, is competitive with mature numerical
classification methods such as C4.5, Ripper, and SVM. We further show that on mixed-mode data
adding numerical features using our approach can improve performance over not adding those
features.
 2002 Elsevier Science B.V. All rights reserved.

Keywords: Machine learning; Text classification; Information retrieval

✩ This is an extended version of the paper presented at IJCAI-2001, Seattle, WA, 2001.
* Corresponding author.

E-mail addresses: sofmac@cs.rutgers.edu (S.A. Macskassy), hirsh@cs.rutgers.edu (H. Hirsh),
arunavab@bcs.rochester.edu (A. Banerjee), aynur@cs.rutgers.edu (A.A. Dayanik).

1 Now at: Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627-0268.

0004-3702/02/$ – see front matter  2002 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(02) 00 35 9- 4



52 S.A. Macskassy et al. / Artificial Intelligence 143 (2003) 51–77

1. Introduction

The machine learning community has spent many years developing robust classifier-
learning methods, with C4.5 [1] and Ripper [2] two popular examples of such methods.
Although for many years the focus has been on numerical and discrete-valued classification
tasks, over the last decade there has also been considerable attention to text-classification
problems [3,4]. Typically such methods are applied by treating the presence or absence of
each word as a separate Boolean feature. This is commonly performed either directly, by
generating a large number of such features, one for each word, or indirectly, by the use
of set-valued features [5], in which each text-valued field of the examples is viewed as a
single feature whose value for an example is the set of words that are present in that field
for this example.

The information retrieval community has similarly spent many years developing robust
retrieval methods applicable to many retrieval tasks concerning text-containing documents,
with vector-space methods [6] being the best known examples of techniques in this area.
Although for many years the focus has been primarily on retrieval tasks, here, too, the
last decade has seen a significant increase in interest in the use of such methods for text-
classification tasks. The most common techniques use the retrieval engine as the basis for
a distance metric between examples, for either direct use with nearest-neighbor methods
[7], or, based on the closely related Rocchio [8] relevance feedback technique, for use after
creating a summary “document” for each class and retrieving the nearest one [9].

The irony is that although we now have much experience on placing text-classification
problems in the realm of numerical-classification methods, little attention has been brought
to the question of whether numerical-classification problems can be effectively brought
into the realm of text-classification methods. Since the text-retrieval methods on which
they are based have many decade’s maturity, if done effectively they have the potential of
broadening further our base of methods for numerical classification.

Moreover, many real-world problems involve a combination of both text- and numerical-
valued features. For example, we came to ask these questions by confronting the problem
of email classification, where we wanted to explore instance representations that consid-
ered not only the text of each message, but also the length of the message or the time of
day at which it is received [10]. Although the machine-learning-derived methods that we
now know how to apply to pure text-classification problems could be directly applied to
these “mixed-mode” problems, the application of information-retrieval-based classifica-
tion methods was more problematic. The most straight–forward approach is to treat each
number that a feature may take on as a distinct “word”, and proceed with the use of a text-
classification method using the combination of true words and tokens-for-numbers words.
The problem is that this makes the numbers 1 and 2 as dissimilar as the numbers 1 and
1000—all three values are unrelated tokens to the classification method. What we would
like is an approach to applying text-classification methods to problems with numerical-
valued features so that the distance between such numerical values is able to be discerned
by the classification method.

This paper presents one way to do just this, converting numerical features into features
to which information-retrieval-based text-classification methods can apply. Our approach
presumes the use of text-classification methods that treat a piece of text as a “bag of words”,
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representing a text object by an unordered set of tokens present in the text (most commonly
words, but occasionally tokens of a more complex derivation).

The core of our approach is, roughly, to convert each number into a bag of tokens such
that two numbers that are close together have more tokens in common in their respective
bags than would two numbers that are farther apart. The high-level idea is to create a set of
landmark values for each numerical feature, and assign two tokens to each such landmark.
Every value of a feature for an example will be compared to each landmark for that feature.
If the example’s value is less than or equal to the landmark, the first of that landmark’s two
tokens is placed in that example’s “bag”. If the value is more than the landmark the second
token is instead used in the bag. The result is that every feature gets converted into a bag of
tokens, with each bag containing the same number of entries, each differing only to reflect
on which side of each landmark a value lies.

The key question then becomes how to pick landmark values. Although our experiments
show that even fairly naive approaches for selecting landmarks can perform quite well,
we instead appeal to the body of work on feature discretization that has already been
well-studied within machine learning [11–16]. Learning methods such as C4.5 would
normally have to consider a large number of possible tests on each numerical feature,
in the worst case one between each consecutive pair of values that a feature takes on.
These discretization methods instead use a variety of heuristic means to identify a more
modest—and hence more tractable—subset of tests to consider during the learning process.
Our approach is thus to apply such methods to identify a set of landmark values for each
numerical feature and create two possible tokens for each landmark value, exactly one
of which is assigned to each example for each landmark. The result is a “bag of words”
representation for each example that can then be used by text-classification methods.

This approach is similar to the idea of “thermometer coding” used in the neural network
community to convert numerical values into a set of Boolean variables [17]. Thermometer
coding also uses a set of threshold or landmark values, only where each yields a Boolean
variable representing on which side of the threshold a given value lies. Here, however, each
of these Boolean variable can be viewed as being further converted into two tokens, one of
which is added to the token-based representation of a number depending on which side of
the threshold it lies. Although the thresholds for thermometer coding are typically selected
in an ad hoc fashion, [18] uses entropy-based measures to build up a set of landmarks. Our
approach uses similar ideas (selecting thresholds on a feature-by-feature basis, in contrast
to the selection scheme used by [18]), only with an eye towards selecting landmarks that
yield good sets of tokens for text-classification methods.

In the remainder of this paper we first describe our approach for converting numerical
features into bag-of-words features in more detail, including the landmark-selection
methods that we used. We then describe our experimental evaluation of our approach:
the learning methods, evaluation methods used, and our results—which show that the
text-classification methods using our bag-of-words representation perform competitively
with the well-used methods C4.5 and Ripper when applied to the original numerical data.
We next show that for an email classification task containing both text and numerical
features, we improve performance of standard text-classification methods, and also that
we outperform methods such as Ripper and SVM, which both are well-known learning



54 S.A. Macskassy et al. / Artificial Intelligence 143 (2003) 51–77

methods that can handle bags of words as well as numerical features. We conclude with
some final remarks.

2. Converting numbers to bags of tokens

The approach taken in this paper is to convert every number into a set of tokens such
that if two values are close, these sets will be similar, and if the values are further apart
the sets will be less similar. This is done for each feature by finding a set of “landmark
values” or “split-points” within the feature’s range of legitimate values by analyzing the
values that the feature is observed to take on among the training examples. Given an
example, its numerical value for a given feature is compared to each split-point for that
feature generated by our approach, and for each such comparison a token will be added,
representing either that the value is less than or equal to the particular split-point or greater
than that split-point. This will result in exactly one token being added per split-point.

For example, consider a news-story classification task that includes a numerical feature
representing the story’s length. We can artificially invent a set of split-points to demonstrate
our process, such as 500, 1500, and 4000. For each split-point we define two tokens,
one for either side of the split-point a value may lie. Using the above split-points for
the length of a news-story would result in the tokens “lengthunder500”, “lengthover500”,
“lengthunder1500”, “lengthover1500”, “lengthunder4000”, and “lengthover4000”. A new
message of length 3000 would thereby have its length feature converted into the set
of tokens “lengthover500”, “lengthover1500”, and “lengthunder4000”. These would be
added to the bag-of-words representation of the example—whether the other words in
the bag were created from other numerical features, or the result of pre-existing text-
valued features. More abstractly, consider the hypothetical numerical feature plotted along
a number line in Fig. 1. If a training example is obtained whose value for this feature falls
in bin2, the set {morethansplit1, lessthansplit2, lessthansplit3, lessthansplit4} would be the
bag-of-words representation created for this value. Note that more than one value can be
given the same representation, as long as they all fall between the same two consecutive
split-points.

The key question, of course, is how these split-points are selected. We use two methods
in our main results. The first, called the entropy method, uses an existing entropy-based
method for discretization to find good split-points [13]. This method is very similar to one
that uses C4.5 on the training data, restricting it to ignore all but the single feature for
which split-points are being selected, harvesting the decision points found within each of

Fig. 1. An example feature range and construction of bins. Dots represent values and rectangles represent bins.
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the internal nodes of the tree [15]. The second method, which we call the density method,
selects split-points that yield equal-density bins—where the number of values that fall
between consecutive split-points stays roughly constant. The number of bins is selected
using hill-climbing on error rate using a hold-out set. In the rest of this section we describe
these two methods in more detail, concluding with a discussion of how we handle examples
that have missing values for one or more of their features.

2.1. The entropy method

The entropy method [13,15] makes use of information-theoretic techniques to analyze
the values of a numeric feature and create split-points that have high information gain.
It does so in a recursive fashion, finding one split-point in the overall set of values, then
finding another split-point in each of the two created subsets, until a stopping criteria based
on Minimum Description Length principles [19] is met. Each numerical feature is treated
separately, yielding a different set of split-points for each feature. Further details about this
popular discretization algorithm can be found in the given citations.

2.2. The density method

The density method (described in algorithmic form in Fig. 2) begins by obtaining
and sorting all values observed in the data for a feature f , yielding an ordered list Sf .
Thus, for example, the result for some feature f might be Sf = 〈1,2,2,2,5,8,8,8,9〉.
Given some desired number of splits k, the density method splits the feature set Sf into
k + 1 sets of equal size (except when rounding effects require being off by one) such that
split-point sj is the (|Sf | × � j

k+1	)th point in Sf . Using this split-point, two tokens are
generated; one for when a numerical value is less than or equal to the split-point, and
another for when the numerical value is greater than the split-point. k—the final number of
split-points—is found using a global hill-climbing search with the number of split-points
growing geometrically by a factor of two until the observed error rate on a 30% hold-out
set is observed to increase or reach 0.

One final detail of the density method is that the algorithm in Fig. 2 is actually run
twice. The first time is based on a “volumetric” density calculation, where duplicate
values are included in the analysis.2 After doing this the algorithm is run a second time
after duplicate values have been removed, yielding a second set of split points that have
an (approximately) equal number of distinct values between each split-point. Thus, for
example, for the feature f this second run would now use the list Sf = 〈1,2,5,8,9〉.
Whichever method yielded a lower error rate gives the final set of split points. If they have
the same performance, whichever had fewer split-points is selected.

2 In fact, because of this, a particular split-point value might be selected more than once, having the tokens for
that particular split also appear more than once in the resulting bag-of-tokens.



56 S.A. Macskassy et al. / Artificial Intelligence 143 (2003) 51–77

Inputs: Sets of values for each numeric feature.
Algorithm:
currError← 100 /* assume errors run from 0− 100 */
lastError← 100
numSplits← 1
maxSplits← argmaxf∈numerical features(|Sf |)
while(numSplits < maxSplits) do

for each numerical feature f

nf ←min(numSplits, |Sf |)
/* Create nf split-points for feature f . */
Use as split-points for f the j th element of Sf

for j = |Sf | ×
⌊

i
nf+1

⌋
with i running from 1 to nf

end
Divide data into 70% for train and 30% for test.
C← Run learner on train with current split-points.
currError← Evaluate C on test.
if(currError= 0) do

maxSplits← 0
lastError← currError

else if(lastError < currError) do
numSplits← numSplits/2
maxSplits← 0

else
numSplits← 2× numSplits
lastError← currError

end
end
Outputs: lastError

Fig. 2. Density algorithm for finding split-points.

2.3. Missing values

A common occurrence for many learning problems is when some examples are missing
values for some of the features. This can be a complicating factor both during the learning
phase, when assessing the importance of features in forming some learning result, and
in classification, when making a decision when values of some of the attributes are
unavailable. Common approaches range from simply deleting data or features to remove
such occurrences, to imputing some value for the feature—such as through learning or
through something as simple as using the median, mean, or mode value in the training
data, to more complex methods such as are used in learning algorithms such as C4.5. Our
approach for creating bag-of-word features out of numerical features contributes another
interesting way to handle missing values. The idea is, quite simply, to add no tokens for a
feature of an example when the value for this feature is missing. By not committing to any
of the tokens that this feature might otherwise have added it neither contributes nor detracts
from the classification process, allowing it to rely on the remaining features in assigning a
label to the example.
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3. Learning algorithms

In this section we briefly describe the learning algorithms that we use in our
experiments. Recall that our goal is to demonstrate that, using our approach, text-clas-
sification methods can perform as credibly on numerical classification problems as more
traditional methods that were explicitly crafted for such problems. To show this we use
a sampling of four different approaches for text classification. Our first is based on
the Rocchio-based vector-space method for text retrieval mentioned earlier, which we
label TFIDF [3,9,20]. We also consider two probabilistic classification methods that have
become popular for text classification, Naive Bayes [20–22] and Maximum Entropy [23].
Finally, we also use the Ripper rule learning system [2,5], using its capability of handling
set-valued features so as to handle text classification problems in a fairly direct fashion,
as well as a Support Vector Machine (SVM) algorithm [24]. The first three methods used
the implementations available as part of the Rainbow text-classification system [25]. The
SVM method uses the SVMlight package available at http://svmlight.joachims.org [26].
The baselines to which we compare the text-classification methods are three popular “off
the shelf” learning methods, C4.5 (release 8) [1], Ripper, and SVM. Note that Ripper
and SVM have been mentioned twice, first as text-classification methods, and second as
numerical classification methods (using the original numerical features for Ripper, or a
normalized numerical value used with SVM). Thus Ripper and SVM are in the position of
being run as both a text-classification method when used with one representation, and as a
numerical classification method when used with another. Missing values were handled for
the text-classification methods as discussed earlier, by simply not generating any tokens
for a feature of an example when it had no given value, and for Ripper and SVM when
used with numerical features and for C4.5 by their built-in techniques for handling missing
values.

The TFIDF classifier is based on the relevance feedback algorithm by Rocchio [8] using
the vector space retrieval model. This algorithm represents documents as vectors so that
documents with similar content have similar vectors. Each component of such a vector
corresponds to a term in the document, typically a word. The weight of each component is
computed using the TFIDF weighting scheme, which tries to reward words that occur many
times but in few documents. In the learning phase, a prototype vector is formed for each
class from the positive and negative examples of that class. To classify a new document d ,
the cosines of the prototype vectors with the corresponding document vector are calculated
for each class. d is assigned to the class with which its document vector has the highest
cosine.

Naive Bayes is a probabilistic approach to inductive learning. It estimates the a
posteriori probability that an example belongs to a class given the observed feature values
of the example, assuming independence of the features. The class with the maximum a
posteriori probability is assigned to the example. The Naive Bayes classifier used here is
specifically designed for text classification problems.

The Maximum Entropy classifier (labeled MAXENT in our results) estimates the
conditional distribution of the class label given a document, which is a set of word-count
features. The high-level idea of this technique is, roughly, that uniform distributions should
be preferred in the absence of external knowledge. A set of constraints for the model
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are derived from the labeled training data, which are expected values of the features.
These constraints characterize the class-specific expectations for the model distribution
and may lead to minimal non-uniform distributions. The solution to the maximum entropy
formulation is found by the improved iterative scaling algorithm [23].

Ripper is a learning method that forms sets of rules, where each rule tests a conjunction
of conditions on feature values. Rules are returned as an ordered list, and the first successful
rule provides the prediction for the class label of a new example. Importantly, Ripper
allows attributes that take on sets as values, in addition to numeric and nominal features,
and a condition can test whether a particular item is part of the value that the attribute
takes on for a given example. This was designed to make Ripper particularly convenient
to use on text data, where rather than listing each word as a separate feature, a single set-
valued feature that contains all of an instance’s words is used instead. Rules are formed
in a greedy fashion, with each rule being built by adding conditions one at a time, using
an information-theoretic metric that rewards tests that cause a rule to exclude additional
negative data while still hopefully covering many positive examples. New rules are formed
until a sufficient amount of the data has been covered. A final pruning stage adjusts the rule
set in light of the resulting performance of the full set of rules on the data.

C4.5 is a widely used decision tree learning algorithm. It uses a fixed sets of attributes,
and creates a decision tree to classify an instance into a fixed set of class-labels. At every
step, if the remaining instances are all of the same class, it predicts that class, otherwise,
it chooses the attribute with the highest information gain and creates a decision based on
that attribute to split the training set into one subset per discrete value of the feature, or two
subsets based on a threshold-comparison for continuous features. It recursively does this
until all nodes are final, or a certain user-specified threshold is met. Once the decision tree
is built, C4.5 prunes the tree to avoid overfitting, again based on a user-specified setting.

Support Vector Machines (SVMs) are learning machines which are based on statistical
learning theory. They perform binary classification and regression estimation tasks. SVMs
non-linearly map their n-dimensional input space into a higher-dimensional feature space.
In this high-dimensional feature space a linear classifier is then constructed using quadratic
programming. This latter step could potentially be very costly. SVMs make use of
various kernel methods to optimize the calculation of inner numerical products. The
implementation we use, SVMlight, also performs optimizations to reduce-dimensionality
of the space in order to make SVMs feasible in large-dimension domains.

4. Case study: Numerical data sets

To compare our text-like encoding of numbers when used with text-classification
systems to the use of C4.5, Ripper, and SVM on the original numerical features we used
22 data sets taken from the UCI repository [27]. Table 1 shows the characteristics of these
data sets. The first 14 represent problems where all the features are numeric. The final 8
represent problems in which the designated number of features are numeric and the rest
are discrete or binary-valued.
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Table 1
Properties of the UCI datasets

Data set # Instances # Features # Numeric # Classes Base
Features Accuracy (%)

bcancerw 699 9 9 2 65.52
diabetes 768 8 8 2 65.10
echocardiogram 131 11 11 2 67.18
glass 214 9 9 2 76.17
hungarian 294 13 13 2 63.95
ionosphere 351 34 34 2 64.10
iris 150 4 4 3 33.33
liver 345 6 6 2 57.97
musk 476 166 166 2 56.51
new-thyroid 215 5 5 3 69.77
page-blocks 5473 10 10 5 89.77
segmentation 2310 19 19 7 14.29
sonar 208 60 60 2 53.37
vehiclea 846 18 18 4 25.77
wine 178 13 13 3 39.89
arrhythmia 452 279 272 16 54.20
autos 205 25 15 2 56.16
cleveland 303 13 13 2 54.13
credit-app 690 15 6 2 55.51
cylinder-bands 540 39 20 2 57.78
horse 368 23 7 2 66.30
spongeb 76 45 3 3 92.11

a This dataset was donated to the UCI repository from the Turing Institute, Glasgow, Scotland.
b The Entropy approach was unable to find any split-points for this data-set, so it is omitted in any comparisons

on the Entropy method.

4.1. Evaluation methodology

The accuracy of a learner was done through ten-fold stratified cross-validation [28].
Each data set was represented in one of four ways for our experiments:

• The original feature encoding—using numbers—for use with C4.5, SVM, and Ripper.
• The bag-of-words encoding generated by the density method, for use with the five

text-classification methods.
• The bag-of-words encoding generated by the Entropy method, for use with the five

text-classification methods.
• The tokenization encoding generated using the tokens-for-numbers approach, for use

with the five text-classification methods. This was accomplished by converting every
number into its English words—for example, “5” becomes “five” and “2.3” becomes
“twopointthree”.

The first of these represents our baseline, using a machine learning method designed for
numerical classification. The next two are the new approaches presented in this paper. The
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Fig. 3. Comparing learning with Entropy-generated features to numeric learning. Each of the four text-classifiers
were compared against Ripper and C4.5. Points below the diagonal means the numeric methods had better
accuracy, points above the diagonal means the Entropy method had better accuracy.

final one is the representation that simply treats each number as a distinct “word” without
regard to its value.

4.2. Results

The first question we ask is a key one: To what extent does our approach yield a
competitive learning method on numerical classification problems? Fig. 3 shows the results
of comparing four of our five text-learning methods using our Entropy-algorithm features
to the three numerical classification methods.3 Each point represents a single data set,
where the x-axis is the accuracy of either C4.5 or Ripper and the y-axis is the accuracy
of one of the four text methods. Points above the y = x line represent cases where the
numerical-classification method was inferior to our use of a text-classification method, and
points below the line are cases where the numerical method was superior. The qualitative
flavor of this graph is that the Entropy-algorithm features allows text-classification methods
to perform credibly in many cases, exceeding numerical methods in some cases, although
performing less successfully in many cases as well. We plot in Fig. 4 a similar graph
comparing the four text methods using the density-algorithm features to the two numerical
methods. (The “outlier” cases showing at the bottom of both figures is for the arrhythmia
dataset.)

3 Comparisons to SVM are not shown on these graphs for readability. In fact, as is shown in Table 2, SVM had
a slightly worse performance to the other numerical methods, and will therefore not be shown in any comparison
graphs.
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Fig. 4. Comparing learning with Density algorithm features to numeric learning.

Table 2
Comparing the number of wins/losses/ties for each featurization (Entropy first four rows, density second four
rows) when coupled with one of the four text-classification methods labeling the columns, versus a numerical
method

MAXENT Naive Bayes TFIDF Ripper

Entropy/C4.5 12/9/0 13/8/0 8/13/0 11/10/0
Entropy/Ripper 13/8/0 13/8/0 7/14/0 11/10/0
Entropy/SVM-l 9/5/0 10/4/0 7/7/0 6/7/1
Entropy/SVM-q 10/4/0 9/5/0 5/9/0 6/7/1

Density/C4.5 12/10/0 8/13/1 8/14/0 7/14/1
Density/Ripper 14/8/0 6/15/1 5/17/0 8/13/1
Density/SVM-l 9/5/0 4/10/0 5/9/0 4/9/1
Density/SVM-q 8/6/0 3/10/1 4/9/1 4/9/1

Since the preceding graphs collapse eight different comparisons (four text methods
versus two numerical methods) into a picture, Table 2 also shows for how many data
sets each text method beat a numerical method. Each entry in the table is the number
of wins/losses/ties for the new featurization method used with a text method compared
to a numerical classification method. The columns label the text method used. The first
four rows are results when the Entropy method is used, the next four are for the density
method, in each case the first comparison is to numerical classification with C4.5, then
with Ripper, then with SVM using linear (SVM-l) and quadratic (SVM-q) kernels.4 We

4 As SVM only handles two-class problems, we tested only on the two-class data sets. We decided not to test it
on the n-class problems as its performance was not as strong as other numerical methods in these initial two-class
problems. The table therefore only shows the comparisons from those initial fourteen runs.
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Table 3
How often each type of classifier and encoding was significantly better at the 95% confidence level, using paired
t-tests

Density Entropy splits Totals

C4.5 Ripper C4.5 Ripper C4.5 Ripper

Splitting wins 11 8 27 19 19 46
Numeric wins 30 27 19 21 51 46
Insignificants 47 53 38 44 85 97

will therefore not include SVM in any comparison or discussion of performance on these
data sets. The results show that in a non-trivial number of cases the use of our approach
for converting numerical features into text-based data beats out the popular learning
methods. While these results do not show that the approach is unconditionally superior
to numerical classification, they do show that the approach does merit consideration for
use as a numerical classification method.

We performed a statistical analysis, comparing each text-classifier (MAXENT, Naive
Bayes, Ripper and TFIDF) using the two split-methods (Entropy and Density) with each
of the two numerical learners (Ripper and C4.5). As we had run the experiments using ten-
fold cross-validation, we used the errors from each of the runs to perform paired t-tests.
A little less than half of the comparisons (162 out of 352 possible) had a significant
difference between the splitting method and the numerical methods, all above the 95%
confidence level. Of these, 65 times the split-type methods won, 49 times C4.5 won, and
48 times Ripper won. All data sets had differing ratios of winners, the only exception being
the sponge data set with no difference as would be expected based on its characteristics.
Table 3 shows a matrix counting for each type of split-method and numerical classifier
pairing how often the split-method and how often the numerical classifier had a significant
win at the 95% confidence level or above.5

The next question we ask is whether the use of two different featurization methods is
necessary: Does either dominate the other? Fig. 5 shows the results of such a comparison,
where each point represents a single data set and a text learning method, with the x-axis
representing the result of using the Entropy method with that learning algorithm, and the
y-axis representing the result of using the density method with that learning algorithm.
Here, the results show that the Entropy method is clearly superior, though some cases still
go to the density method. In particular, it seems that the TFIDF classifier consistently has
problems with the Entropy featurization.

Again we performed a statistical analysis to compare the performances between the
two types of splitting methods. We found a few interesting patterns. For all classifiers, the
Entropy split method was the winner in the majority of cases where either of the methods
had a significantly better performance, with Naive Bayes having only significant wins by
the Entropy method. For the other methods, this was less so, though the Entropy split

5 The comparisons add up to 344 as 8 of the comparisons could not be made. This was due to the fact that
the split-methods were only able to find threshold values for one or none of the cross-validation training sets. We
needed at least two runs to make a statistical significance test.
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Fig. 5. Comparing learning with Entropy-algorithm features to density-algorithm features.

Table 4
How often, across the four text-classifiers, did each split-method have a significant win (at or above the 95%
confidence level) over the other split-method

MAXENT Naive Bayes TFIDF Ripper

Density wins 1 0 3 1
Entropy-split wins 5 10 6 3
Insignificants 15 11 12 17

method was still generally better. Using Ripper, only a few significant wins was had by
either split method. In 7 of the 10 cases where more than one classifier had a significant
win for a particular dataset, if one split method outperformed the other, it did so regardless
of which classifier is being used. However, we also found that in 8 of the 22 datasets, no
method had a significant win at or above the 95% confidence level. Table 4 shows the
actual number of wins for each type of split-method using each of the text-classifiers.

4.3. Additional analysis

In this section we explore the behavior of our methods in greater detail. First, we study
whether the added complexity of our bag-of-words approach is necessary to exceed the
performance of the naive tokenization method that converts each number into a unique
token. Second, we attempt to characterize the behavior of split-point generation for each
of the methods.

4.3.1. Comparison to simple tokenization
Fig. 6 shows an analysis of how our method compares to the naive tokenization

approach. Each point is a data set, with the x-axis value representing the accuracy of
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Fig. 6. Comparing the text-learning approaches to the naive tokenization approach.

Table 5
How often, across the four text-classifiers, did the Entropy split-method have a significant win (at or above the
95% confidence level) over Tokenization, and vice versa

MAXENT Naive Bayes TFIDF Ripper

Token wins 0 3 4 0
Entropy-split wins 13 10 6 13
Insignificants 8 8 11 8

the tokenization approach with a particular text-classification method, and the y-axis
represents the accuracy with one of our two featurization methods using the same learning
method. As is clearly evident from the figure, the tokenization approach is not as effective
in general as our more sophisticated approach.

The statistical analysis comparing the Entropy split method with the tokenization
verified this assessment. In fact, when we look at significant differences above the 95%
level, the tokenization only outperformed the Entropy split method 7 times out of 86, while
the Entropy split method outperformed the tokenization method 42 times, as is shown in
Table 5.

We conclude this section by noting that Kohavi and Sahami [15] discuss a different
discretization method that is very similar to the Entropy method. This method simply runs
C4.5 on the data, ignoring all features except the one for which split-points are being
created. Kohavi and Sahami show that this method is slightly inferior to the Entropy
approach. However, just because it is inferior for discretization for decision-tree learning
does not imply that it must be the case here, too. To test this we compared the four
text classification methods using the Entropy method to the C4.5 method. Fig. 7 shows
the results of this experiment. Each point represents a data set and a learning method.
The x-axis represents the accuracy of the C4.5 approach, and the y-axis represents the
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Fig. 7. Comparing the Entropy and C4.5 approaches.

Table 6
How often, across the four text-classifiers, did the Entropy split-method have a significant win (at or above the
95% confidence level) over using split-points found by C4.5, and vice versa

MAXENT Naive Bayes TFIDF Ripper

C4.5-split wins 2 1 2 0
Entropy-split wins 6 8 3 1
Insignificant 13 12 16 20

accuracy of the Entropy approach. A statistical analysis shows that the two methods are
quite evenly matched, although Naive Bayes and MAXENT both seemed to favor the split-
points created by the Entropy method and no classifier seemed to favor the split-points
created by the C4.5 method. Table 6 shows the wins on each text-classifier.

4.3.2. Characteristics of splitpoint methods
Results and analyses so far have shown that all three splitpoint methods perform

comparably. In order to get a better insight into how these methods work, we can look
at the actual split points they generate. Because of their differences, we discuss the Density
Method separately from the Entropy and C4.5 approaches. The Density Method does, for
a particular learning algorithm, a geometric search through the maximum number of split-
points (based on the numerical feature with the most candidate values). It would be helpful
to understand how far along this exponential curve it normally needs to get before finding
the best split-size. As the Density Method uses two different search variants, one based
on unique values and one based on all values, it would be interesting to see whether one
variant is used predominantly over the other.

The analysis of the Density Method for each the three text-classification algorithms
used: Maximum Entropy, Naive Bayes, and TFIDF is shown in Tables 7, 8 and 9,
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Table 7
Analysis of the Density Method using MAXENT

Data set % unique # feat max bin Number of bins

Min Max Mean± stddev

arrhythmia 60% 272 8 0.0000 0.6250 0.1500± 0.2151
autos 100% 15 7 0.0000 0.0000 0.0000± 0.0000
bcancerw 50% 9 3 0.0000 1.6666 0.6666± 0.6831
cleveland 20% 13 7 0.0000 0.5714 0.2571± 0.2100
credit-app 90% 6 8 0.0000 0.5000 0.1625± 0.2019
cylinder-bands 50% 20 8 0.0000 0.3750 0.1125± 0.1179
diabetes 0% 8 9 0.2222 0.6666 0.4333± 0.1889
echocardiogram 100% 11 6 0.0000 0.0000 0.0000± 0.0000
glass 100% 9 7 0.0000 0.0000 0.0000± 0.0000
horse 70% 7 6 0.0000 0.8333 0.3500± 0.3452
hungarian 40% 13 7 0.0000 0.2857 0.1285± 0.1187
ionosphere 60% 34 8 0.0000 0.8750 0.2750± 0.2727
iris 100% 4 5 0.0000 0.0000 0.0000± 0.0000
liver 40% 6 6 0.0000 1.0000 0.3000± 0.3232
musk 80% 166 7 0.0000 1.0000 0.1571± 0.3286
new-thyroid 70% 5 6 0.0000 0.8333 0.3166± 0.2930
page-blocks 50% 10 10 0.0000 1.1000 0.6000± 0.2933
segmentation 40% 19 10 0.0000 0.8000 0.2800± 0.2638
sonar 100% 60 7 0.0000 0.0000 0.0000± 0.0000
sponge 100% 3 2 0.0000 0.0000 0.0000± 0.0000
vehicle 80% 18 8 0.0000 0.0000 0.0000± 0.0000
wine 100% 13 7 0.0000 0.0000 0.0000± 0.0000

Means 68.2% 0.0101 0.5060 0.19043
stddev 28.9% 0.0463 0.4663 0.19425

respectively. Each line in each table shows a statistic across the ten cross-validation runs
for a particular data set. The first three columns shown after the data set name are the
percentage of times that the best search was based on the unique values rather than all
values, how many features in the data set were numerical in nature and what the maximum
level of geometric search could be, where the level is the log2 of the largest number of
values across all the numerical features in that data set. The last columns show the min,
max, mean and standard deviation of how deep a search went with respect to the maximum
depth. The last two lines of each table show the mean and standard deviation of key values
across all the data sets.

Not surprisingly, looking at each table it is hard to find any correlation between any two
features among the number of split points, the number of features, the maximum depth and
the amount of the splits that were based on unique values. Some interesting patterns that do
show up are that TFIDF in general created more split points than any of the other methods,
it had higher variance in the amount of split points that it did create. While other methods
seemed to favor the splits based on unique values, Maximum Entropy seemed to have less
of a bias.

Analyzing the Entropy and C4.5 splitting methods require a different methodology as
they work differently than the Density Method. In both cases, the methods find out the
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Table 8
Analysis of the Density Method using Naive Bayes

Data set % unique # feat max bin Number of bins

Min Max Mean± stddev

arrhythmia 70% 272 8 0.0000 0.8750 0.1625±0.2798
autos 100% 15 7 0.0000 0.0000 0.0000±0.0000
bcancerw 50% 9 3 0.0000 2.6666 0.8666±0.9568
cleveland 60% 13 7 0.0000 0.7142 0.2571±0.2843
credit-app 60% 6 8 0.0000 0.3750 0.0375±0.1125
cylinder-bands 70% 20 8 0.0000 0.6250 0.1250±0.2016
diabetes 80% 8 9 0.0000 0.5555 0.2555±0.2280
echocardiogram 100% 11 6 0.0000 0.0000 0.0000±0.0000
glass 100% 9 7 0.0000 0.0000 0.0000±0.0000
horse 90% 7 6 0.0000 0.8333 0.3833±0.3578
hungarian 50% 13 7 0.0000 0.5714 0.1285±0.1623
ionosphere 20% 34 8 0.2500 0.8750 0.5875±0.1941
iris 100% 4 5 0.0000 0.0000 0.0000±0.0000
liver 80% 6 6 0.0000 1.0000 0.5333±0.3399
musk 100% 166 7 0.0000 0.0000 0.0000±0.0000
new-thyroid 50% 5 6 0.0000 0.8333 0.3666±0.2963
page-blocks 60% 10 10 0.0000 0.8000 0.4500±0.2941
segmentation 60% 19 10 0.0000 0.9000 0.3600±0.3441
sonar 100% 60 7 0.0000 0.0000 0.0000±0.0000
sponge 100% 3 2 0.0000 0.0000 0.0000±0.0000
vehicle 70% 18 8 0.0000 0.0000 0.0000±0.0000
wine 100% 13 7 0.0000 0.0000 0.0000±0.0000

Means 75.9% 0.0114 0.5284 0.2052
stddev 22.5% 0.0521 0.6036 0.2393

best split points per numerical feature, regardless of the learning algorithm used. This
intuitively leads us to ask the following questions:

(1) For each feature, what is the ratio of number of split-points found with respect to the
maximum number of split-points possible?

(2) Is there any correlation between the number of split-points generated and either the
possible maximum or the number of numerical features?

(3) How many of the features are not used at all? (e.g., no split-points were found)
(4) How do the two methods compare with respect to the previous answers.

Tables 10 and 11 try to answer these questions. The first columns of the tables, following
the data set name, are again the number of numerical features for that data set, followed by
the minimum and maximum number of values across all the numerical features. The next
three columns show the range of splits that were actually found by the splitting method. The
values are normalized for each feature. The last three columns show the range of numerical
features that were not used by the splitting method, due to no points being found. These
values have been normalized with respect to the number of numerical features in that data
set.
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Table 9
Analysis of the Density Method using TFIDF

Data set % unique # feat max bin Number of bins

Min Max Mean± stddev

arrhythmia 20% 272 8 0.3750 0.5000 0.4750±0.0500
autos 100% 15 7 0.0000 0.0000 0.0000±0.0000
bcancerw 50% 9 3 0.3333 1.0000 0.7000±0.3145
cleveland 70% 13 7 0.0000 0.2857 0.1571±0.1187
credit-app 80% 6 8 0.1250 0.1250 0.1250±0.0000
cylinder-bands 50% 20 8 0.1250 0.6250 0.2625±0.1420
diabetes 80% 8 9 0.0000 0.6666 0.2222±0.2383
echocardiogram 100% 11 6 0.0000 0.0000 0.0000±0.0000
glass 100% 9 7 0.0000 0.0000 0.0000±0.0000
horse 40% 7 6 0.1666 0.6666 0.4000±0.1856
hungarian 100% 13 7 0.0000 0.2857 0.1857±0.0915
ionosphere 60% 34 8 0.1250 0.7500 0.5125±0.2050
iris 100% 4 5 0.0000 0.0000 0.0000±0.0000
liver 70% 6 6 0.0000 1.0000 0.4000±0.3091
musk 90% 166 7 0.0000 0.4285 0.1857±0.1696
new-thyroid 90% 5 6 0.0000 0.6666 0.3666±0.1795
page-blocks 100% 10 10 0.1000 0.2000 0.1600±0.0490
segmentation 100% 19 10 0.4000 0.6000 0.5400±0.0800
sonar 100% 60 7 0.0000 0.0000 0.0000±0.0000
sponge 100% 3 2 0.0000 0.0000 0.0000±0.0000
vehicle 80% 18 8 0.1250 0.3750 0.3250±0.0829
wine 100% 13 7 0.0000 0.0000 0.0000±0.0000

Means 80.9% 0.0852 0.3716 0.2281
stddev 23.1% 0.1265 0.3304 0.2066

As with the Density Method, there did not seem to be any correlation between the
number of split points found and any other characteristic of the data set. However, one
interesting pattern did seem to emerge when looking at the number of features that were
not used: Both methods were able to disregard at least one numerical feature in the majority
of cases. Further, when comparing the two methods, two observations can immediately be
made: Entropy generates far fewer split-points on average and disregards a much larger
amount of features than C4.5. While doing so, it still manages to perform comparably, and
qualitatively outperform C4.5. Finally, it is interesting to note that the sponge data set had
only one numerical feature, and it was ignored by both Entropy and C4.5.

5. Case study: Mixed-mode data set

The previous section demonstrated the credible performance of our approach on purely
numerical data sets. We now turn to the mixed-mode example that we mentioned in the
Introduction, classifying email using both numerical and text features. This allows us to
evaluate whether adding numerical features to what we had previously treated as a text-only
data set [10] yields any gain in performance. To explore this issue, we consider not only
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Table 10
Analysis of the Entropy Splitting Method

Data set # feat min /max Number of split-points Number of no-splits

binsize Min Max Mean± stddev Min Max Mean± stddev

arrhythmia 272 1/384 0.000 0.114 0.008±0.018 0.710 0.761 0.737±0.015
autos 15 23/185 0.000 0.026 0.002±0.008 0.400 0.400 0.400±0.000
bcancerw 9 9/11 0.111 0.240 0.200±0.035 0.000 0.000 0.000±0.000
cleveland 13 2/152 0.000 0.500 0.161±0.184 0.308 0.308 0.308±0.000
credit-app 6 23/350 0.001 0.073 0.017±0.026 0.000 0.167 0.100±0.082
cylinder-bands 20 4/296 0.000 0.031 0.005±0.008 0.700 0.900 0.825±0.051
diabetes 8 17/517 0.000 0.058 0.015±0.018 0.250 0.375 0.263±0.038
echocardiogram 11 2/106 0.000 0.333 0.034±0.095 0.455 0.818 0.664±0.115
glass 9 32/178 0.006 0.032 0.016±0.011 0.000 0.000 0.000±0.000
horse 7 25/89 0.000 0.042 0.019±0.016 0.286 0.286 0.286±0.000
hungarian 13 2/154 0.000 0.500 0.115±0.158 0.462 0.539 0.523±0.031
ionosphere 34 1/281 0.000 0.500 0.027±0.083 0.029 0.118 0.059±0.023
iris 4 22/43 0.043 0.091 0.062±0.018 0.000 0.000 0.000±0.000
liver 6 16/94 0.000 0.006 0.001±0.002 0.833 1.000 0.900±0.082
musk 166 29/217 0.000 0.030 0.007±0.005 0.235 0.325 0.281±0.031
new-thyroid 5 47/100 0.023 0.073 0.042±0.018 0.000 0.000 0.000±0.000
page-blocks 10 104/1718 0.004 0.048 0.010±0.013 0.000 0.000 0.000±0.000
segmentation 19 1/1937 0.000 0.333 0.039±0.079 0.053 0.105 0.068±0.024
sonar 60 109/208 0.000 0.008 0.002±0.002 0.617 0.700 0.653±0.023
sponge 3 4/5 0.000 0.000 0.000±0.000 1.000 1.000 1.000±0.000
vehicle 18 13/424 0.012 0.308 0.072±0.068 0.000 0.000 0.000±0.000
wine 13 39/133 0.012 0.026 0.018±0.004 0.000 0.000 0.000±0.000

Means 0.010 0.153 0.040 0.289 0.355 0.321
stddev 0.024 0.172 0.053 0.279 0.265 0.286

the text of each email message, but also any numerical features available [10]. Continuing
with our earlier work using information-retrieval-based classification methods, we turned
to the bags-of-tokens approach to inject these numerical features into learning. This data
concerns the use of two-way pagers by three users for over 14 months, each user choosing
whether or not to read a new email message via the pager. Keeping track of which emails
the users chose to read, we were able to label each email as either “Forward”, that it was
desirable to read this email on the pager, or “NotForward”, that it was not desirable to
forward this email. The historical use of the pager for each user was treated as a separate
dataset, giving us three unique datasets. We use 23 features for this study, 16 of them being
numerical. Tables 12 and 13 show the features that were used in this experiment, while
Table 14 shows the size and ratio of messages read by each respective user.

5.1. Evaluation methodology

To evaluate our methods on this data we randomly pick 500 test instances, keeping
the ratio of class-distributions. For each test email, we learn a model based on all emails
whose timestamp is less than the test email, then use that learned model to predict whether
to forward that particular test email. In order to guarantee that a training set is sufficiently
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Table 11
Analysis of the C4.5 Splitting Method

Data set # feat min /max Number of split-points Number of no-splits

binsize Min Max Mean± stddev Min Max Mean± stddev

arrhythmia 272 1/384 0.000 0.507 0.160±0.129 0.287 0.338 0.313±0.013
autos 15 23/185 0.000 0.113 0.015±0.041 0.267 0.333 0.300±0.033
bcancerw 9 9/11 0.100 0.280 0.161±0.073 0.000 0.000 0.000±0.000
cleveland 13 2/152 0.000 0.500 0.196±0.175 0.154 0.231 0.185±0.038
credit-app 6 23/350 0.003 0.061 0.015±0.021 0.000 0.000 0.000±0.000
cylinder-bands 20 4/296 0.000 0.117 0.022±0.034 0.550 0.700 0.655±0.061
diabetes 8 17/517 0.000 0.059 0.014±0.019 0.250 0.500 0.425±0.083
echocardiogram 11 2/106 0.000 0.333 0.063±0.102 0.364 0.546 0.436±0.055
glass 9 32/178 0.000 0.040 0.014±0.012 0.111 0.222 0.122±0.033
horse 7 25/89 0.000 0.081 0.018±0.029 0.571 0.714 0.686±0.057
hungarian 13 2/154 0.000 0.333 0.118±0.136 0.385 0.462 0.431±0.038
ionosphere 34 1/281 0.000 0.500 0.029±0.082 0.029 0.029 0.029±0.000
iris 4 22/43 0.047 0.104 0.086±0.024 0.000 0.000 0.000±0.000
liver 6 16/94 0.000 0.131 0.028±0.047 0.500 0.667 0.617±0.076
musk 166 29/217 0.000 0.122 0.014±0.015 0.307 0.361 0.340±0.017
new-thyroid 5 47/100 0.022 0.089 0.048±0.025 0.000 0.000 0.000±0.000
page-blocks 10 104/1718 0.007 0.196 0.034±0.055 0.000 0.000 0.000±0.000
segmentation 19 1/1937 0.000 0.709 0.189±0.201 0.053 0.053 0.053±0.000
sonar 60 109/208 0.000 0.007 0.003±0.002 0.417 0.533 0.468±0.037
sponge 3 4/5 0.000 0.000 0.000±0.000 1.000 1.000 1.000±0.000
vehicle 18 13/424 0.039 0.510 0.280±0.139 0.000 0.000 0.000±0.000
wine 13 39/133 0.020 0.095 0.039±0.021 0.000 0.000 0.000±0.000

Means 0.011 0.222 0.070 0.238 0.304 0.276
stddev 0.023 0.199 0.077 0.228 0.216 0.219

Table 12
Numerical Features used in the Email data set

minutes minutes since midnight
length length in bytes
textlength length in bytes of textual parts
pager_cmd seconds since pager last used
recv seconds since last mail from sender
recv_subj seconds since last mail from sender on subject
sent seconds since last mail to sender
sent_subj seconds since last mail to sender on subject
logged_in seconds since user was last logged in online
last_cmd seconds since last online command
mail_read seconds since last time mail was read online
num_recpt number of recipients (to and cc)
num_qstn number of question marks in message
num_excl number of exclamation marks in message
num_pro number of pronouns in message
num_upper number of all upper-case words in message
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Table 13
Textual Features used in the Email data set

dayname name of day
daytype type of day (weekday or weekend)
from tokenized list of the from-field1

to tokenized list of the to-field1

tocc combined tokenized list of the to- and cc-field1

subject words in subject
body words in body

1) email addresses of the form:
user@machine.domain

were split into:
user user@domain user@dmachine.domain
domain machine.domain

Table 14
Email data sets from three user’s extended use
of an EmailValet

Size Ratio of messages
read on pager

AD 6048 20.11%
HH 23673 22.12%
SM 3987 15.98%

large to learn a discriminatory model, we constrain all test emails to have at least 500
emails in their respective training sets.

Each data set was represented in one of three ways for our experiments:

• txt: The original feature encoding—limited to only the textual features, for use with
our five text-classifiers.
• num: The original feature encoding—using both text and numbers—for use with SVM

and Ripper.
• entropy: The bag-of-words encoding generated by the Entropy method, for use with

the five text-classifications.
• human: The bag-of-words encoding using hand-generated land-mark values, for use

with the five text-classifications.

The first of these represents our baseline, using a machine learning method designed
for text classification. The next one is used to gauge whether adding numerical features
and using methods that can handle set-valued features as well as numerical features will
improve performance. Notice that C4.5 has been dropped as a method as C4.5 does not
deal easily with set-valued features. The last two use the new approach presented in this
paper, one using the Entropy splitting method and one using hand-picked splitting values
to compare how well a human would perform in picking landmark values. We chose to
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use only the Entropy method here due to its faster performance and fewer splitting points.
Table 15 shows the values that were manually picked.

SVM was actually run twice for each of the four split methods given above. The first
run was done using a binary vector-space model, the second using a TFIDF vector-space
model. In both models, each numerical feature was normalized based on the minimum
and maximum values of the feature in the training set. In the binary model, henceforth
referred to as B-SVM, each word was represented as either a 1 or a 0, based on whether that
particular word was present in the file. The TFIDF model, henceforth referred to as T-SVM,
represented words as a TFIDF value, using the current weighting schemes used by the
information retrieval community [29]. These weighting schemes are defined in Table 16.

Table 15
Manually chosen splitpoints for email data

Feature Split-points

minutes Every full and half hour of the day

length 512,1024,2048,4096,8192 and
textlength 16384 bytes

pager_cmd
recv
recv_subj
sent
sent_subj
logged_in
last_cmd
mail_read

1,5,10,15 and 30 minutes
1,2,4,8,12,16 and 24 hours

num_recpt
num_qstn
num_excl
num_pro
num_upper

0,1,2,3,4,5,10 and 20

Table 16
TFIDF Encoding Scheme for T-SVM Classifier

tf factor:
d = 1+ ln(1+ ln(T F)) [0 if tf = 0]

idf factor:

t = log
( (N+1)

df

)

pivoted byte length normalization factor:
b= 1

(0.8+0.2∗( doc_length
avg_doc_length ))

tf = term frequency
N = number of documents in (training) collection
df = number of documents containing word
dnb weight= d ∗ b

dtb weight= d ∗ t ∗ b

dtn weight= d ∗ t
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We use the dtb weighting scheme for both the training and the test sets, as the pivoted byte
length normalization has been shown to improve performance [29].

Initially SVM was also run using both linear and quadratic kernels. The linear kernels
outperformed the quadratic kernels in most runs, and were rarely beaten. For this reason,
we only report the performance using linear kernels.

5.2. Results

The first question we ask here is key: Does adding numerical features using any
method improve performance to using only the text of the emails? To answer this,
we performed a straight comparison across all methods, using the splitting methods
mentioned. Tables 17, 18, and 19 show the results of these first comparisons. Because
it is hard to gauge which type of measure to use in this type of data set, we show four
types of measures used often, that of error, precision, recall and the F1-measure. Precision
is defined as: of all the messages that were predicted to be forwarded, what percentage of
those were truly messages that should have been forwarded. Recall is defined as: of all
messages that should have been forwarded, what percentage of these were predicted to be
forwarded. The F1 measure is then defined as 2 ∗Recall ∗ Precision/(Recall+ Precision).

Running SVMlight with its default parameters yielded a surprisingly bad performance
with respect to recall as well as the F1-measure, leading us to use a cost-factor of 5 between

Table 17
Comparison of Methods on the AD data set

Classifier Method Error Precision Recall F1

B-SVM Text 21.000 49.708 81.731 0.618
B-SVM Numeric 22.000 48.352 84.615 0.615
B-SVM Entropy 20.800 50.000 81.731 0.620
B-SVM Human 21.000 49.708 81.731 0.618

T-SVM Text 22.609 46.795 77.660 0.584
T-SVM Numeric 26.000 38.732 76.389 0.514
T-SVM Entropy 22.560 46.753 76.596 0.581
T-SVM Human 23.011 46.250 77.895 0.580

Ripper Text 36.419 33.040 72.115 0.453
Ripper Numeric 36.419 33.040 72.115 0.453
Ripper Entropy 31.187 38.140 78.846 0.514
Ripper Human 35.614 35.102 82.692 0.493

MAXENT Text 19.400 53.608 50.000 0.517
MAXENT Entropy 17.800 57.426 55.769 0.566
MAXENT Human 18.600 56.627 45.192 0.503

Naive Bayes Text 21.400 49.068 75.962 0.596
Naive Bayes Entropy 21.400 49.057 75.000 0.593
Naive Bayes Human 24.400 45.455 86.538 0.596

TFIDF Text 23.447 45.977 77.670 0.578
TFIDF Entropy 23.800 45.562 74.038 0.564
TFIDF Human 25.000 44.560 82.692 0.579
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Table 18
Comparison of Methods on the HH data set

Classifier Method Error Precision Recall F1

B-SVM Text 34.800 34.959 86.000 0.497
B-SVM Numeric 32.465 36.000 81.818 0.500
B-SVM Entropy 34.600 35.102 86.000 0.499
B-SVM Human 34.800 34.959 86.000 0.497

T-SVM Text 31.600 36.058 75.000 0.487
T-SVM Numeric 34.000 34.234 76.000 0.472
T-SVM Entropy 31.600 36.058 75.000 0.487
T-SVM Human 31.600 36.058 75.000 0.487

Ripper Text 35.849 36.410 88.750 0.516
Ripper Numeric 48.200 26.421 79.000 0.396
Ripper Entropy 38.353 33.210 90.000 0.485
Ripper Human 38.600 32.967 90.000 0.483

MAXENT Text 18.437 55.738 34.343 0.425
MAXENT Entropy 18.145 56.579 43.000 0.489
MAXENT Human 18.200 56.716 38.000 0.455

Naive Bayes Text 34.800 35.200 88.000 0.503
Naive Bayes Entropy 30.364 37.313 75.758 0.500
Naive Bayes Human 45.800 28.571 86.000 0.429

TFIDF Text 34.400 35.124 85.000 0.497
TFIDF Entropy 33.737 34.703 76.000 0.476
TFIDF Human 41.400 30.545 84.000 0.448

misclassifying messages that should be forwarded versus those that should not. The factor
of 5 was chosen deliberately to closely resemble the difference in class-ratios on all three
data sets. We realize this does make use of test-data for parameter selection, but have no
reason to believe this factor would in any way favor our methods. This change lowered the
precision (by 1–5%) and error (by 10–15%), but increased the recall and F1-measures
dramatically (by as much as 71% for recall and 0.41 for F1). The same problem was
encountered with Ripper, where changing the cost-ratio to be similar to that of the class-
ratio had the same large effect, though not quite as dramatically as for the SVM runs.
Because of this, we show only the latter runs in our results.

The immediate qualitative observations that can be made from these three tables are:
In the majority of the cases, using the Entropy method outperforms the other methods,
and when it looses it is generally not by much. Interestingly, the human-generated split
points generally did not perform very well, nor did the pure numerical methods. Comparing
learners, it is obvious that using Maximum Entropy, while slow, is the clear winner on the
error, while it did not perform so well on recall. In fact, SVM, Naive Bayes and TFIDF all
did quite well on recall, with the tradeoff of worse precision.

Performing statistical significance testing, we compared the performance of each
learner with numerical features added to the performance of the same learner using only
textual features. We calculated the significance in difference between each of the four
measurements given. There were a few cases where there was any significant differences
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Table 19
Comparison of Methods on the SM data set

Classifier Method Error Precision Recall F1

B-SVM Text 30.200 29.508 71.053 0.417
B-SVM Numeric 29.600 29.775 69.737 0.417
B-SVM Entropy 30.200 29.121 70.667 0.412
B-SVM Human 30.200 29.508 71.053 0.417

T-SVM Text 26.600 30.070 56.579 0.393
T-SVM Numeric 27.200 30.769 63.158 0.414
T-SVM Entropy 26.600 29.577 56.000 0.387
T-SVM Human 26.600 30.070 56.579 0.393

Ripper Text 38.200 25.108 76.316 0.378
Ripper Numeric 38.200 25.108 76.316 0.378
Ripper Entropy 39.200 25.207 80.263 0.384
Ripper Human 27.400 32.370 73.684 0.450

MAXENT Text 19.400 24.390 13.158 0.171
MAXENT Entropy 20.200 29.508 23.684 0.263
MAXENT Human 15.200 50.000 19.737 0.283

Naive Bayes Text 43.000 23.574 81.579 0.366
Naive Bayes Entropy 42.600 23.954 82.895 0.372
Naive Bayes Human 44.000 23.723 85.526 0.371

TFIDF Text 44.400 22.963 81.579 0.358
TFIDF Entropy 43.800 23.420 82.895 0.365
TFIDF Human 43.200 23.684 82.895 0.368

(above 95%) between the values. In the AD data set, in only 2 of these runs did the pure
textual data sets win over the numerically enhanced data sets, in the HH data set, most
of the significant differences were in favor of the purely textual data set, and in the SM
data set all significant differences were found for the numerically augmented runs. One
interesting consistent pattern across all of these tests is that the Maximum Entropy method
augmented with the numerical features using the Entropy splitting method has significant
improvement above 95% in recall, and dropping to the 90% confidence level this also holds
true for the F1-measure.

6. Final remarks

This paper has described an approach for converting numeric features into a represen-
tation enabling the application of text-classification methods to problems that have tradi-
tionally been solved solely using numerical-classification methods. In addition to opening
up the use of text-methods to problems that involve “mixed-mode” data—both numerical-
and text-valued features—it yields a new approach to numerical-classification method in
its own right. Our experiments show that in a non-trivial number of cases the resulting
methods outperform highly optimized numerical-classification methods. Also importantly,
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our experiments show that our approach yields a vast improvement over the naive method
of converting a numeric into its equivalent textual token.

Our original motivation for performing this work was to broaden the class of learning
methods that can be applied to mixed-mode data. Our understanding of numerical
classification methods has been helped by the availability of a large number of benchmark
classification problems. Obtaining similar insights into problems with mixed-mode data
would similarly be helped by the availability of mixed-mode benchmark problems, a task
we are currently performing. Our method for converting numbers to bags of tokens also
opens up new questions for feature generation and selection, one of the key sources of
improvement in applied classifier learning. Finally, we also noted that our approach yields
an intriguing way to deal with data with missing values, and understanding its benefits and
liabilities compared to other approaches remains a question that we hope to explore.
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