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Supplementary material: Conjugate Priors and
Posterior Inference for the Matrix Langevin

Distribution on the Stiefel Manifold

Subhadip Pal† , Subhajit Sengupta‡ , Riten Mitra† and Arunava Banerjee∗,§

1 Properties of the Matrix Langevin distribution and

0F1

(
n
2
, D

2

4

)
We introduce a few lemmas. Readers may skip this section with no loss of understanding
of subsequent sections in the paper.

Lemma 1. Let X be a random matrix taking values on the space Vn,p. If X ∼ML(·;M,d, V ),
then E(X) = MDhV

T . Dh is a diagonal matrix with diagonal entrees h(d) := (h1(d), . . . , hp(d))
where

hj(d) :=

∂
∂dj 0F1

(
n
2 ,

D2

4

)
0F1

(
n
2 ,

D2

4

) for j = 1, 2, · · · , p.

Proof of Lemma 1. Let Γ0 =
[
M,M

]
be a n×n orthogonal matrix where the columns

of the matrix M comprise of a orthonormal basis for the orthogonal complement of the
column space of M . Consider the random matrix Y = ΓT0 XV . From Khatri and Mardia
(1977) (see page 98) we know that

E(Y ) =
[
Dh , 0n−p,p

]T
, (1.1)

where Dh is a diagonal matrix with diagonal entrees h(d) := (h1(d), . . . , hp(d)) with

hj(d) :=

∂
∂dj 0F1

(
n
2 ,

D2

4

)
0F1

(
n
2 ,

D2

4

) for j = 1, 2, · · · , p.

Hence from Equation (1.1), it follows that

E(X) = Γ0

[
Dh , 0n−p,p

]T
V T = MDhV

T .
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Lemma 2. (Chikuse, 2012; Hoff, 2009) For any p× p diagonal matrix D with positive

elements, 0F1

(
n
2 ,

D2

4

)
≤ etr(D) when n ≥ p.

Proof of Lemma 2. From Equation (2.2) in the main article, we have∫
Vn,p

fML(X; (M,d, V )) dµ(X) = 1

=⇒ 0F1

(
n

2
,
D2

4

)
=

∫
Vn,p

etr(V DMTX) dµ(X). (1.2)

We know that fML(X; (M,d, V )) has the unique modal orientation MV T (page 32
in Chikuse (2012)). Hence it follows from Equation (1.2) that

0F1

(
n

2
,
D2

4

)
≤

∫
Vn,p

etr(V DMTMV T ) dµ(X)

= etr(D)

∫
Vn,p

dµ(X) = etr(D), (1.3)

as µ is the normalized Haar measure, i.e. a probability measure on Vn,p.

�

Lemma 3. Let A be a n × p real matrix with n ≥ p, and Aj,j be the (j, j)-th entry of
the matrix A for j = 1, .., p. Let ‖A‖2 denote the matrix operator norm ( also known
as spectral norm) of the matrix A. If ‖A‖2 ≤ δ for some δ > 0 then |Aj,j | ≤ δ for
j = 1, .., p. Also, if ‖A‖2 < δ for some δ > 0 then |Aj,j | < δ for j = 1, .., p.

Proof of Lemma 3.

From the assumptions of Lemma 3 along with the definition of the spectral norm, it
follows that lTATA l ≤ δ2 for all l ∈ Rp with lT l = 1. In particular, eTj A

TA ej ≤ δ2

where ej ∈ Rp such that its j-th entry equals 1 while rest of its entries are 0. Hence
we have

∑n
k=1A

2
k,j ≤ δ2 implying the fact that |Aj,j | ≤ δ. The assertion with strict

inequality can also be shown in a similar fashion.

�

Lemma 4. Let D be a p × p diagonal matrix with positive diagonal elements d =
(d1, d2, · · · , dp). Then for any δ > 0 and n ≥ p, there exists a positive constant, Kn,p,δ,
depending on n, p and δ, such that

0F1

(
n

2
,
D2

4

)
> Kn,p,δ etr ((1− δ)D) .

Proof of Lemma 4.

Note that D is a p×p diagonal matrix with positive diagonal elements d1, .., dp. For the
case n ≥ p, define
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M̃ =

[
Ip
0n−p,p

]
, Ṽ = Ip and I? :=

[
Ip
0n−p,p

]
, (1.4)

where Ip denotes the p × p identity matrix and 0n−p,p represents the zero matrix of
dimension (n− p)× p. For arbitrary given positive constant δ > 0, consider

Bδ := {X ∈ Vn,p, such that ‖X − I?‖2 < δ} ,

where ‖·‖2 denotes the spectral norm of a matrix. Let µ denotes the normalized Haar
measure on the Vn,p. Clearly, 0 < µ (Bδ) < ∞, as Bδ is a non-empty open subset of
Vn,p. Now from Equation (2.2) we have,

0F1

(
n

2
,
D2

4

)
=

∫
Vn,p

etr
(
Ṽ DM̃TX

)
dµ(X).

≥
∫
Bδ

etr
(
Ṽ DM̃TX

)
dµ(X). (1.5)

Using Lemma 3 we know that Xj,j > (1−δ) for j = 1, 2, . . . , p where X ∈ Bδ. Note that
Xj,j denotes the (j, j)-th entry of the matrix X. Hence from Equation (1.4) and (1.5)
it follows that,

0F1

(
n

2
,
D2

4

)
≥

∫
Bδ

exp

 p∑
j=1

Xj,j dj

 dµ(X),

> µ(Bδ) etr ((1− δ)D) , (1.6)

where the last inequality uses the fact that dj > 0 for all j = 1, . . . p. Finally we denote
Kn,p,δ := µ(Bδ) > 0 as it depends on n, p along with δ, to conclude that

0F1

(
n

2
,
D2

4

)
> Kn,p,δ etr ((1− δ)D) .

�

Lemma 5. For any p×p diagonal matrix D with positive elements d ∈ Sp, the hyperge-

ometric function of matrix argument denoted by 0F1

(
n
2 ,

D2

4

)
is log-convex with respect

to d where n ≥ p.

Proof of Lemma 5.
From Equation (2.2) in the main article, we have

0F1

(
n

2
,
D2

4

)
=

∫
Vn,p

etr(V DMTX) dµ(X), (1.7)
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for arbitrary M ∈ Ṽn,p and V ∈ Vn,p where n ≥ p. Without loss of generality, we can

take M = M̃ =

[
Ip
0(n−p),p

]
and V = Ip.

Let D1 and D2 be two p×p diagonal matrices with positive diagonal entries d1 and d2,
respectively, and d1 6= d2. From Equation (1.7), we have

0F1

(
n

2
,
D2

1

4

)
=

∫
Vn,p

etr(D1M̃
TX) dµ(X)

0F1

(
n

2
,
D2

2

4

)
=

∫
Vn,p

etr(D2M̃
TX) dµ(X). (1.8)

Let λ ∈ (0, 1) be any real number, then

0F1

(
n

2
,

(λD1 + (1− λ)D2)
2

4

)

=

∫
Vn,p

etr((λD1 + (1− λ)D2)M̃TX) [dX]

=

∫
Vn,p

(
etr(D1M̃

TX)
)λ(

etr(D2M̃
TX)

)1−λ
dµ(X)

<

(∫
Vn,p

etr(D1M̃
TX) dµ(X)

)λ(∫
Vn,p

etr(D2M̃
TX) dµ(X)

)1−λ

=

(
0F1

(
n

2
,
D2

1

4

))λ(
0F1

(
n

2
,
D2

2

4

))1−λ

. (1.9)

where the inequality is due to Hölder (Hardy et al., 1952; Billingsley, 1995) and we have
strict inequality as d1 6= d2.

Therefore from Equation (1.9), it follows that 0F1

(
n
2 ,

D2

4

)
is a log-convex function of

the diagonal entries d of the matrix D. Note that, the properties of the exponential
family of distributions have played a crucial role in establishing the result.

�

Lemma 6. For any p× p (p ≥ 2) diagonal matrix D with positive elements d ∈ Sp,

0 <
∂

∂ di

[
0F1

(
n

2
,
D2

4

)]
< 0F1

(
n

2
,
D2

4

)
,

for i = 1, 2, · · · , p, where n ≥ p.

Proof of Lemma 6.

Right hand side inequality Proceeding along similar lines as Lemma 5 we have

0F1

(
n

2
,
D2

4

)
=

∫
Vn,p

etr(DM̃TX) dµ(X), where M̃ =

[
Ip
0(n−p),p

]
. (1.10)
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From Equation (1.10), we have

0F1

(
n

2
,
D2

4

)
=

∫
Vn,p

exp

 p∑
j=1

dj Xj,j

 dµ(X) (1.11)

Consider the set V0 := {X ∈ Vn,p : Xi,i = 1} . Note that V0 is isomorphic to the lower
dimensional Stiefel manifold, Vn,p−1. V0, being a lower dimensional subspace of Vn,p, has
measure zero i.e.

∫
Vn,p I(X ∈ V0)dµ(X) = 0, where I(X ∈ V0) is the indicator function

for X to be in the set V0. From Equation (1.11), we have

0F1

(
n

2
,
D2

4

)
=

∫
Vn,p

exp

 p∑
j=1

dj Xj,j

 I(X ∈ Vc0) dµ(X), (1.12)

where Vc0 is the complement of V0. Hence,

∂

∂ di

[
0F1

(
n

2
,
D2

4

)]
=

∫
Vn,p

Xi,i I(X ∈ Vc0) exp

 p∑
j=1

dj Xj,j

 dµ(X).

(1.13)

Observe that ‖X‖2 = 1 on Vn,p. Hence from Lemma 3 we have |Xi,i| ≤ 1. Also, Xi,i 6= 1
when X ∈ Vc0 . As a result, we conclude that Xi,i < 1 on Vn,p ∩ Vc0 . Consequently, it
follows from Equations (1.12) and (1.13) that,

∂

∂ di

[
0F1

(
n

2
,
D2

4

)]
<

∫
Vn,p

exp

 p∑
j=1

dj Xj,j

 I(X ∈ Vc0) dµ(X)

= 0F1

(
n

2
,
D2

4

)
. (1.14)

Left hand side inequality Consider Vi,+n,p := {X ∈ Vn,p : Xi,i > 0}, Vi,−n,p := {X ∈ Vn,p : Xi,i < 0}
and Vi,0n,p := {X ∈ Vn,p : Xi,i = 0}. Clearly, Vi,+n,p ,Vi,0n,p and Vi,−n,p forms a partition of Vn,p.
Hence from Equation (1.11) we have,

∂

∂ di

[
0F1

(
n

2
,
D2

4

)]

=

∫
Vi,+n,p

Xi,i exp

 p∑
j=1

dj Xj,j

 dµ(X) +

∫
Vi,0n,p

Xi,i exp

 p∑
j=1

dj Xj,j

 dµ(X)

+

∫
Vi,+n,p

Xi,i exp

 p∑
j=1

dj Xj,j

 dµ(X)
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=

∫
Vi,+n,p

Xi,i exp

 p∑
j=1

dj Xj,j

 dµ(X) +

∫
Vi,−n,p

Xi,i exp

 p∑
j=1

dj Xj,j

 dµ(X).

(1.15)

Let Γ be the n × n diagonal matrix such that Γj,j = 1 for j = 1, . . . , n, j 6= i and
Γi,i = −1. Γ is an orthogonal matrix as ΓTΓ = In. It is easy to show that Vi,+n,p ={

ΓX : X ∈ Vi,−n,p
}

.

Consider the change of variable Y := ΓX. Using standard algebra we can show that
Xi,i = −Yi,i and Xj,j = Yj,j for j = 1, . . . p, j 6= i. As the normalized Haar measure on
Vn,p is invariant under orthogonal transformation from Chikuse (2012), we get that∫

Vi,−n,p
Xi,i exp

 p∑
j=1

dj Xj,j

 dµ(X)

= −
∫
Vi,+n,p

Yi,i exp

−di Yi,i +

p∑
j=1,j 6=i

dj Yj,j

 dµ(Y )

= −
∫
Vi,+n,p

Xi,i exp

−diXi,i +

p∑
j=1,j 6=i

dj Xj,j

 dµ(X). (1.16)

From Equations (1.15) and (1.16) we have,

∂

∂ di

[
0F1

(
n

2
,
D2

4

)]

=

∫
Vi,+n,p

Xi,i exp

 p∑
j=1,j 6=i

dj Xj,j

( exp (diXi,i)− exp (−diXi,i)

)
dµ(X)

=

∫
Vi,+n,p

Xi,i exp

 p∑
j=1,j 6=i

dj Xj,j

 2 sinh (diXi,i) dµ(X)

(1.17)

where sinh is the hyperbolic sin function. Note that sinh (diXi,i) > 0 as di > 0 and
Xi,i > 0 on Vi,+n,p . Hence from Equation (1.17) it follows that,

∂

∂ di

[
0F1

(
n

2
,
D2

4

)]
> 0. (1.18)

From Equations (1.14) and (1.18), we have the result.

�
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Lemma 7. Let Ψ ∈ Rn×p and D be a diagonal matrix with positive diagonal entries.
If ‖Ψ‖2 < 1, then for arbitrary M ∈ Vn,p, V ∈ Vp,p,

etr
(
V DMTΨ

)
0F1(n2 ,

D2

4 )
<
etr(−ε0D)

Kn,p,ε0

, (1.19)

where ε0 = 1
2 (1− ‖Ψ‖2) and Kn,p,ε0 > 0 is a constant depending on n, p and ε0.

Proof of Lemma 7.

Note that 0 < ε0 <
1
2 , as ‖Ψ‖2 < 1. Assume Y0 = MTΨV ∈ Rp×p. For arbitrary l ∈ Rp

with ‖l‖ = 1, we have

lTY T0 Y0l = (V l)TΨTΨ(V l)− lTV TΨT (In −MMT )ΨV l

≤ (1− 2ε0)2. (1.20)

The last inequality follows as ‖Ψ‖2 = 1−2ε0 and (In−MMT ) is a non-negative definite
matrix. From Equation (1.20) it follows that ‖Y0‖2 ≤ 1−2ε0. Hence, applying Lemma 3
we obtain that |Y0j,j | < 1− 2ε0 for j = 1, · · · , p, where Y0,j is the j-th diagonal element
of the matrix Y0. Now applying Lemma 4 we have,

etr
(
V DMTΨ

)
0F1(n2 ,

D2

4 )
<

etr(DY0 − (1− ε0)D)

Kn,p,ε0

<
etr(−ε0D)

Kn,p,ε0

.

�

Lemma 8. Let R be a p× p symmetric positive definite matrix. Then for a ≥ p/2,

0F1 (a,R) ≥ Γ(a)(tr(R))
1−a

2 Ia−1(
√

4 tr(R)), (1.21)

tr(R) denotes the trace of the matrix R.

Proof of Lemma 8. Let Dk,p denotes the set of all possible partitions of the integer k
into no more than p parts, i.e.

Dk,p = {(k1, . . . , kp) : k1, . . . kp ∈ Z, k1 ≥ . . . kp ≥ 0, k1 + . . .+ kp = k} ,

where Z denotes the set of non-negative integers. For a vector κ = (k1, . . . , kp) ∈
Dk,p, we denote the quantity

∏p
j=1

Γ(a−(j−1)/2+kj)
Γ(a−(j−1)/2) by the notation (a)κ. Then from the

Richards (2011) we get the representation

0F1 (a,R) =

∞∑
k=0

∑
κ∈Dk,p

Cκ(R)

(a)κk!
, (1.22)

where Cκ(R) is the Zonal polynomial of the matrix argument R corresponding to the
vector κ ∈ Dk,p. More details about the Zonal polynomials can be found in Muirhead
(2009), Gross and Richards (1987).
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8

Note that, for κ = (k1, . . . , kp) ∈ Dk,p, and a ≥ p
2 ,

(a)κ =

p∏
j=1

Γ(a− (j − 1)/2 + kj)

Γ(a− (j − 1)/2)

≤ Γ(a+ k)

Γ(a)

p∏
j=2

Γ(a− (j − 1)/2)

Γ(a− (j − 1)/2)

=
Γ(a+ k)

Γ(a)
. (1.23)

As a result, for a ≥ p
2 ≥ 1, we get that

0F1 (a,R) ≥
∞∑
k=0

Γ(a)

k!Γ(a+ k)

∑
κ∈Dk,p

Cκ(R)

(∗∗)
=

∞∑
k=0

Γ(a)

k!Γ(a+ k)
tr(R)k

= Γ(a)(tr(R))
1−a

2 Ia−1(
√

4 tr(R)), (1.24)

where the equality in (∗∗) follows from Gross and Richards (1987) (See Equation(5)
in Gross and Richards (1987) ), while the last equality follows from the definition of
Ia−1(·), the modified Bessel function of the first kind. We would like to point out that
the result is motivated by a lower-bound developed in Sengupta (2013). �

Lemma 9. Let ν ≥ 1
2 then for M > 0,

Iν(x) ≥ ex√
x

[√
Me−MIν(M)

]
, (1.25)

for all x > M .

Proof of Lemma 9

First we will show that the function x 7→ x
1
2 e−xIν(x) is a non decreasing function for

ν ≥ 1
2 and x > 0. Consider that

∂

∂x
(x

1
2 e−xIν(x))

=
1

2
√
x
e−xIν(x)− (x

1
2 e−xIν(x)) + x

1
2 e−x(−ν

x
Iν(x) + Iν−1(x))

=
√
xe−x

(
(
1

2
− ν)

Iν(x)

x
+ Iν−1(x)− Iν(x)

)
=
√
xe−xIν(x)

(
0.5− ν
x

− 1 +
Iν−1(x)

Iν(x)

)
. (1.26)
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From Segura (2011), we get that Iν(x)
Iν−1(x) ≤

x

(ν−0.5)+
√

(ν−0.5)2+x2
for ν ≥ 1

2 and x > 0.

Hence, from (1.26), it follows that

∂

∂x
(x

1
2 e−xIν(x))

≥
√
xe−xIν(x)

(
0.5− ν
x

− 1 +
(ν − 0.5) +

√
(ν − 0.5)2 + x2

x

)

=
√
xe−xIν(x)

(√
(ν − 0.5)2 + x2

x
− 1

)

=

√
xe−xIν(x)(ν − 0.5)2

x
(
x+

√
(ν − 0.5)2 + x2

) > 0.

As a result, the function x 7→ (x
1
2 e−xIν(x)) is a non-decreasing function for ν ≥ 1

2 .
Hence, for M > 0 we have

x
1
2 e−xIν(x) ≥M 1

2 e−MIν(M)

=⇒ Iν(x) ≥ ex√
x

[√
Me−MIν(M)

]
, (1.27)

when x > M . �

Lemma 10. Let n > p ≥ 2 and M > 0, for all d1 > M ,

g1(d1) ≤ Kn,p,M d
ν(n−1)/2
1 exp( −ν(1− η1) d1),

(1.28)

where

g1(d1) =
exp(ν η1 d1)

0F1

(
n
2 ,

D2

4

)ν and K†n,p,M =

 (p/4)
n/2−1

2 )

Γ(n/2)
{√

Me−MIn/2−1(M)
}
ν .

Proof of Lemma 10 Let a = n
2 . Note that d1 ≥ d2 ≥ . . . ≥ dp are the diagonal

elements of the diagonal matrix D. From Lemma (8), we get that

0F1

(
a,
D2

4

)
≥ Γ(a)

(
4

tr(D2)

) a−1
2

Ia−1(
√
tr(D2))

≥ Γ(a)

(
4

pd2
1

) a−1
2

Ia−1(d1),

(1.29)
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As a result,

g1(d1) ≤

[
(pd2

1/4)
a−1

2 exp( η1 d1)

Γ(a)Ia−1(d1)

]ν
.

(1.30)

With the help of Lemma (9), from Equation (1.30), we get that

g1(d1) ≤

 (pd2
1/4)

a−1
2 )exp( η1 d1)

Γ(a)
{
ed1√
d1

[√
Me−MIa−1(M)

]}
ν

=

 (p/4)
a−1

2 )da−0.5
1 exp( −(1− η1) d1)

Γ(a)
{[√

Me−MIa−1(M)
]}

ν

=

 (p/4)
a−1

2 )

Γ(a)
{√

Me−MIa−1(M)
}
ν dν(a−0.5)

1 exp( −ν(1− η1) d1).

(1.31)

Note that limM→∞
√
Me−MIa−1(M) = 1√

2π
for all a ≥ 3

2 . The upper bound is nontriv-

ial in the sense that for larger values of M , the constant part involved in the inequality
(1.31) does not approach infinity.

All the above lemmas are used for the theoretical development of the Bayesian analysis
with ML distributions.

2 Proofs of the Theorems

2.1 Proof of Theorem 1.

(a) When ‖Ψ‖2 < 1:
The function g(M,d, V ; ν,Ψ) can be normalized to construct a probability density
function with respect to the product measure µ× µ1 × µ2. Consider now∫

Vn,p

∫
Vp,p

∫
Rp+
g(M,d, V ; ν,Ψ) dµ1(d) dµ2(V ) dµ(M)

=

∫
Vn,p

∫
Vp,p

∫
Rp+

etr
(
νV DMTΨ

)[
0F1(n2 ,

D2

4 )
]ν dµ1(d) dµ2(V ) dµ(M)

(i)
<

∫
Vn,p

∫
Vp,p

∫
Rp+

etr(−νε0D)

(Kn,p,ε0)
ν dµ1(d) dµ2(V ) dµ(M)

=

∫
Vn,p

dµ(M)

∫
Vp,p

dµ2(V )

∫
Rp+

etr(−νε0D)

(Kn,p,ε0)
ν dµ1(d)
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(ii)
=

1

Kν
n,p,ε0

p∏
j=1

∫
R+

exp(−νε0dj) ddj

< ∞,

where the inequality (i) is due to Lemma 7 while (ii) follows from µ and µ2 being the
normalized Haar measures.

(b) When ‖Ψ‖2 > 1:
Let Ψ := MΨDΨV

T
Ψ be the the unique SVD (Chikuse, 2012) for the matrix Ψ. Note

that, using sub-multiplicativity

‖Ψ‖2 ≤ ‖MΨ‖2‖DΨ‖2
∥∥V TΨ ∥∥2

= ‖DΨ‖2 = DΨ,1.

Hence there exists an ε0 > 0 such that, DΨ,1 > (1 + ε0) where DΨ,1 denotes the first
diagonal element of the diagonal matrix DΨ. Now consider that∫

Vn,p

∫
Vp,p

∫
Rp+
g(M,d, V ; ν,Ψ) dµ1(d) dµ2(V ) dµ(M)

≥
∫
Vn,p

∫
Vp,p

∫
Sp
g(M,d, V ; ν,Ψ) dµ1(d) dµ2(V ) dµ(M)

=

∫
Vn,p

∫
Vp,p

∫
Sp

etr
(
ν V DMTΨ

)[
0F1(n2 ,

D2

4 )
]ν dµ1(d) dµ2(V ) dµ(M)

=

∫
Vn,p

∫
Vp,p

∫
Sp

etr
(
ν DMTMΨDΨV

T
Ψ V

)[
0F1(n2 ,

D2

4 )
]ν dµ1(d) dµ2(V ) dµ(M). (2.1)

Consider the change of variable via the following orthogonal transformations

M∗ =
[
MΨ , MΨ

]
M, V ∗ = V TΨ V,

where MΨ is the matrix containing the orthonormal bases for the orthogonal com-

plement of the column space of MΨ. Note that
[
MΨ , MΨ

]T
MΨ = (I?)

T
where

I? :=
[
Ip , 0n−p,p

]T
. As the Haar measure on the Stiefel manifold is invariant under

orthogonal transformations (Chikuse, 2012), from Equation 2.1 we get that,∫
Vn,p

∫
Vp,p

∫
Rp+
g(M,d, V ; ν,Ψ) dµ1(d) dµ2(V ) dµ(M)

=

∫
Vn,p

∫
Vp,p

∫
Rp+

etr
(
ν DM∗T I?DΨV

∗
)

[
0F1(n2 ,

D2

4 )
]ν dµ1(d) dµ2(V ∗) dµ(M∗). (2.2)

Consider

V†n,p :=

{
M ∈ Vn,p : ‖I? −M‖2 <

δ0
2

}
; V†p,p :=

{
V ∈ Vp,p : ‖Ip − V ‖2 <

δ0
2

}
,

imsart-ba ver. 2014/10/16 file: BA1176_supplementary.tex date: August 11, 2019
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where δ0 = ε0/(2 ‖DΨ‖2). Note that δ0 > 0 as 0 < ‖DΨ‖2 < ∞. Clearly V†n,p and V†p,p
are open subsets of Vn,p and Vp,p, respectively. Hence, µ(V†n,p) > 0 and µ2(V†p,p) > 0. If

M ∈ V†n,p and V ∈ V†p,p then using sub-multiplicativity of ‖·‖2 (Conway, 1990) and the
triangle inequality, we get∥∥MT I?DΨV −DΨ

∥∥
2
≤

∥∥MT I?DΨV −DΨV
∥∥

2
+ ‖DΨV −DΨ‖2

≤
∥∥MT I? − Ip

∥∥
2
‖DΨV ‖2 + ‖DΨ‖2‖V − Ip‖2

=
∥∥(M − I?)T I?

∥∥
2
‖DΨV ‖2 + ‖DΨ‖2‖V − Ip‖2

≤
∥∥(M − I?)T

∥∥
2
‖I?‖2 ‖DΨ‖2‖V ‖2 + ‖DΨ‖2‖V − Ip‖2

≤
∥∥(M − I?)T

∥∥
2
‖DΨ‖2 + ‖DΨ‖2‖V − Ip‖2

≤ δ0 ‖DΨ‖2
=

ε0
2
. (2.3)

Let λ1, . . . , λp be the diagonal elements of the matrix MT I?DΨV . From Lemma 3 we
get |λj −DΨ,j | ≤ ε0/2 for j = 1, . . . , p. Here DΨ,j denotes the j-th diagonal element of
the matrix DΨ. Hence for arbitrary M ∈ V†n,p and V ∈ V†n,p, we have

tr
(
MT I?DΨV

)
=

p∑
j=1

λj ≥
p∑
j=1

(
DΨ,j −

ε0
2

)
, (2.4)

as λj ≥
(
DΨ,j − ε0

2

)
for all j = 1, 2, · · · , p. Now, from Equation 2.2, we have∫

Vn,p

∫
Vp,p

∫
Rp+
g(M,d, V ; ν,Ψ) dµ1(d) dµ2(V ) dµ(M)

≥
∫
V†n,p

∫
V†p,p

∫
Rp+

etr
(
ν DM∗T I?DΨV

∗
)

[
0F1(n2 ,

D2

4 )
]ν dµ1(d) dµ2(V ∗) dµ(M∗)

(iii)

≥
∫
V†n,p

∫
V†p,p

∫
Rp+

exp
(
ν
∑p
j=1 dj

(
DΨ,j − ε0

2

))
[
0F1(n2 ,

D2

4 )
]ν dµ1(d) dµ2(V ∗) dµ(M∗),

(2.5)

where (iii) follows from Equation 2.4. Using Lemma 2, we get that∫
Vn,p

∫
Vp,p

∫
Rp+
g(M,d, V ; ν,Ψ) dµ1(d) dµ2(V ) dµ(M)

(iv)

≥
∫
V†n,p

∫
V†p,p

∫
Rp+

exp
(
ν
∑p
j=1 dj

(
DΨ,j − ε0

2

))
[etr(D)]

ν dµ1(d) dµ2(V ∗) dµ(M∗),

≥ µ(V†n,p) µ2(V†p,p)
∫
Rp+

exp

ν p∑
j=1

dj

(
DΨ,j − 1− ε0

2

) dµ1(d),
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(v)

≥ µ(V†n,p) µ2(V†p,p)
∫
Rp+

exp
(
ν
ε0
2
d1

) p∏
j=2

exp
(
ν dj

(
DΨ,j − 1− ε0

2

))
dµ1(d),

= ∞,

where (v) follows as DΨ,1 > (1 + ε0). �

2.2 Proof of Theorem 2.

Sufficient condition For any η := (η1, . . . , ηp) ∈ Rp, define η+ :=
(
η+

1 , . . . , η
+
p

)
where

η+
j equals ηj when ηj > 0 and zero otherwise. Define Dη to be the diagonal matrix with

diagonal elements η+. Let us consider the following matrices

Ψ =

[
Dη
0n−p,p

]
, M? =

[
Ip,p
0n−p,p

]
and V ? = Ip.

Note that M̃ ∈ Ṽn,p, Ṽ ∈ Vp,p and Dη = M̃TΨṼ . Now from Definition 2, it follows that∫
Rp+
g(d; ν,η, n) dd =

∫
Rp+

exp(ν
∑p
j=1 ηjdj)[

0F1(n2 ,
D2

4 )
]ν dµ1(d)

≤
∫
Rp+

exp(ν
∑p
j=1 η

+
j dj)[

0F1(n2 ,
D2

4 )
]ν dµ1(d)

=

∫
Rp+

etr (ν DDη)[
0F1(n2 ,

D2

4 )
]ν dµ1(d)

=

∫
Rp+

etr
(
νṼ DM̃TΨ

)
[
0F1(n2 ,

D2

4 )
]ν dµ1(d)

(vi)
<

∫
Rp+

etr(−νε0D)

(Kn,p,ε0)
ν dµ1(d)

=
1

(Kn,p,ε0)
ν

p∏
j=1

∫
R+

exp(−νε0dj) ddj

< ∞, (2.6)

where the inequality at step (vi) follows from Lemma 7 with an appropriate ε0 > 0.

Necessary condition Let η ∈ Rp be such that max
j=1,...,p

ηj ≥ 1. There exists at least one

j ∈ {1, . . . , p} such that ηj ≥ 1. Without loss of generality, let us assume that η1 ≥ 1.
From Definition 2, we have∫

Rp+
g(d ; ν,η, n) dµ1(d)
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=

∫
Rp+

exp(ν
∑p
j=1 ηjdj)[

0F1(n2 ,
D2

4 )
]ν dµ1(d)

≥
∫
Rp+

exp(ν
∑p
j=1 ηjdj)

etr(νD)
dµ1(d)

=

p∏
j=1

∫
R+

exp (ν(ηj − 1)dj) ddj

=

∫
R+

exp (ν(η1 − 1)d1) dd1

p∏
j=2

∫
R+

exp (ν(ηj − 1)dj) ddj

= ∞,

where the inequality is due to Lemma 2. �

2.3 Proof of Theorem 3

Proofs of part(a) and part(b) of Theorem 3 follow immediately from Lemma 11 and
Lemma 12, respectively.

Lemma 11. The probability density function for the prior distribution of d ∼ CCPD(d; ν,η),

denoted by g(d; ν,η) := exp(ν ηTd)/
[

0F1

(
n
2 ,

D2

4

)]ν
, is log-concave as a function of d,

where D is the diagonal matrix with diagonal elements d, max
1≤j≤p

ηj < 1, ν > 0 and n ≥ p.

Proof of Lemma 11.

From Definition 2 we have,

g(d; ν,η) =
exp(ν ηTd)[

0F1

(
n
2 ,

D2

4

)]ν ,
=⇒ log g(d; ν,η) = ν ηTd− ν log

(
0F1

(
n

2
,
D2

4

))
(2.7)

From Lemma 5, it follows that −ν log
(

0F1

(
n
2 ,

D2

4

))
is a concave function of d. Also,

ν ηTd is a linear function of d. Therefore from Equation 2.7 it follows that log g(d; ν,η)
is a concave function of d.

�

Lemma 12. The distribution of d is unimodal if 0 < ηj < 1 for all j = 1, 2, · · · , p. The
mode of the distribution is characterized by the parameter η and it does not dependent
on the parameter ν.

Proof of Lemma 12.
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Let l(d, ν,η) = log(g(d; ν,η)). If d̂ is the mode of the distribution then

∂

∂d
l(d, ν,η)

∣∣∣∣
d=d̂

= 0,

=⇒ νη − ν ∂

∂d
log

(
0F1

(
n

2
,
D2

4

)) ∣∣∣∣
d=d̂

= 0,

=⇒ ∂

∂d
log

(
0F1

(
n

2
,
D2

4

)) ∣∣∣∣
d=d̂

= η,

=⇒ h(d̂) = η, (2.8)

where h(d) := (h1(d), h2(d), · · · , hp(d)) with

hj(d) :=

(
∂

∂dj
0F1

(
n

2
,
D2

4

))
/0F1

(
n

2
,
D2

4

)
,

for j = 1, 2, · · · , p. The function hj(d) is strictly increasing in each coordinate as the

function 0F1

(
n
2 ,

D2

4

)
is log-convex (see Lemma 5). Also, it follows from Lemma 6 that

0 < hj(d) < 1 for all d ∈ Sp. Hence Equation 2.8 has a unique solution when 0 < ηj < 1
for all j = 1, 2, · · · , p. Also it is clear that the solution does not depend on ν. On the
other hand, given any d̂ ∈ Sp we can always find a η satisfying Equation 2.8 such that
0 < max1≤j≤p ηj < 1. �

2.4 Proof of Theorem 4

(a) From definitions of unimodality and level sets, we have[
g(y; ν,η)

g(x; ν,η)

]
> 1 for all y ∈ S and for all x ∈ Sc. (2.9)

Consider the function

r(ν,x) :=

∫
S

g(y; ν,η)

g(x; ν,η)
dy =

∫
S

[
g(y; 1,η)

g(x; 1,η)

]ν
dy, (2.10)

where x ∈ Sc. Using Equation 2.9 it is easy to see that
[
g(y;1,η)
g(x;1,η)

]ν
is monotonically

increasing in ν for all y ∈ S. Hence r(ν,x) is an increasing function in ν for any x ∈ Sc.
Note that,

Pν(d ∈ Sc)
Pν(d ∈ S)

=

∫
Sc g(x; ν,η) dx∫
S g(y; ν,η) dy

=

∫
Sc

1∫
S
g(y;ν,η)
g(x;ν,η) dy

dx =

∫
Sc

1

r(ν,x)
dx.

(2.11)

Hence Pν(d ∈ Sc)/Pν(d ∈ S) is a decreasing function of ν as 1
r(ν,x) is a decreasing func-

tion in ν for every x ∈ Sc. Equivalently, Pν(d ∈ S) is an increasing function in ν. �
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(b) Let d ∼ CCPD(·; ν,η) with 0 < ηj < 1 for j = 1, . . . p. Let mη be the mode of
the distribution. Note that the value of mη only depends on the parameter η and does
not depend on the parameter ν. Let f(d; ν,η) be the corresponding probability density
function. Hence for the class of distribution functions defined in Definition 2, it follows
that,

f(d; ν,η) =
1

Kν,η

exp(ν ηTd)[
0F1

(
n
2 ,

D2

4

)]ν , (2.12)

where Kν,η is the appropriate normalizing constant. Let us define the function g(d;η) =

exp( ηTd)/0F1

(
n
2 ,

D2

4

)
. Let mη be the unique mode of the density function f(d; ν,η)

(See Lemma 12). If d ∈ Rp+ such that d 6= mη, then for any λ ∈ (0, 1),

g(d;η)

g(λmη + (1− λ)d;η)

=
exp( ηTd)

0F1

(
n
2 ,

D2

4

) 0F1

(
n
2 ,

[λDm+(1−λ)D]2

4

)
exp( ηT (λmη + (1− λ)d))

(vii)
<

exp( ηTd)

0F1

(
n
2 ,

D2

4

)
[

0F1

(
n
2 ,

D2
m

4

)]λ [
0F1

(
n
2 ,

D2

4

)]1−λ
exp( ηT (λmη + (1− λ)d))

=

[
exp( ηTd)

0F1

(
n
2 ,

D2

4

)]λ
 0F1

(
n
2 ,

D2
m

4

)
exp( ηTmη)

λ

=

[
g(d;η)

g(mη;η)

]λ
, (2.13)

where Dm is the diagonal matrix with diagonal mη. Inequality (vii) follows from the
log-convexity of 0F1(·) (see Lemma 5). As a result,

f(d ; ν,η)

f (λmη + (1− λ)d; ν,η)
=

[
g(d ;η)

g (λmη + (1− λ)d;η)

]ν
<

[
g(d;η)

g(mη;η)

]ν λ
.

(2.14)

If S is an open set containing mη then, there exists an open ball Bε = {d ∈ Rp+ :
‖d−mη‖ < ε}, such that Bε ⊂ S for some ε > 0. Let S? be the complement of the set
Bε and Bε be the boundary of the open ball Bε, i.e. Bε = {d ∈ Rp+ : ‖d −mη‖ = ε}.
Note that, Bε ⊂ S?.

Let ζ = supd∈S? g(d;η). If d ∈ S? \ Bε then ‖d − mη‖ > ε. Consider the point
d0 = λ0mη+(1−λ0)d where λ0 = 1− ε/‖d−mη‖. Observe that d0 ∈ Bε. As d 6= mη,
from Equation 2.14, it follows that

g(d ;η)

g (d0 ;η)
<

[
g(d;η)

g(mη;η)

]λ0

< 1.
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Hence for any d ∈ S? \ Bε, there is a point d0 ∈ Bε such that g(d ;η) < g (d0 ;η).
Consequently, we get that ζ = supd∈S? g(d;η) = supd∈Bε g(d;η). As the set Bε is

compact, there exist d† ∈ Bε such that ζ = g(d†;η). Therefore ζ < g(mη;η) as mη is
the unique maximizer of the function g(d,η) and d† 6= mη. Also,

Pν(S?) =

∫
S?
f(d ; ν,η) dµ1(d)

=

∫
S?

f(d ; ν,η)

f(λmη + (1− λ)d ; ν,η)
f(λmη + (1− λ)d ; ν,η) dµ1(d)

≤
∫
S?

[
g(d;η)

g(mη;η)

]νλ
f(λmη + (1− λ)d ; ν,η) dµ1(d)

≤
∫
S?

[
ζ

g(mη;η)

]νλ
f(λmη + (1− λ)d ; ν,η) dµ1(d)

=

[
ζ

g(mη;η)

]νλ ∫
S?

f(λmη + (1− λ)d ; ν,η) dµ1(d)

≤
[

ζ

g(mη;η)

]νλ
1

(1− λ)p
.

Hence

lim
ν→∞

Pν(S) ≥ 1− lim
ν→∞

Pν(S?) ≥ 1− lim
ν→∞

[
ζ

g(mη;η)

]νλ
1

(1− λ)p
= 1.

�

2.5 Proof of Theorem 5.

From Definition 1, we get that the joint density is proportional to

g(M,d, V ; ν,Ψ) =
etr(ν V DMTΨ)[

0F1

(
n
2 ,

D2

4

)]ν , (2.15)

Consider the unique SVD of Ψ = MΨDΨV
T
Ψ .

We have,

etr(ν V DMTΨ) = etr(ν DMTMΨDΨV
T
Ψ V )

= etr(ν V TΨ V DUMDMV
T
M DΨ)

= etr(ν V1DUMDMV
T
M DΨ) (2.16)

where the SVD of MTMΨ is written as MTMΨ = UMDMV
T
M and V1 = V TΨ V is an

orthogonal matrix. Therefore,

etr(ν V DMTΨ) = etr(ν V1D UMDMV
T
M DΨ)
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(viii)

≤ etr(ν DDMDΨ), (2.17)

where the inequality (viii) follows from Kristof (1969) (see Theorem on page 5) as
V1, UM and VM are orthogonal matrices while D, DM and DΨ are diagonal matrices
with nonnegative diagonal entries. Using sub-multiplicativity of ‖·‖2 (Conway, 1990),
we have

‖DM‖2 =
∥∥UTMMTMΨVM

∥∥
2
≤
∥∥UTM∥∥2

∥∥MT
∥∥

2
‖MΨ‖2‖VM‖2 ≤ 1.

Therefore, using Lemma 3, we can infer that all the diagonal entries of DM are less
than or equal to 1. Hence from Equation 2.17, we get

etr(ν V DMTΨ) ≤ etr(ν DDΨ). (2.18)

Therefore, it follows from Kristof (1969) that M = MΨ and V = VΨ are unique maxi-

mizers when MΨ ∈ Ṽn,p and VΨ ∈ Vp,p. Note that this does not depend on the choice
of ν.

In Equation 2.15, replacing M = MΨ and V = VΨ, we can maximize the function

etr(ν DDΨ)/
[

0F1

(
n
2 ,

D2

4

)]ν
with respect to the variable d. Note that the diagonal

elements of DΨ are between 0 and 1 as ‖Ψ‖2 < 1. Hence using part (b) of Theorem 3

we infer that d 7→ etr(ν DDΨ)/
[

0F1

(
n
2 ,

D2

4

)]ν
has a unique maximizer which does not

depend on the value of ν.

�

2.6 Proof of Theorem 6

(a) The argument is almost identical to part(a) of the proof of Theorem 4 ( See Section
2.4).

(b) For any open set A, there exist ε > 0 such that A? ⊂ A where

A? =

{
(M,d, V ) ∈ Vn,p × Rp+ × Vp,p :

√∥∥∥M − M̂∥∥∥2

2
+ ‖d− d̂‖2 +

∥∥∥V − V̂ ∥∥∥2

2
< ε

}
.

Let M̂ , V̂ and d̂ be the mode of the distribution and Ψ = MΨ DΨ VΨ be the unique
SVD of the matrix Ψ. Let η denotes the vector containing the diagonal elements of DΨ.
From part(a) of Theorem 5 we get M̂ = MΨ, V̂ = VΨ, and d̂ = mη where h(mη) = η.
Now consider

Pν(‖M −MΨ‖2 >
ε

3
)
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=

∫∫∫
{(M,d,V ):‖M−MΨ‖2>ε}

f(M,d, V ; ν,Ψ) dµ(M) dµ1(d) dµ2(V )

=

∫∫∫
{(M,d,V ):‖M−MΨ‖2>ε}

etr(νV DMTΨ)

0F1

(
n
2 ,

D2

4

)ν
Kν,DΨ

dµ(M) dµ1(d) dµ2(V ).

From Kristof (1969) (see Theorem on page 5) it follows that

etr(νV DMTΨ) = etr(νV DMTMΨDΨV
T
Ψ ) ≤ etr(νDD?

δDΨ),

where D?
δ is a diagonal matrix with all the diagonal entrees less than or equal to one

and at least one of the diagonal elements is less than or equal to (1− δ), where δ > 0.
Here δ > 0 depends on the choice of ε > 0 and Ψ. Without loss of generality, for the
rest of the proof we assume that the first diagonal element of D?

δ is 1 − δ and all the
other diagonal elements are 1. From Equation 2.22, we get

Pν(‖M −MΨ‖2 ≥
ε

3
)

≤
∫
Rp+

etr(νDD?
δDΨ)

0F1

(
n
2 ,

D2

4

)ν
Kν,DΨ

dµ1(d)

=

∫
Rp+

f(d ; ν,η)exp(−νδd1)

f(λmη + (1− λ)d ; ν,η)
f(λmη + (1− λ)d ; ν,η) dµ1(d)

(xi)

≤
∫
Rp+

[
g(d;η)exp(− δd1

λ )

g(mη;η)

]νλ
f(λmη + (1− λ)d ; ν,η) dµ1(d)

(2.19)

where (xi) follows from Equation 2.14. If we denote η? = η − ( δλ , 0, . . . , 0)T , then

g(d;η)exp(−δd1

λ
) = g(d;η?) ≤ g(m?;η?) = g(m?;η)exp(−δm

?
1

λ
),

(2.20)

where m? is the unique mode of the CCPD(· ; 1,η?) distribution (see Theorem 3) and
m?

1 is the element in the first coordinate of the vector m?. m?
1 depends on the value of

λ, δ and Ψ. Note that, we can choose ε and λ in such a way that η1−δ/λ > 0. Therefore,
it can be made sure that m?

1 > 0. From Equation 2.19 and Equation 2.20 we get that

Pν(‖M −MΨ‖2 ≥
ε

3
)

≤
∫
Rp+

[
g(m?

η;η)

g(mη;η)

]νλ
exp(−νδm?

1) f(λmη + (1− λ)d ; ν,η) dµ1(d).
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Note that g(m?
η;η) < g(mη;η) as mη is the unique maximizer of the function d →

g(d ; η). Also, if we denote rε,Ψ,λ = exp(−δm?
1) then 0 < rε,Ψ,λ < 1 as m?

1 > 0. Hence

Pν(‖M −MΨ‖2 ≥
ε

3
) ≤

∫
Rp+

rνε,Ψ,λ f(λmη + (1− λ)d ; ν,η) dµ1(d)

=
rνε,Ψ,λ

(1− λ)p
,

where the last equality is obtained using a change of variable while using the fact that
f(·) is a probability density function on Rp+. In a similar fashion we obtain

Pν(‖V − VΨ‖2 ≥
ε

3
) ≤

rν1,ε,Ψ,λ
(1− λ)p

, for some 0 < r1,ε,Ψ,λ < 1. (2.21)

Additionally, from part(b) of Theorem 4, we get that

lim
ν→∞

(Pν(‖d−mη‖ ≥
ε

3
) = 0.

Finally, we obtain

lim
ν→∞

Pν(A)

= 1− lim
ν→∞

Pν(Ac)

≥ 1− lim
ν→∞

Pν(A?c)

≥ 1− lim
ν→∞

(Pν(‖d−mη‖ ≥
ε

3
) + Pν(‖V − VΨ‖2 ≥

ε

3
) + Pν(‖M −MΨ‖2 ≥

ε

3
)

≥ 1−
(

lim
ν→∞

(
rνε,Ψ,λ

(1− λ)p
+

rν1,ε,Ψ,λ
(1− λ)p

))
= 1.

�

(c) For the JCPD distribution, the conditional distribution of M given (d, V ) is pro-
portional to

etr
(
ν (ΨV D)

T
M)
)
.

This distribution is an ML distribution with parameters MM
Ψ , DM

Ψ , VMΨ where the

unique SVD of ν (ΨV D) = MM
Ψ DM

Ψ (VMΨ )
T

.

Similarly, the conditional distribution of V given M and d is proportional to

etr
(
ν (ΨTMD)

T
V )
)
.
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Therefore, it too is anML distribution with parameters MV
Ψ , D

V
Ψ , V

V
Ψ where the unique

SVD of ν (ΨTMD) = MV
ΨD

V
Ψ(V VΨ )

T
.

Finally, the conditional distribution of d given (M,V ) is a distribution that belongs to
the CCPC class of distributions with parameters ν and ηΨ, where ηΨ = (ηΨ1, ηΨ2, · · · , ηΨp).

Here ηΨj is the j-th diagonal element of the matrix MTΨV for j = 1, . . . p.

�

2.7 Proof of Theorem 7

Proof of Theorem 7 follows immediately from Jupp and Mardia (1979) (see Proposition
and Corollary on page 601 in Jupp and Mardia (1979)). For the sake of completeness,
we include the arguments here.

Let W1, . . . ,WN be independent and identically distributed samples from an ML-
distribution on the space Vn,p. According to Proposition 2 in Jupp and Mardia (1979) ,
W has a density (i.e. absolutely continuous) with respect to Lebesgue measure on Rn×p
if N ≥ 2, p < n or N ≥ 3 , p = n ≥ 3. Consider that,

∥∥W∥∥
2
≤ 1

n

n∑
i=1

‖Wi‖2 = 1.

Hence P (W ∈ {X ∈ Rn×p : ‖X‖2 ≤ 1}) = 1. As Lebesgue measure on the set {X ∈
Rn×p : ‖X‖2 = 1} is zero, P (W ∈ {X ∈ Rn×p : ‖X‖2 = 1} = 0. As a result,

P (W ∈ {X ∈ Rn×p : ‖X‖2 < 1}) = 1.

�

2.8 Proof of Theorem 8

Let W = 1
N

∑N
i=1Wi where W1, . . . ,WN are independent and identically distributed

samples from an ML-distribution on the space Vn,p. If Zi = Wi − E(W1) then

‖Zi‖2 = ‖Wi − E(W1)‖2 ≤ ‖Wi‖2 + ‖E(W1)‖2 = 2. (2.22)

Note that for all i ∈ {1, . . . , N} and for arbitrary l ∈ Rp such that lT l = 1,

lTE
(
ZTi Zi

)
l = lTE

(
(Wi − E(W1))T (Wi − E(W1))

)
l = E

(
lTWT

i Wil)
)
− lTE(Wi)

TE(Wi)l

= E
(
lT Ip×pl)

)
− ‖E(Wi)l‖2

= 1− ‖E(Wi)l‖2 ≤ 1,
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as ‖E(Wi)l‖2 > 0. Consequently, for i = 1, . . . N
∥∥E (ZTi Zi)∥∥2

< 1, implying the fact
that ∥∥∥∥∥E(

N∑
i=1

ZTi Zi)

∥∥∥∥∥
2

≤
N∑
i=1

∥∥E(ZTi Zi)
∥∥

2
≤ N. (2.23)

Similarly, we get that for all i ∈ {1, . . . , N} and for arbitrary l? ∈ Rn such that lT? l? = 1,

lT? E
(
ZiZ

T
i

)
l? = E

(
(Wi − E(W1))(Wi − E(W1))T

)
= E

(
lTWiW

T
i l)
)
− lTE(Wi)E(Wi)

T l

(††)
≤ 1− ‖E(Wi)

T l‖2 ≤ 1.

Note that the (††) step of the inequality follows since the matrix WiW
T
i being real

symmetric and idempotent, is a orthogonal projection matrix. Therefore, for i = 1, . . . N∥∥E (ZiZTi )∥∥2
< 1, implying the fact that∥∥∥∥∥E(

N∑
i=1

ZiZ
T
i )

∥∥∥∥∥
2

≤
N∑
i=1

∥∥E(ZiZ
T
i )
∥∥

2
≤ N. (2.24)

From Equation 2.23 and 2.24 we get that

σ2
? = max

{∥∥∥∥∥E(

N∑
i=1

ZTi Zi)

∥∥∥∥∥
2

,

∥∥∥∥∥E(

N∑
i=1

ZiZ
T
i )

∥∥∥∥∥
2

}
≤ N. (2.25)

Using Equations 2.22, 2.25, For arbitrary ε > 0, we now apply the matrix Bernstein
concentration inequality (see page 928 in Mackey et al. (2014)) to obtain that,

P
(∥∥W − E(W1)

∥∥
2
≥ ε
)

= P

(∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥
2

≥ Nε

)

≤ (n+ p) exp

(
− ε2 N2

3σ2
? + 4Nε

)
,

≤ (n+ p) exp

(
− ε2 N2

3N + 4Nε

)
,

≤ (n+ p) exp

(
− ε2 N

3 + 4ε

)
. (2.26)

Using Borel-Cantelli Lemma (Billingsley, 1995), it follows that

W
a.s.−→ E(W1) as N −→∞.

Consequently

Ψ̂N =

(
ν

ν +N
Ψ +

N

ν +N
W

)
a.s.−→ E(W1) as N −→∞. (2.27)
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Let η̂ΨN be the diagonal elements of the diagonal matrix D̂ΨN , where Ψ̂N = M̂N D̂ΨN V̂N
is the unique SVD for Ψ̂N . Using Theorem 5, we get that the posterior mode for param-
eters M and V are M̂N and V̂N , respectively. For the parameter d, the posterior mode
is d̂N where h(d̂N ) = η̂ΨN and the function h(·) is as defined in Equation 2.8. Note
that the inverse function of h(·) exists as h(·) is strictly increasing in each coordinate.

As a matter of convenience, we write d̂N = h−1 (η̂ΨN ). From Lemma 1, we get

E(W1) = MDhV
T , (2.28)

where Dh is a diagonal matrix with diagonal entrees h(d). As the unique SVD ( see
Chikuse (2012)) is a continuous transformation, from Equation 2.27 and Equation 2.28,
we get

(M̂N , η̂ΨN , V̂N )
a.s.−→ (M,h(d), V ) as N −→∞. (2.29)

Also, since h−1(·) is a continuous function, from Equation 2.29 we obtain that

d̂N = h−1 (η̂ΨN )
a.s.−→ h−1 (h(d)) = d as N −→∞. (2.30)

As a result, the statistic M̂N , D̂N and V̂N are consistent estimators for the parameters
M,d and V . �

2.9 Proof of Theorem 9

Before the proof of Theorem 9, we establish Lemma 13 which is required for the proof.

Lemma 13. Let d ∼ CCPD(·; ν,η) for some ν > 0 and η = (η1, . . . , ηp) where
max

1≤j≤p
ηj < 1. Let m be the mode of the CCPD?

1(· ;d(−1), ν,η), the conditional dis-

tribution of d1 given (d2, . . . , dp). If b > 0 then the function Q(d1) = g1(d1 + b)/g1(d1)
is strictly decreasing, where g1(·) := g1(· ; d(−1), ν,η).

Proof of Lemma 13.
From Definition 5, we get that,

log(g1(d1)) = ν η1 d1 − ν log

(
0F1

(
n

2
,
D2

4

))
=⇒ ∂2

∂d2
1

(log g1(d1)) = −ν ∂
2

∂d2
1

(
log

(
0F1

(
n

2
,
D2

4

)))
< 0, (2.31)

as ν > 0 and log
(

0F1

(
n
2 ,

D2

4

))
is a strictly convex function (from Lemma 5). Therefore

∂
∂d1

(log g1(d1)) = g′1(d1)/g1(d1) is a strictly decreasing function in d1. Consequently,

∂

∂d1
(logQ(d1)) =

g′1(d1 + b)

g(d1 + b)
− g′1(d1)

g1(d1)
< 0,

as b > 0. Therefore, Q(d1) is also a strictly decreasing function in d1. �

Proof of Theorem 9.
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The proofs of part (a) and part (b) follow immediately from the proof of Theorem 3.

(c) We use the notation g1(d1) =: g1(d1; d(−1), ν,η) for brevity.

Note that the unnormalized conditional density of the random variable d1 given d(−1)

is proportional to

g1(d1) =
exp(ν η1 d1)

0F1

(
n
2 ,

D2

4

)ν .
Let f(d1 ; ν,η | (d2, . . . , dp)) be the density function for the conditional distribution of
d1 given (d2, . . . , dp). For notational convenience, for rest of this theorem we use f1(·)
as the conditional probability density function. Hence we have,

f1(d1) =
1

K1
ν,η

exp (ν η1d1)

0F1

(
n
2 ,

D2

4

)ν ,
where K1

ν,η is an appropriate normalizing constant. From Lemma 13, it follows that
f1(B + x)/f1(m+ x) is a decreasing function of x when B > m. Hence for all x > 0,

f1(B + x)

f1(m+ x)
=
g1(B + x)

g1(m+ x)
<
g1(B)

g1(m)

(viii)
< ε,

where the inequality at (viii) follows due to the assumption of the lemma. Therefore,

P (d1 > B | (d2, . . . , dp)) =

∫ ∞
B

f1(y)dy

=

∫ ∞
0

f1(B + x)

f1(m+ x)
f1(m+ x) dx

< εP (d1 > m | (d2, . . . , dp))

< ε.

(d) Proof of part(d) of the Theorem follows immediately from Lemma 10. �
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