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Abstract.

Directional data emerges in a wide array of applications, ranging from atmo-
spheric sciences to medical imaging. Modeling such data, however, poses unique
challenges by virtue of their being constrained to non-Euclidean spaces like man-
ifolds. Here, we present a unified Bayesian framework for inference on the Stiefel
manifold using the Matrix Langevin distribution. Specifically, we propose a novel
family of conjugate priors and establish a number of theoretical properties rel-
evant to statistical inference. Conjugacy enables translation of these properties
to their corresponding posteriors, which we exploit to develop the posterior in-
ference scheme. For the implementation of the posterior computation, including
the posterior sampling, we adopt a novel computational procedure for evaluating
the hypergeometric function of matrix arguments that appears as normalization
constants in the relevant densities.
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1 Introduction

Analysis of directional data is a major area of investigation in statistics. Directional
data range from unit vectors in the simplest case to sets of ordered orthonormal frames
in the general scenario. Since the associated sample space is non-Euclidean, standard
statistical methods developed for the Euclidean space may not be appropriate to an-
alyze such data. Additionally, it is often desirable to design statistical methods that
take into consideration the underlying geometric structure of the sample space. There
is a need for methodological development for a general sample space such as the Stiefel
manifold (James, 1976; Chikuse, 2012) that goes beyond those techniques designed for
simpler non-Euclidean spaces like the circle or the sphere. Such a novel methodology can
support various emerging applications, increasingly seen in the fields of biology (Downs,
1972; Mardia and Khatri, 1977), computer science (Turaga et al., 2008; Lui and Bev-
eridge, 2008) and astronomy (Mardia and Jupp, 2009; Lin et al., 2017), to mention but
a few.

One of the most widely used probability distributions on the Stiefel manifold is the
matrix Langevin distribution introduced by Downs (1972), also known as the Von-
Mises Fisher matrix distribution (Mardia and Jupp, 2009; Khatri and Mardia, 1977).
In early work, Mardia and Khatri (1977) and Jupp and Mardia (1980) investigated
properties of the matrix Langevin distribution and developed inference procedures in
the frequentist setup (Chikuse, 2012). The form of the maximum likelihood estimators
and the profile likelihood estimators for the related parameters can be found in Jupp and
Mardia (1979); Mardia and Khatri (1977); Chikuse (1991b,a, 1998). It is not patently
clear from these works whether the form of the associated asymptotic variance can
be obtained directly without using bootstrap procedures. A major obstacle facing the
development of efficient inference techniques for this family of distributions has been the
intractability of the corresponding normalizing constant, a hypergeometric function of a
matrix argument (Mardia and Jupp, 2009; Muirhead, 2009; Gross and Richards, 1989).
Inference procedures have been developed exploiting approximations that are available
when the argument to this function is either small or large.

Almost all the hypothesis testing procedures (Jupp and Mardia, 1979; Mardia and Kha-
tri, 1977; Chikuse, 1991b,a, 1998) therefore depend not only on large sample asymptotic
distributions but also on the specific cases when the concentration parameter is either
large or small (Chikuse, 2012; Mardia and Khatri, 1977; Downs, 1972). In particular, a
general one sample or two sample hypothesis testing method for the finite sample case
is yet to be developed.

For any given dataset, the stipulation of large sample is comparatively easier to verify
than checking whether the magnitude of the concentration is large. It may not be
possible to ascertain whether the concentration is large before the parameter estimation
procedure, which is then confounded by the fact that the existing parameter estimation
procedures themselves require the assumption of large concentration to work correctly.
Hence, from a practitioner’s point of view, it is often difficult to identify whether the
above-mentioned procedures are suitable for use on a particular dataset.

Although a couple of Bayesian procedures have been proposed in related fields (see ref-
erences in Lin et al. (2017)), a comprehensive Bayesian analysis is yet to be developed
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for the matrix Langevin distribution. In a recent paper, Lin et al. (2017) have developed
a Bayesian mixture model of matrix Langevin distributions for clustering on the Stiefel
manifold, where they have used a prior structure that does not have conjugacy. To ac-
complish posterior inference, Lin et al. (2017) have used a nontrivial data augmentation
strategy based on a rejection sampling technique laid out in Rao et al. (2016). It is
worthwhile to note that the specific type of data augmentation has been introduced
to tackle the intractability of the hypergeometric function of a matrix argument. It is
well known that data augmentation procedures often suffer from slow rate of conver-
gence (van Dyk and Meng, 2001; Hobert et al., 2011), particularly when combined with
an inefficient rejection sampler. Elsewhere, Hornik and Grün (2014) have proposed a
class of conjugate priors but have not presented an inference procedure for the resulting
posterior distributions.

In this article, we develop a comprehensive Bayesian framework for the matrix Langevin
distribution, starting with the construction of a flexible class of conjugate priors, and
proceeding all the way to the design of an practicable posterior computation procedure.
The difficulties arising from the intractability of the normalizing constant do not, of
course, disappear with the mere adoption of a Bayesian approach. We employ non-
trivial strategies to derive a unique posterior inference scheme in order to handle the
intractability of the normalizing constant. A key step in the proposed posterior compu-
tation is the evaluation of the hyper-geometric function of a matrix argument, that can
be computed using the algorithm developed in Koev and Edelman (2006). Although
general, this algorithm has certain limitations vis-à-vis measuring the precision of its
output. We therefore construct a reliable and computationally efficient procedure to
compute a specific case of the hypergeometric function of matrix argument, that has
theoretical precision guarantees (Section 6.2). The procedure is applicable to a broad
class of datasets including most, if not all, of the applications found in Downs et al.
(1971); Downs (1972); Jupp and Mardia (1979, 1980); Mardia and Khatri (1977); Mardia
et al. (2007); Mardia and Jupp (2009); Chikuse (1991a,b, 1998, 2003); Sei et al. (2013);
Lin et al. (2017). The theoretical framework proposed in this article is applicable to
all matrix arguments regardless of dimensionality. In the following two paragraphs, we
summarize our contributions.

We begin by adopting a suitable representation of the hypergeometric function of a
matrix argument to view it as a function of a vector argument. We explore several of
its properties that are useful for subsequent theoretical development, and also adopt an
alternative parametrization of the matrix Langevin distribution so that the modified
representation of the hypergeometric function can be used. When viewed as an expo-
nential family of distributions, the new parameters of the matrix Langevin distribution
are not the natural parameters (Casella and Berger, 2002). Thus the construction of
the conjugate prior does not directly follow from Diaconis and Ylvisaker (1979) (DY),
an issue that we elaborate on (Section 3.1). We then propose two novel and reason-
ably large classes of conjugate priors, and based on theoretical properties of the matrix
Langevin distribution and the hypergeometric function, we establish their propriety.
We study useful properties of the constructed class of distributions to demonstrate that
the hyperparameters related to the class of distributions have natural interpretations.
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Specifically, the class of constructed distributions is characterized by two hyperparam-
eters, one controls the location of the distribution while the other determines the scale.
This interpretation not only helps us understand the nature of the class of distributions
but also aids in the selection of hyperparameter settings. The constructed class of prior
distributions is flexible because one can incorporate prior knowledge via appropriate
hyperparameter selection; and at the same time, in the absence of prior knowledge,
there is a provision to specify the hyperparameters to construct a uniform prior. Since
this uniform prior is improper by nature, we extend our investigation to identify the
conditions under which the resulting posterior is a proper probability distribution.

Following this, we discuss properties of the posterior and inference. We show unimodality
of the resulting posterior distributions and derive a computationally efficient expression
for the posterior mode. We also demonstrate that the posterior mode is a consistent
estimator of the related parameters. We develop a Gibbs sampling algorithm to sample
from the resulting posterior distribution. One of the conditionals in the Gibbs sampling
algorithm is a novel class of distributions that we have introduced in this article for the
first time. We develop and make use of properties such as unimodality and log-concavity
to derive a rejection sampler to sample from this distribution. We perform multiple
simulations to showcase the generic nature of our framework and to report estimation
efficiency for the different algorithms. We end with an application demonstrating the
strength of our approach.

We should note that a significant portion of the article is devoted to establishing a
number of novel properties of the hypergeometric function of matrix arguments. These
properties play a key role in the rigorous development of the statistical procedures. These
properties, including the exponential type upper and lower bounds for the function, may
also be relevant to a broader range of scientific disciplines.

The remainder of the article is organized as follows. In Section 2, we introduce the
matrix Langevin distribution defined on the Stiefel manifold and explore some of its
important properties. Section 3 begins with a discussion of the inapplicability of DY’s
theorem, following which we present the construction of the conjugate prior for the
parameters of the matrix Langevin distribution. In particular, we establish propriety
of a class of posterior and prior distributions by proving the finiteness of the integral
of specific density kernels. In Section 4 and 5, we lay out the hyperparameter selection
procedure and derive properties of the posterior. In Section 6 we develop the posterior
inference scheme. In Sections 7 and 8, we validate the robustness of our framework
with experiments using simulated datasets and demonstrate the applicability of the
framework using a real dataset, respectively. Finally, in Section 9, we discuss other
developments and a few possible directions for future research. Proofs of all theorems
and properties of the hypergeometric function of matrix arguments are deferred to the
supplementary material.

Notational Convention

Rp = The p-dimensional Euclidean space.
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Rp+ = {(x1, . . . , xp) ∈ Rp : 0 < xi for i = 1, . . . p}.

Sp =
{

(d1, . . . , dp) ∈ Rp+ : 0 < dp < · · · < d1 <∞
}
.

Rn×p = Space of all n× p real-valued matrices.

Ip = p× p identity matrix.

Vn,p = {X ∈ Rn×p : XTX = Ip}, Stiefel Manifold of p-frames in Rn.

Ṽn,p = {X ∈ Vn,p : X1,j ≥ 0 ∀ j = 1, 2, · · · , p}.

Vp,p = O(p) = Space of Orthogonal matrices of dimension p× p.

µ = Normalized Haar measure on Vn,p.

µ2 = Normalized Haar measure on Vp,p.

µ1 = Lebesgue measure on Rp+.

f(·; ·) = Probability density function.

g(·; ·) = Unnormalized version of the probability density function.

tr(A) = Trace of a square matrix A.

etr(A) = Exponential of tr(A).

E(X) = Expectation of the random variable X.

I(·) = Indicator function.

‖·‖2 = Matrix operator norm.

We use d and D interchangeably. D is the diagonal matrix with diagonal d. We
use matrix notation D in the place of d wherever needed, and vector d otherwise.

2 The matrix Langevin distribution on the Stiefel
manifold

The Stiefel manifold, Vn,p, is the space of all p ordered orthonormal vectors (also known
as p-frames) in Rn (Mardia and Jupp, 2009; Absil et al., 2009; Chikuse, 2012; Edelman
et al., 1998; Downs, 1972) and is defined as

Vn,p = {X ∈ Rn×p : XTX = Ip, p ≤ n},

where Rn×p is the space of all n×p, p ≤ n real-valued matrices, and Ip is the p×p identity
matrix. Vn,p is a compact Riemannian manifold of dimension np− p(p+ 1)/2 (Chikuse,
2012). A topology on Vn,p can be induced from the topology on Rn×p as Vn,p is a
sub-manifold of Rn×p (Absil et al., 2009; Edelman et al., 1998). For p = n, Vn,p
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becomes identical to O(n), the orthogonal group consisting of all orthogonal n×n real-
valued matrices, with the group operation being matrix multiplication. Being a compact
unimodular group, O(n) has a unique Haar measure that corresponds to a uniform
probability measure on O(n) (Chikuse, 2012). Also, through obvious mappings, the
Haar measure on O(n) induces a normalized Haar measure on the compact manifolds
Vn,p. The normalized Haar measures on O(n) and Vn,p are invariant under orthogonal
transformations (Chikuse, 2012). Detailed construction of the Haar measure on Vn,p and
its properties are described in Muirhead (2009); Chikuse (2012). Notation wise, we will
use µ and µ2 to denote the normalized Haar measures on Vn,p and Vp,p, respectively.

The matrix Langevin distribution (ML-distribution) is a widely used probability distri-
bution on Vn,p (Mardia and Jupp, 2009; Chikuse, 2012; Lin et al., 2017). This distribu-
tion is also known as Von Mises-Fisher matrix distribution (Khatri and Mardia, 1977).
As defined in Chikuse (2012), the probability density function of the matrix Langevin
distribution (with respect to the normalized Haar measure µ on Vn,p) parametrized by
F ∈ Rn×p, is

fML(X ; F ) =
etr(FTX)

0F1

(
n
2 ,

FTF
4

) , (2.1)

where etr(·) = exp(trace(·)) and the normalizing constant, 0F1(n/2, FTF/4), is the
hypergeometric function of order n/2 with the matrix argument FTF/4 (Herz, 1955;
James, 1964; Muirhead, 1975; Gupta and Richards, 1985; Gross and Richards, 1987,
1989; Butler and Wood, 2003; Koev and Edelman, 2006; Chikuse, 2012). In this article,
we consider a different parametrization of the parameter matrix F in terms of its singular
value decomposition (SVD). In particular, we subscribe to the specific form of unique
SVD defined in Chikuse (2012) (Equation 1.5.8 in Chikuse (2012)),

F = MDV T

where M ∈ Ṽn,p, V ∈ Vp,p, and D is the diagonal matrix with diagonal entries d =

(d1, d2, · · · , dp) ∈ Sp. Here Ṽn,p = {X ∈ Vn,p : X1,j ≥ 0 ∀ j = 1, 2, · · · , p} and
Sp =

{
(d1, . . . , dp) ∈ Rp+ : 0 < dp < · · · < d1 <∞

}
. Henceforth, we shall use the phrase

“unique SVD” to refer to this specific form of SVD. Khatri and Mardia (1977) (page
96) shows that the function 0F1(n/2, FTF/4) depends only on the eigenvalues of the
matrix FTF , i.e.,

0F1

(
n

2
,
FTF

4

)
= 0F1

(
n

2
,
D2

4

)
.

As a result, we reparametrize the ML density as

fML(X; (M,d, V )) =
etr(V DMTX)

0F1(n2 ,
D2

4 )
I(M ∈ Ṽn,p,d ∈ Sp, V ∈ Vp,p).

This parametrization ensures identifiability of all the parameters M,d and V . With
regard to interpretation, the mode of the distribution is MV T and d represents the
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concentration parameter (Chikuse, 2003). For notational convenience we omit the indi-
cator function and write the ML density as

fML(X; (M,d, V )) =
etr(V DMTX)

0F1(n2 ,
D2

4 )
. (2.2)

where it is understood that M ∈ Ṽn,p,d ∈ Sp, V ∈ Vp,p. The parametrization with
M,d and V enables us to represent the intractable hypergeometric function of a matrix
argument as a function of vector d, the diagonal entries of D, paving a path for an
efficient posterior inference procedure.

We note in passing that an alternative parametrization through polar decomposition
with F = MK (Mardia and Jupp, 2009) may pose computational challenges since the
elliptical part K lies on a positive semi-definite cone and inference on positive semi-
definite cone is not straightforward (Hill and Waters, 1987; Bhatia, 2009; Schwartzman,
2006).

3 Conjugate Prior for the ML-Distribution

In the context of the exponential family of distributions, Diaconis and Ylvisaker (1979)
(DY) provides a standard procedure to obtain a class of conjugate priors when the
distribution is represented through its natural parametrization (Casella and Berger,
2002). Unfortunately, for the ML distribution, the DY theorem can not be applied
directly, as demonstrated next. We therefore develop, in Section 3.2, two novel classes
of priors and present a detailed investigation of their properties.

3.1 Inapplicability of DY theorem for construction of priors for the
ML-distribution

In order to present the arguments in this section, we introduce notations Pθ, xA , µ, and
µA, that are directly drawn from Diaconis and Ylvisaker (1979). In brief, Pθ denotes
the probability measure that is absolutely continuous with respect to an appropriate
σ-finite measure µ on a convex subset of the Euclidean space, Rd. In the case of theML
distribution, µ is the Haar measure defined on the Stiefel manifold. The symbol X de-
notes the interior of the support of the measure µ. As shown in Hornik and Grün (2013)
X := {X : ‖X‖2 < 1} for the case of the ML distribution. According to the assump-
tions of DY

∫
X dPθ(X) = 1 (see paragraph after equation (2.1), page 271 in Diaconis

and Ylvisaker (1979)). In the current context, Pθ is the probability measure associated
with the ML distribution. Therefore,∫

X
dPθ(X) =

∫
X
fML (X)µ(dX) = 0,

which violates the required assumption mentioned above. Secondly, in the proof of The-
orem 1 in Diaconis and Ylvisaker (1979) DY construct a probability measure restricted
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to a measurable set A as follows.

µA(B) =
µ(A ∩B)

µ(A)
, where µ(A) > 0.

Considering the notation x
A

=
∫
Z µA(dZ) for any measurable set A, the proof of

Theorem 1 in Diaconis and Ylvisaker (1979) relies on the existence of a sequence of
measurable sets {Aj}j≥1 and corresponding points

{
xAj

}
j≥1

that are required to be

dense in supp(µ), the support of the measure µ (see line after Equation (2.4) on page
272 in Diaconis and Ylvisaker (1979)). It can be shown that a similar construction in the
case of the ML distribution would lead to a x

A
where x

A
does not belong to supp(µ),

the Stiefel manifold. Therefore, the mentioned set of points
{
xAj

}
j≥1

that are dense in

supp(µ) does not exist for the case of the ML distribution.

Together, the two observations make it evident that Theorem 1 in (Diaconis and Ylvisaker,
1979) is not applicable for constructing conjugate priors for the ML distribution. We
would like to point out that the construction of the class of priors in Hornik and Grün
(2013) is based on a direct application of DY, which is not entirely applicable for the
ML-distribution. On the other hand, the idea of constructing a conjugate prior on the
natural parameter F followed by a transformation, involves calculations of a compli-
cated Jacobian term (Hornik and Grün, 2013). Hence the class of priors obtained via
this transformation lacks interpretation of the corresponding hyperparameters.

3.2 Two novel classes of Conjugate Priors

Let µ denote the normalized Haar measure on Vn,p, µ2 denote the normalized Haar
measure on Vp,p, and µ1 denote the Lebesgue measure on Rp+. For the parameters of
the ML-distribution, we define the prior density with respect to the product measure
µ× µ1 × µ2 on the space Vn,p × Rp+ × Vp,p.

Definition 1. The probability density function of the joint conjugate prior on the pa-
rameters M,d and V for the ML distribution is proportional to

g(M,d, V ; ν,Ψ) =
etr
(
ν V DMTΨ

)[
0F1(n2 ,

D2

4 )
]ν , (3.1)

as long as g(M,d, V ; ν,Ψ) is integrable. Here ν > 0 and Ψ ∈ Rn×p.

Henceforth, we refer to the joint distribution corresponding to the probability density
function in Definition 1 as the joint conjugate prior distribution (JCPD). We use the
terminology, joint conjugate prior class (JCPC ) when we use

(M,d, V ) ∼ JCPD (· ; ν,Ψ) , (3.2)

as a prior distribution for the parameters of theML-distribution. Although, the JCPC
has some desirable properties (see Theorem 5 and Section 5.2), it may not be adequately
flexible to incorporate prior knowledge about the parameters if the strength of prior
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belief is not uniform across the different parameters. For example, if a practitioner has
strong prior belief for the values of M but is not very certain about parameters d and
V , then JCPC may not be the optimal choice. Also, the class of joint prior defined in
Definition 1 corresponds to a dependent prior structure for the parameters M , d and V .
However, it is customary to use independent prior structure for parameters of curved
exponential families (Casella and Berger, 2002; Gelman et al., 2014; Khare et al., 2017).
Consequently, we also develop a class of conditional conjugate prior where we assume
independent priors on the parameters M , d and V . This class of priors are flexible
enough to incorporate prior knowledge about the parameters even when the strength
of prior belief differs across different parameters.

It is easy to see that the conditional conjugate priors for both M and V are ML-
distributions whereas the following definition is used to construct the conditional con-
jugate prior for d.

Definition 2. The probability density function of the conditional conjugate prior for d
with respect to the Lebesgue measure on Rp+ is proportional to

g(d ; ν,η, n) =
exp(ν ηTd)[

0F1

(
n
2 ,

D2

4

)]ν , (3.3)

as long as g(d ; ν,η, n) is integrable. Here ν > 0, η ∈ Rp and n ≥ p.

Note that g(d ; ν,η) is a function of n as well. However we do not vary n anywhere in
our construction, and thus we omit reference to n in the notation for g(d ; ν,η).

Henceforth we use the terminology, conditional conjugate prior distribution for d (CCPD)
to refer to the probability distribution corresponding to the probability density function
in Definition 2. We use the phrase conditional conjugate prior class (CCPC), to refer to
the following structure of prior distributions

M ∼ ML
(
·; ξM , ξD, ξV

)
,

d ∼ CCPD (·; ν,η) ,

V ∼ ML
(
·; γM , γD, γV

)
, (3.4)

where M,d, V are assumed to be independent apriori. As per Definitions 1 and 2, the
integrability of the kernels mentioned in (3) and (5) are critical to prove the propriety
of the proposed class of priors. In light of this, Theorem 1 and Theorem 2 provide con-
ditions on ν,Ψ and η for g(M,d, V ; ν,Ψ) and g(d ; ν,η) to be integrable, respectively.

Theorem 1. Let M ∈ Vn,p, V ∈ Vp,p and d ∈ Rp+. Let Ψ ∈ Rn×p with n ≥ p, then for
any ν > 0,

(a) If ‖Ψ‖2 < 1, then∫
Vn,p

∫
Vp,p

∫
Rp+
g(M,d, V ; ν,Ψ) dµ1(d) dµ2(V ) dµ(M) <∞,
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(b) If ‖Ψ‖2 > 1, then∫
Vn,p

∫
Vp,p

∫
Rp+
g(M,d, V ; ν,Ψ) dµ1(d) dµ2(V ) dµ(M) =∞,

where g(M,d, V ; ν,Ψ) is defined in Definition 1.

The conditions mentioned in this theorem do not span all cases; we have not addressed
the case where ‖Ψ‖2 = 1. As far as statistical inference for practical applications is
concerned, we may not have to deal with the case where ‖Ψ‖2 = 1 as the hyper-
parameter selection procedure (see Section 4) and posterior inference (even in the case
of uniform improper prior, see Section 5.3 ) only involve cases with ‖Ψ‖2 < 1. We
therefore postpone further investigation into this case as a future research topic of
theoretical interest.

Theorem 2. Let d ∈ Rp+, η = (η1, . . . , ηp) ∈ Rp and n be any integer with n ≥ p. Then
for any ν > 0, ∫

Rp+
g(d; ν,η, n) dµ1(d) <∞,

if and only if max
1≤j≤p

ηj < 1, where g(d; ν,η, n) is as defined in Definition 2.

We can alternatively parametrize the CCPD class of densities by the following specifi-
cation of the probability density function,

f(d ; ν,η) ∝
exp

(∑p
j=1 ηjdj

)
[
0F1(n2 ,

D2

4 )
]ν ,

where max1≤j≤p ηj < ν. In this parametrization, if we consider the parameter choices,
ν = 0 and β := −η, then the resulting probability distribution corresponds to the
Exponential distribution with rate parameter β.

It is important to explore the properties for the CCPD and JCPD class of distributions
in order to use them in an effective manner. Intuitive interpretations of the parameters
ν,η,Ψ are desirable, for example, for hyper-parameter selection. Due to conjugacy,
Bayesian analysis will lead to posterior distributions involving JCPD and CCPD , and
therefore, it is necessary to identify features that are required to develop practicable
computation schemes for posterior inference. The following four theorems establish some
crucial properties of the CCPD and JCPD class of distributions.

Theorem 3. Let d ∼ CCPD(·; ν,η) for ν > 0 and max1≤j≤p ηj < 1 where η =
(η1, . . . , ηp). Then

(a) The distribution of d is log-concave.
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(b) The distribution of d has a unique mode if ηj > 0 for all j = 1, 2, · · · , p. The mode
of the distribution is given by mη = h−1(η), where the function h(d) is defined as

follows, h(d) := (h1(d), h2(d), · · · , hp(d))
T

with

hj(d) :=

(
∂

∂dj
0F1

(
n

2
,
D2

4

))
/0F1

(
n

2
,
D2

4

)
.

Notably, the mode of the distribution is characterized by the parameter η and does
not depend on the parameter ν. The proof of the theorem relies on a few nontrivial

properties of 0F1

(
n
2 ,

D2

4

)
, i.e., the hyper-geometric function of a matrix argument,

that we have established in the supplementary material Section 1. It is easy to see
that the function h−1 is well defined as the function h is strictly increasing in all its
coordinates. Even though subsequent theoretical developments are based on the formal
definition and theoretical properties of h−1 and h functions, numerical computation of
the functions are tricky. The evaluation of the functions depend on reliable computation

of 0F1

(
n
2 ,

D2

4

)
and all its partial derivatives. In Section 6.2, we provide a reliable and

theoretically sound computation scheme for these functions.

On a related note, it is well known that log-concave densities correspond to unimodal
distributions if the sample space is the entire Euclidean space (Ibragimov, 1956; Dhar-
madhikari and Joag-Dev, 1988; Doss and Wellner, 2016). However, the mode of the
distribution may not necessarily be at a single point. Part(b) of Theorem 3 asserts that
the CCPD has a single point mode. Moreover, the sample space of CCPD is d ∈ Rp+,
which merely encompasses the positive quadrant and not the whole of the p dimensional
Euclidean space. Hence general theories developed for Rp (or R) do not apply. In fact,
when ηj ≤ 0, the density defined in Definition 2 is decreasing as a function of dj on the
set R+ and the mode does not exist as R+ does not contain the point 0. In all, part(b)
of Theorem 3 does not immediately follow from part(a) and requires additional effort
to demonstrate.

In order to introduce the notion of “concentration” for the CCPD class of distributions
we require the concept of a level set. Let the unnormalized probability density function
for the CCPD class of distributions, g(x; ν,η) (See Definition 5), achieve its maximum
value at mη ( part(b) of Theorem 3 ensures that mη is a unique point) and let

Sl =
{
x ∈ Rp+ : g(x; 1,η)/g(mη; 1,η) > l

}
(3.5)

be the level set of level l containing the mode mη where 0 ≤ l < 1. To define the level
set we could have used g(x; ν0,η) for any fixed value of ν0 > 0 instead of g(x; 1,η).
However, without loss of generality, we choose ν0 = 1.

Let Pν(·;η) denote the probability distribution function corresponding to the CCPD(·; ν,η)
distribution. According to Theorem3, for a fixed η ∈ Rp, all distributions in the class
{Pν(·;η) : ν > 0} have the mode located at the point mη.
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Theorem 4. Let dν ∼ CCPD(·; ν,η) for a fixed η ∈ Rp with mη being the mode of
the distribution. If Pν(·;η) denotes the probability distribution function corresponding
to dν , then

(a) Pν(Sl;η) is an increasing function of ν for any level set Sl with l ∈ (0, 1),

(b) For any open set S ⊂ Rp+ containing mη, Pν(d ∈ S;η) goes to 1 as ν →∞.

The major impediment to proving Theorem 4 arises from the intractability of the nor-
malizing constant of the CCPD(·; ν,η) distribution. Although involved, the proof es-

sentially uses the log convexity of 0F1

(
n
2 ,

D2

4

)
to get around this intractability.

From Theorem 4, it is clear that the parameter ν relates to the concentration of the
probability around the mode of the distribution. Larger values of ν imply larger con-
centration of probability near the mode of the distribution.

Definition 3. In the context of the probability distribution CCPD (· ; η, ν), the param-
eters η and ν are labeled as the “modal parameter” and the “concentration parameter”,
respectively.

In Figure 1, we display three contour plots of the CCPD(· ; ν,η) distribution with η =
(0.85, 0.88). Note that the corresponding mode of the distribution is h−1(0.85, 0.88) =
(7, 5) for all three plots. We can observe the implication of part (b) of Theorem 3 as
the “center” of the distributions are the same. Contrastingly, it can be observed that
the “spread” of the distributions decrease as the value of the parameter ν increases, as
implied by Theorem 4.

Theorem 5. Let (M,d, V ) ∼ JCPD(·; ν,Ψ) for some ν > 0 and ‖Ψ‖2 < 1. If Ψ =
MΨDΨV

T
Ψ is the unique SVD of Ψ with dΨ being the diagonal elements of DΨ, then

the unique mode of the distribution is given by (MΨ,h
−1(dΨ), VΨ) where the function

d→ h(d) is as defined in Theorem 3.

Note that the mode of the distribution is characterized by the parameter Ψ and does
not depend on the parameter ν. The proof of the theorem depends crucially on a strong
result, a type of rearrangement inequality proved in Kristof (1969).

For the concentration characterization of JCPD, we define the level sets in the context
of the JCPD distribution. Let the unnormalized probability density function for the
JCPD class of distributions, g(M,d, V ; ν,Ψ), achieve its maximum value at the point

(M̂, d̂, V̂ ) ( see Theorem 5 ) and

Al =
{

(M,d, V ) ∈ Vn,p × Rp+ × Vp,p : g(M,d, V ; 1,Ψ)/g(M̂, d̂, V̂ ; 1,Ψ) > l
}

be the level set of level l from some l ∈ (0, 1). The following theorem characterizes the
concentration property of the JCPD distribution.
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Theorem 6. Let (M,d, V ) ∼ JCPD(·; ν,Ψ), where ‖Ψ‖2 < 1. If Pν(· ; Ψ) denotes the
probability distribution function corresponding to the distribution JCPD(·; ν,Ψ), then

(a) Pν(Al ; Ψ) is a strictly increasing function of ν for any level set Al with l ∈ (0, 1).

(b) For any open set A ⊂ Vn,p × Rp+ × Vp,p containing the mode of the distribution,
Pν(A ; Ψ) tends to 1 as ν →∞.

(c) The conditional distribution of M given (d, V ) and V given (M,d) areML distribu-
tions whereas the conditional distribution of d given (M,V ) is a CCPD distribution.

Parts (a) and (b) of the above theorem characterize the concentration whereas part(c)
relates CCPD to the JCPD class of distributions. Part(c) also motivates the develop-
ment of a sampling procedure for the JCPD distribution. The proof of part(a) Theo-
rem 6 is similar to that of the proof of Theorem 4. The proof for part(b) of Theorem 6
is more involved and depends on several key results, including the rearrangement in-

equality by (Kristof, 1969), the log convexity of 0F1

(
n
2 ,

D2

4

)
, and the the fact that

g(h−1(η) ; ν,η)), the value of the unnormalized CCPD density at the mode, is a
strictly increasing function of the parameter η.

Note that unlike in the case of the CCPD distribution, we do not attempt to establish
the log concavity of JCPD, the reason being that the underlying probability space
Vn,p × Rp+ × Vp,p is non-convex. Nevertheless, it is evident that beyond a certain dis-
tance (based on a suitable metric on Vn,p × Rp+ × Vp,p) the value of the density drops
monotonically as one moves farther away from the center. Based on the characteristics
of the parameters ν and Ψ of the JCPD class of distributions, we have the following
definitions.

Definition 4. The parameters Ψ and ν in the distribution JCPD are labeled the
“modal” parameter and the “concentration” parameter, respectively.

Interestingly, both distributions CCPD and JCPD are parameterized by two param-
eters, one controlling the center and the other characterizing the probability concen-
tration around that center. One may therefore visualize the distributions in a fashion
similar to that of the multivariate Normal distribution controlled by the mean and
variance parameters. This intuitive understanding can help practitioners select hyper-
parameter values when conducting a Bayesian analysis with the CCPD and JCPD
distributions.

Thus far we have established properties of CCPD and JCPD that relate to basic
features of these distributions. Additional properties, which are required for a MCMC
sampling scheme, are developed in Section 5.1.
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(a) ν = 10 (b) ν = 20 (c) ν = 35

Figure 1: Density plots of CCPD(· ; ν,η) for different values of ν where η = (0.89, 0.85).
Mode of the distributions are located at the point (7, 5).

4 Hyperparameter Selection Procedure

4.1 Informative Prior

We now present procedures for the selection of hyperparameter values aimed at incor-
porating prior beliefs about the parameters (M,d, V ). Consider the scenario where a
practitioner has the prior belief that the values for the parameters M,d, V are close
to Mbelief ,dbelief , Vbelief , respectively. A standard approach to incorporating this prior
knowledge is to select the hyper-parameter values in such a manner that the mode of the
corresponding prior distribution becomes Mbelief ,dbelief , Vbelief . In order to achieve this
in the current context, we first compute η̃ = h(dbelief ) where h(·) is defined in Equa-
tion 2.8 in the supplementary material. Note that we always get a feasible η̃ for every
real dbelief ∈ Sp.

In the case of the CCPC class of priors, we choose η = η̃, ξM = Mbelief , γM = Vbelief ,
ξV = Ip, γ

V = Ip in the Equation 3.4. Theorem 3 guarantees that the above hyper-
parameter specifications yields a prior distribution that has mode at (Mbelief ,dbelief , Vbelief ).
From Theorem 3, we also see that larger values of the hyper-parameter ν lead to larger
concentration of the prior probability around the mode. The hyper-parameters ξD and
γD play a similar role for the ML distribution. Hence the hyper parameters ν, ξD and
γD are chosen to have larger values in case the practitioner has a higher confidence in
the prior belief.

In the case of the JCPC class of priors, we apply Theorem 5 to construct JCPD
(see Equation 3.2) with mode at Mbelief ,dbelief , Vbelief . In particular, we set Ψ =
MbeliefDη̃(Vbelief )T where Dη̃ is the diagonal matrix with diagonal elements η̃ =
h(dbelief ). Using the concentration characterization described in Theorem 5, the prac-
titioner may choose the value of the hyper-parameter ν appropriately, where a larger
value for the parameter ν implies greater confidence in the prior belief.
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It is noteworthy that for both the JCPC and CCPC class of priors, there is an intimate
connection between the sample size and the interpretation of the hyper-parameter ν.
As a heuristic one may envisage ν as incorporating “information” equivalent to ν many
historic observations of the model.

4.2 Uniform improper prior

In the case where the practitioner does not have a prior belief about the parameter
values, an automatic procedure for hyper-parameter selection can be helpful. In this
and the next subsection, we discuss two automatic procedures to select the values of
the hyper-parameters. In the absence of prior information, usage of uniform prior is
common in the literature. In the context of the current model, for the JCPC and
CCPC class of distributions, the prior for the parameters (M,d, V ), is called a uniform
prior if

g(M,d, V ; ν,Ψ) ∝ 1 and

fML(M ; ξM , ξD, ξV )g(d; ν,η)fML(V ; γM , γD, γV ) ∝ 1.

Both classes of priors JCPC and CCPC are flexible enough to accommodate a uniform
prior. For JCPC , this can be achieved by setting ν = 0 in Equation 3.2. Correspondingly,
for the CCPC class, the uniform prior can be constructed by choosing ν = 0, ξD = 0 and
γD = 0 in Equation 3.4. Note that the resulting uniform prior is improper in nature as
the above choices of hyper parameters do not lead to a proper probability distribution.
Hence, it is necessary to check the propriety of the resulting posterior (see Section 5.3
for more details).

4.3 Empirical prior

Another widely used automatic method is to use empirical information contained in
the data to select appropriate values of the hyper-parameters. Let W1,W2, . . .WN be
independent and identically distributed samples drawn fromML(· ;M,d, V ). Consider

the sample mean, W = (
∑N
i=1Wi)/N . Let the unique SVD of the sample mean be

W = MWDWVW . Construct candidate values Mbelief = MW , Vbelief = VW and η̃ as
the diagonal elements of DW . One can set Ψ = W as the hyper-parameter in the case
of the JCPC prior. In the case of the CCPC class of priors, one can choose η = η̃, and
for the hyper-parameters related to M and V , apply the same procedure as discussed
previously in this section. For both classes of priors, a value for ν that is less than or
equal to 10 percent of the sample size N , is recommended.

Example 1. Let the practitioner have the following prior belief for the values of the
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parameters M,d, V ,

Mbelief =

1 0
0 1
0 0

 , dbelief =

[
7
5

]
, Vbelief =

[
1 0
0 1

]
.

As described previously in this section, we can compute η̃ = h(7, 5) = (0.89, 0.85).
Hence, for the JCPC class of priors, we choose the hyper-parameter values

Ψ̃ =

1 0
0 1
0 0

[0.89 0
0 0.85

] [
1 0
0 1

]T
=

0.89 0
0 0.85
0 0

 ,
to ensure that JCPD(· ; Ψ̃, ν) has mode at Mbelief ,dbelief , Vbelief for all values of ν > 0.
The value of the hyper-parameter ν should be chosen according to the strength of the
prior belief. In Figure 1, we display the resulting conditional distribution for d given
M,V . Figure 1 shows that the “center” of the distribution is located at (7, 5). Figure 1
also displays the “spread” of the distribution around the mode when using ν = 10, ν = 20
and ν = 35.

5 Properties of Posterior

The derivation of the posterior distributions for the JCPC and CCPC class of priors
is straightforward since they were built with conjugacy in mind, which then entails
that the posterior distributions lie in the corresponding classes. However, inference for
the resulting posterior distributions is challenging because not only are the normalizing
constants intractable for both the JCPD and CCPD distributions, but also, the un-

normalized version of the corresponding density functions involve 0F1

(
n
2 ,

D2

4

)
. We first

focus our attention on developing properties of the posterior distribution when involving
JCPC and CCPC priors. In particular, we derive explicit forms of the posterior con-
ditionals under different prior settings, the linearity of the posterior mode parameters
and the strong consistency of the posterior mode.

5.1 Posterior conditionals

Let W1,W2, . . .WN be independent and identically distributed samples drawn from
ML(· ;M,d, V ). Let W =

∑N
i=1Wi/N . The likelihood of the data is

N∏
i=1

etr(V DMTWi)

0F1(n2 ,
D2

4 )
. (5.1)

First, let us assume a JCPD prior with parameters ν and Ψ. Theorem 5 not only
implies that the posterior has a unique mode, but also provides an expression for the
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mode. Furthermore, we see that the corresponding posterior distribution is JCPD with

concentration (ν +N) and posterior modal parameter Ψ̂N =
(

ν
ν+NΨ + N

ν+NW
)
. Let

η̂ΨN be the diagonal elements of the diagonal matrix D̂ΨN , where Ψ̂N = M̂N D̂ΨN V̂N is

the unique SVD for Ψ̂N . From Theorem 6, it follows that the full posterior conditionals
for the parameters M,d, V are ML, CCPD and ML distributions, respectively.

In Section 6 we shall use these results to construct a Gibbs algorithm. A part of the
Gibbs scheme would require sampling from the relevant CCPD distribution, which we
propose to implement by simulating from the full conditional distribution of each of the
components of d given the rest, when d ∼ CCPD(· ; ν,η). To refer to this conditional
distribution in subsequent text, we have the following definition.

Definition 5. Let ν > 0, $ ∈ Rp−1
+ and η ∈ Rp+ with max1≤j≤p ηj < 1. A random vari-

able is defined to be distributed as CCPD?
j (· ;$, ν,η), if the corresponding probability

density function (with respect to the Lebesgue measure on R) is proportional to

gj(x; $, ν,η) =
exp(ν ηjx)[

0F1

(
n
2 ,

(∆(x))2

4

)]ν ,
where ∆(x) is a diagonal matrix with diagonal elements (x,$) ∈ Rp+.

Let d = (d1, . . . , dp) be a random vector with d ∼ CCPD (· ; ν,η) for some max1≤j≤p ηj <
1, ν > 0. Let d(−j) be the vector containing all but the j-th component of the vector d.
Then the conditional distribution of dj given d(−j) is CCPD?

j (· ;d(−j), ν,η), i.e.,

dj | d(−j) ∼ CCPD?
j (· ;d(−j), ν,η).

Now, since the conditional posterior of d was shown to be CCPD , the conditional
posterior distribution of dj | d(−j),M, V, {Wi}Ni=1 follows a CCPD?

j distribution.

In the case of a Bayesian analysis with a CCPC prior, Equation 3.4 and 5.1 determine
the corresponding posterior distribution to be proportional to

etr
((
V DMT

)
N W +G0M +H0 V

)
0F1(n2 ;D2/4)ν+N

exp(ν ηTd), (5.2)

where G0 = ξV ξD (ξM )
T

and H0 = γV γD (γM )
T

. The conditional probability density

for the posterior distribution of d given M , V , {Wi}Ni=1 is proportional to

exp

(
(ν +N)

(
ν

ν+N η + N
ν+N ηW

)T
d

)
[
0F1

(
n
2 ,

D2

4

)]ν+N
, (5.3)
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where ηW = (Y1,1, · · · , Yp,p) with Y = MTWV . It follows that the conditional posterior
distribution of d given M,V, {Wi}Ni=1 is CCPD(· ; ν̂N , η̂N ) where ν̂N = ν + N and

η̂N =
(

ν
ν+N η + N

ν+N ηW

)
. The conditional posterior distributions M | d, V, {Wi}Ni=1

and V | d,M, {Wi}Ni=1 are ML distributions.

5.2 Linearity of posterior modal parameter

We observe that the posterior modal parameter is a convex combination of the prior
modal parameter and the sample mean when applying the JCPC class of priors. In
particular, from Section 5.1 we get

Ψ̂N =

(
ν

ν +N
Ψ +

N

ν +N
W

)
.

In a similar fashion, we observe from Equation 5.3 that the modal parameter for the
conditional posterior distribution of d given M,V, {Wi}Ni=1 is a convex combination of
the prior modal parameter and an appropriate statistic of the sample mean. We should
point out here that the posterior linearity of the natural parameter of an exponential
family distribution directly follows from Diaconis and Ylvisaker (1979). However, in our
parametrization, the ML density is a curved exponential family of its parameters and
posterior linearity appears to hold for the “modal parameter”.

5.3 Posterior propriety when using uniform improper prior

In the case where a uniform improper prior is used, the corresponding posterior is
proportional to

etr
(
N VDMTW

)[
0F1(n2 ,

D2

4 )
]N , (5.4)

where W = 1
N

∑N
i=1Wi (see Equation 5.1). It follows from Theorem 1 that the function

in Equation 5.4 leads to a proper distribution, JCPD(· ; N,W ), if
∥∥W∥∥

2
< 1. The

following theorem outlines the conditions under which
∥∥W∥∥

2
< 1.

Theorem 7. Let W1, . . . ,WN be independent and identically distributed samples from
an ML-distribution on the space Vn,p. If

(a) N ≥ 2, p < n

(b) N ≥ 3 , p = n ≥ 3,

then
∥∥W∥∥

2
< 1 with probability 1, where W = 1

N

∑N
i=1Wi.
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5.4 Strong consistency of the posterior mode

In the case where we use a JCPD(·; ν,Ψ) prior for Bayesian analysis of the data {Wi}Ni=1,
the corresponding posterior distribution is a JCPD with concentration ν +N and poste-

rior modal parameter Ψ̂N =
(

ν
ν+NΨ + N

ν+NW
)

(See Section 5.1). Let Ψ̂N = MΨDΨV
T
Ψ

be the unique SVD of Ψ̂N with dΨ being the diagonal elements of DΨ. Then from The-
orem 5, the unique mode of the distribution is given by (M̂N , d̂N , V̂N ) where

M̂N = MΨ, d̂N = h−1(dΨ) and V̂N = VΨ.

The form of the function h(d) is provided in Theorem 3. The nontrivial aspect of
finding the posterior mode is the computation of the function h−1(dΨ). In our ap-
plications, we use a Newton-Raphson procedure to obtain h−1(dΨ) numerically. We

use large and small argument approximations for 0F1

(
n
2 ,

D2

4

)
( See Jupp and Mardia

(1979)) to initialize the Newton-Raphson algorithm for faster convergence. Note that
the success of the Newton-Raphson procedure here depends on the efficient computa-

tion of 0F1

(
n
2 ,

D2

4

)
and its partial derivatives. In Section 6.2, we provide a method to

compute these functions reliably.

The following theorem demonstrates that the mode of the posterior distribution is a
strongly consistent estimator for the parameters M,d, V .

Theorem 8. Let W1, . . . ,WN be independent and identically distributed samples from
ML(· ; M,d, V ). Let M̂N , d̂N and V̂N be the posterior mode when a JCPC prior is
used. The statistic M̂N , D̂N and V̂N are consistent estimators for the parameters M,D
and V . Moreover

(M̂N , d̂N , V̂N )
a.s.−→ (M,d, V ) as N −→∞,

where a.s. stands for almost sure convergence.

6 MCMC sampling from the Posterior

Apart from finding the posterior mode, a wide range of statistical inference procedures
including point estimation, interval estimation (see Section 8) and statistical decision
making (see Section 8) can be performed with the help of samples from the posterior
distribution. For the JCPD and CCPD classes of distributions, neither is it possible
to find the posterior mean estimate via integration, nor can we directly generate i.i.d.
samples from the distributions. We therefore develop procedures to generate MCMC
samples using a Gibbs sampling procedure, which requires the results on posterior con-
ditionals stated in Section 5.1.

It follows from Theorem 6 and Section 5.1 that under JCPD prior the conditional
distribution of M given d, V and the conditional distribution of V given M,d are ML
distributions, while the conditional distribution of d given M,V is CCPD. Conse-
quently, the conditional distribution of dj | d(−j),M, V, {Wi}Ni=1 follows a CCPD?

j dis-

tribution (see Definition 5). Also, let us assume that the unique SVD for ν̂N (Ψ̂NV D) =
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MM
Ψ̂
DM

Ψ̂
(VM

Ψ̂
)
T

and for ν̂N (Ψ̂T
NMD) = MV

Ψ̂
DV

Ψ̂
(V V

Ψ̂
)
T

. Also, let us denote the vector

containing the diagonal element of the matrix MT Ψ̂NV to be ηΨ̂. Based on the above
discussion, we can now describe the algorithm as follows.

Algorithm 1 Gibbs sampling algorithm to sample from posterior when using JCPC
prior

1: Sample M | d, V, {Wi}Ni=1 ∼ML
(
· ; MM

Ψ̂
,dM

Ψ̂
, VM

Ψ̂

)
,

2: Sample dj | d(−j)M,V, {Wi}Ni=1 ∼ CCPD?
j

(
· ;d(−j), ν̂N ,ηΨ̂

)
for j = 1 . . . p,

3: Sample V | d, V, {Wi}Ni=1 ∼ML
(
· ; MV

Ψ̂
,dV

Ψ̂
, V V

Ψ̂

)
.

If instead we use a CCPC prior, (see Equation 3.4) for Bayesian analysis of the data,
then the full conditional distribution of M,d, V areML, CCPD andML distributions,
respectively. The steps involved in the Gibbs sampling Markov chain are then as follows.

Algorithm 2 Gibbs sampling algorithm to sample from posterior when using CCPC
prior

1: Sample M | d, V, {Wi}Ni=1 ∼ML
(
· ; SMG , SDG , SVG

)
,

2: Sample dj | d(−j),M, V, {Wi}Ni=1 ∼ CCPD?
j

(
· ;d(−j), ν̂N , η̂N ,

)
for j = 1, . . . p,

3: Sample V |M,d, {Wi}Ni=1 ∼ML
(
· ; SMH , SDH , SVH

)
,

where ν̂N , η̂N are defined in Equation 5.3 and (SMG , S
D
G , S

V
G ) , (SMH , S

D
H , S

V
H) are the

unique SVD of the matrices (DV T NW
T

+G0) and (DV T NW
T

+H0), respectively.

To implement the above algorithms we need to sample from the ML and CCPD dis-
tributions. For the former, we use the procedure developed in (Hoff, 2009) to sample
from the ML distributions. Sampling from CCPD?

j is much more involved and is ex-
plained in detail in the next subsection. The following result provides some theoretical
guarantees that shall be useful for this specific sampler.

Theorem 9. Let d ∼ CCPD(·; ν,η) for some ν > 0 and η = (η1, . . . , ηp) where
max1≤j≤p ηj < 1. Let g1(· ; d(−1), ν,η) denote the unnormalized density corresponding
to CCPD?

1(· ;d(−1), ν,η), the conditional distribution of d1 given (d2, . . . , dp).

(a) The probability density function corresponding to CCPD?
1(· ;d(−1), ν,η) is log-

concave on the support R+.

(b) If 0 < η1 < 1, the distribution CCPD?
1(· ;d(−1), ν,η) is unimodal and the mode

of the distribution is given by m where h1(m) = η1. If η1 ≤ 0 then the probability
density is strictly decreasing on R+.

(c) If B > m is such that g1(B;d(−1),ν,η)
g1(m;d(−1),ν,η)

< ε for some ε > 0, then P (d1 > B |
d2, . . . , dp) < ε,
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(d) Let Mcrit be any positive number, then for all d1 > Mcrit,

g1(d1 ; d(−1), ν,η) ≤ K†n,p,Mcrit
d
ν(n−1)/2
1 exp( −ν(1− η1) d1),

(6.1)

where

K†n,p,Mcrit
=

[
(p/4)

n/2−1
2 )

Γ(n/2)
{√

Mcric e−Mcrit In/2−1(Mcrit)
}]ν .

Even though parts (a) and (b) of the above theorem follow immediately from Theorem 3,
they are included here for completeness; all the properties play a crucial role in the
construction of the sampling technique for CCPD?

j . The proof of part(c) is essentially
an implication of the fact that the right tail of the distribution decays at an exponential

rate. To show part(d) we have developed a nontrivial lower bound for 0F1

(
n
2 ,

D2

4

)
.

Remark 1. The constant K†n,p,Mcrit
in part(d) of Theorem 9 converges to a finite con-

stant as Mcrit approaches infinity. It follows from the properties of the Bessel function
that

lim
Mcrit→∞

√
Mcrite

−McritIa−1(Mcrit) =
1√
2π

for all a ≥ 3
2 . Hence for larger values of Mcrit, the value of K†n,p,Mcrit

approaches[√
2π(p/4)

n/2−1
2 )

Γ(n/2)

]ν
, a nonzero finite constant depending on n, p, ν.

Note that the ratio g1(B; d(−1), ν,η)/g1(m; d(−1), ν,η), mentioned in part(c), is free
of the intractable normalizing constants of the distribution. Therefore, the numeri-
cal computation of the ratio is possible as long as we can compute the corresponding

0F1

(
n
2 ,

D2

4

)
. Using Theorem 9 , we develop an accept-reject sampling algorithm that

can generate samples from CCPD?
j with high acceptance probability. The detailed con-

struction of the sampler is provided next. We conclude this section with a description

of an efficient procedure for computing the 0F1

(
n
2 ,

D2

4

)
constant.

6.1 A rejection sampler for the CCPD?
j distribution

We now describe a rejection sampling procedure from the conditional distribution of
(d1 | (d2, · · · , dp)) when d ∼ CCPC (·; ν,η) for some ν > 0 and max

1≤j≤p
ηj < 1. Here

η = (η1, . . . , ηp). Let m be the mode of the conditional distribution, g1(·) := g(· ; ν,η |
(d2, . . . , dp)), of the variable d1 given (d2, . . . , dp) when η1 > 0. In case η1 ≤ 0, we set m
to be 0. Using the properties of the conditional distribution described in Theorem 9, we

compute a critical point Mcrit such that P
(
d1 > Mcrit | (d2, · · · , dp), {Xj}Nj=1

)
< ε.

Here we have chosen ε = 0.0001.
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To construct a proposal density g1(x), we employ two different strategies, one for the

bounded interval (0,Mcrit] and the other using Theorem 9 to tackle the tail, (Mcrit,∞),

of the support of the conditional posterior distribution of d1.

The procedure is as follows. Let δ = Mcrit/Nbin where Nbin is the total number of

partitions of the interval (0,Mcrit]. Consider k = ([m/δ] + 1) where [m/δ] denotes the

greatest integer less than or equal to m/δ. Now define the function

g1(x) :=

k−1∑
j=1

g1(j δ) I((j−1)δ,jδ])(x) + g1(m)I((k−1)δ,kδ])(x)

+

Nbin∑
j=k+1

g1((j − 1) δ) I(((j−1)δ,jδ])(x)

+K†n,p,Mcrit
d
ν(n−1)/2
1 exp( −ν(1− η1) d1)I(Mcrit,∞))(x), (6.2)

where K†n,p,Mcrit
is as defined in part(d) of Theorem 9.

From Theorem 9 it follows that g1(x) ≥ g1(x) for all x > 0 as g1(·) is a unimodal

log-concave function with maxima at m. We consider,

qj =


δ g1(jδ) if 1 ≤ j <

[
m
δ

]
+ 1,

δ g1(m) if j =
[
m
δ

]
+ 1,

δ g1((j − 1)δ) if
[
m
δ

]
+ 1 < j ≤ Nbin,

K†n,p,Mcrit

Γ( (ν(n−1)+2)
2 ,Mν(1−η1))

[ν(1−η1)]ν(n−1)/2+1 if j = Nbin + 1,

where Γ
(

(ν(n−1)+2)
2 ,Mcritν(1− η1)

)
denotes the upper incomplete gamma function.

For the case where Mcrit tends to∞ (see Remark 1) the constant K†n,p,Mcrit
approaches

a finite constant, whereas Γ
(

(ν(n−1)+2)
2 ,Mcritν(1− η1)

)
monotonically decreases to

zero. Therefore, the positive constant q
Nbin+1

can be made arbitrary close to zero by

choosing a suitably large value for Mcrit when the value of n, p, ν, η1 are fixed. Note that

the quantities {qj}Nbin+1
j=1 may not add up to 1, therefore we construct the corresponding

set of probabilities, {pj}Nbin+1
j=1 where pj = qj/

∑Nbin+1
j=1 qj for j = 1, 2, · · · , Nbin+1. The

following algorithm lists the steps involved in generating a sample from the distribution

corresponding to the kernel g1(·).
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Algorithm 3 Steps for the rejection sampler for CCPD?
j

1: Sample Z from the discrete distribution with the support {1, 2, . . . , (Nbin+1)} and
corresponding probabilities {pj}Nbin+1

j=1 ,
2: if Z ≤ Nbin then
3: Sample y ∼ Uniform ((Z − 1) δ, Zδ),

4: else Sample y ∼ TruncatedGamma
(

shape = ν(n−1)+2
2 , rate = ν(1− η1), support = (Mcrit,∞)

)
5: end if
6: Sample U ∼ Uniform (0, 1),

7: if U ≤ g1(y)
g1(y) then

8: Accept y as a legitimate sample from g1(·)
9: else Go to Step 1

10: end if

Figure 2 shows a typical example of the function g1(x) and the corresponding g1(x).
The blue curve represents the unnormalized density g1. The black curve and the red
curve after Mcrit constitutes the function g1 ( defined in Equation 6.2). Note that the

red curve after the point Mcrit represents the last term (involving K†n,p,Mcrit
) in the

summation formula in Equation 6.2. In Figure 2(a), the values of δ and Mcrit are set
such that the key components of g1 and g1(x) are easy to discern. On the other hand,
Figure 2(b) displays the plot of g1(x) when recommended specification of Mcrit and δ
are used.
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Figure 2: The blue curves represent g1, the unnormalized density of CCPD?
1 distri-

butions. The black curve and the red curve after Mcrit constitutes the function g1,
the proposal density for the accept reject algorithm. The panel(a) displays the key as-
pects of the densities while panel(b) shows the proposal density when recommended
specifications of Mcrit and δ are used.

The choice of Nbin plays a crucial role in the algorithm and is required to be determined
before constructing the proposal density for the accept-reject algorithm. Note that Nbin
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and δ are interconnected. If one is specified, the value of the other can be determined.
We decide to choose the parameter δ and compute the corresponding Nbin. In the case
where the concentration parameter is high, a finer partition of the proposal histogram
(smaller value of δ) is required to keep the acceptance rate of the algorithm high. Based
on our empirical results, we recommend selecting δ to be of the order of 1√

ν
. The

acceptance probability remains stable across different choices of ν when the value δ is
set accordingly (see Figure 3). The estimated acceptance probabilities, used in Figure 3,
were calculated based on 10000 Monte Carlo samples for each value of ν varied from 1
to 100. The relationship between Nbin and δ and ν is presented in Table 1.

Finally, successful implementation of the sampling algorithm developed in this subsec-

tion requires the computation of 0F1

(
n
2 ,

D2

4

)
, a key step for the computation of g1(·).

In Section 6.2 we discuss the procedure that we have adopted to compute 0F1

(
n
2 ,

D2

4

)
.
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Figure 3: Estimated acceptance probability of the sampling algorithm when the value
of the concentration parameter varies from 1 to 100. The parameter δ is chosen to be
reciprocal of

√
ν.

6.2 Computation of 0F1

(
n
2
, D

2

4

)
We first describe an efficient and reliable computational procedure to compute the

function 0F1

(
n
2 ,

D2

4

)
when the argument matrix D is of dimension 2×2. The procedure

is relevant to many applications considered in the field (Downs et al., 1971; Downs, 1972;
Jupp and Mardia, 1979, 1980; Mardia and Khatri, 1977; Mardia et al., 2007; Mardia
and Jupp, 2009; Chikuse, 1991a,b, 1998, 2003; Sei et al., 2013; Lin et al., 2017). We
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ν δ Estimated Acceptance probability Nbin
1 1 0.95813 42
1 0.5 0.977517 85
1 0.333333 0.984155 127
1 0.2 0.988924 212
1 0.1 0.996314 425
1 0.05 0.998104 851
3 0.5 0.952835 27
3 0.333333 0.963206 40
3 0.2 0.977326 67
3 0.1 0.988924 135
3 0.05 0.995124 271
5 1 0.885818 3
5 0.5 0.941886 7
5 0.333333 0.960246 10
5 0.2 0.973994 17
5 0.1 0.989218 35
5 0.05 0.993246 71

Table 1: Values of the Nbin, δ and acceptance probability for algorithm to generate
values from CCPDj(η, ν) for ν = 1, 3, 5.

emphasize that the computational procedure described below is applicable for analyzing
data on Vn,2 for all n ≥ 2.

Consider the representation developed in Muirhead (1975) for the Hypergeometric
function of a matrix argument

0F1 (c,D) =

∞∑
k=0

dk1d
k
2(

c− 1
2

)
k

(c)2k k!
0F1 (c+ 2k, d1 + d2) , (6.3)

where D is a 2× 2 diagonal matrix with diagonal elements d1 > 0, d2 > 0. From Butler
and Wood (2003) (see page 361), it can be seen that,

0F1 (c+ 2k, d1 + d2) =
Γ (c+ 2k)(√

d1 + d2

)(c+2k−1)
Ic+2k−1

(
2
√
d1 + d2

)
. (6.4)

where Ic+2k−1(·) is the modified Bessel function of the first kind with order (c+2k−1).
Hence from Equation 6.3 and Equation 6.4, we get that

0F1 (c,D) =

∞∑
k=0

dk1d
k
2(

c− 1
2

)
k

(c)2k k!

Γ (c+ 2k) Ic+2k−1

(
2
√
d1 + d2

)(√
d1 + d2

)(c+2k−1)

=

∞∑
k=0

Ak, (6.5)
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where Ak = Γ(c−.5)Γ(c)
Γ(c+k−.5)k!

(d1d2)k

(
√
d1+d2)

(c+2k−1) Ic+2k−1

(
2
√
d1 + d2

)
. Note that

Ak+1

Ak
=

Γ(c+ k − .5)k!

Γ(c+ k + .5)(k + 1)!

Ic+2k+1

(
2
√
d1 + d2

)
Ic+2k−1

(
2
√
d1 + d2

) d1d2

(d1 + d2)

≤ 4d1d2

(2c+ 2k − 1)(2k + 2)(2k + c)(2k + 2c+ 1)
, (6.6)

where the last inequality follows from Iν+1(x)/Iν(x) < x
2(ν+1) for x > 0, ν > −1 (see

page 221 in Ifantis and Siafarikas (1990)). For fixed values of d1, d2 we can find M such
that AM ≤ ε and M4 ≥ (d1 d2)/(4ε1) for some ε1 <

1
2 and a predetermined error bound

ε. For such a choice of M , if k is any integer such that k ≥M , then

Ak+1

Ak
≤ 4d1d2

(2c+ 2k − 1)(2k + 2)(2k + c)(2k + 2c+ 1)

≤ 4d1d2

(2c+ 2M − 1)(2M + 2)(2M + c)(2M + 2c+ 1)

≤
(
d1d2

4M4

){
16M4

(2c+ 2M − 1)(2M + 2)(2M + c)(2M + 2c+ 1)

}
≤

(
d1d2

4M4

){
M4

(M + 2c−1
2 )(M + 1)(M + c

2 )(M + 2c+1
2 )

}
≤ ε1, (6.7)

where the last inequality follows due to the fact that M4 ≤ (M + 2c−1
2 )(M + 1)(M +

c
2 )(M + 2c+1

2 ) as c > 1
2 . Hence from Equation 6.5 we get that

|0F1 (c,D)−
M∑
k=0

Ak| =
∞∑

k=M+1

Ak ≤ AM
∞∑

k=M+1

εk−M1 ≤ ε ε1
1− ε1

< ε. (6.8)

Consequently, for a given value of the matrix D and an error level ε, we can select M
accordingly, so that 0F1 (c,D) is approximated as

0F1 (c,D) ≈
M∑
k=0

dk1d
k
2(

c− 1
2

)
k

(c)2k k!

Γ (c+ 2k) Ic+2k−1

(
2
√
d1 + d2

)(√
d1 + d2

)(c+2k−1)
, (6.9)

where the error in the approximation is at most ε.

In the case when the matrix D is of dimension p × p with p > 2, we rely on the com-
putational technique developed in (Koev and Edelman, 2006). Development of efficient
computational schemes for the hyper geometric function of a matrix argument in gen-
eral dimension is an active area of research (Gutiérrez et al., 2000; Koev and Edelman,
2006; Nagar et al., 2015; Pearson et al., 2017). In principle, the theoretical framework
developed in this article integrated with the general computation scheme specified in
Koev and Edelman (2006) can handle data on Vn,p for arbitrary integers n ≥ p ≥ 2, but
the results from the combined procedure may lack precision as it inherits the limitations
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of the algorithm in Koev and Edelman (2006) ( See page 835 in Koev and Edelman

(2006)). In the following remark we specify the assumptions under which the combined

procedure can be applied effectively.

Remark 2. The algorithm developed in Koev and Edelman (2006) is a general pro-

cedure for computing pFq(·) for arbitrary integers p, q ≥ 0. Naturally, the algorithm

applies to 0F1 which is the object of focus in the current context. Due to its generality,

the computational scheme has certain limitations. In particular, it requires appropri-

ate specification of a “tuning parameter” that can not be determined in an automated

manner. However, from an empirical exploration of the procedure, we observed that the

corresponding outputs can be quite robust. Particularly, the output was found to stabilize

after a certain point (we will call this the “stabilization point”) when the value of the

tuning parameter was gradually increased. For the case of p = 2, if the tuning parameter

is specified to be larger than the stabilization point, the output from Koev and Edelman

(2006) is very close to the true value, as determined by our arbitrary precision algo-

rithm. Extrapolating to p ≥ 3, we presume that the true value of the corresponding hyper

geometric function will be close to the output of Koev and Edelman (2006) if the tuning

parameter is set larger than the “stabilization point”. As the “stabilization point” is ob-

served to be larger for larger values of D, we can set the value of the tuning parameter

to a single pre-specified number for an entire analysis only if we assume that the diago-

nal elements of the matrix D are bounded above by a prespecified finite number. Under

this assumption, we can rely on Koev and Edelman (2006) for the analysis of data on

Vn,p, n ≥ p ≥ 3. In that case, the combination of our theoretical framework and the

algorithm for the computation of the hypergeometric function from Koev and Edelman

(2006) would work effectively for practical applications (see Simulation Section7.2).

In contrast, the procedure to compute 0F1

(
n
2 ,

D2

4

)
that we have developed, though tar-

geted towards a specific case, has a theoretical guarantee for a desired level of precision

of its output. Since many statistical applications, as mentioned earlier, are about an-

alyzing data on Vn,2, the computation procedure we have designed specifically for Vn,2
has its own merit.

7 Simulation

To evaluate the performance of the procedure presented in the previous sections, we

performed simulation experiments. We considered two different setups. In the first,

we analyzed simulated datasets in Vn,p where we varied n to assess its effect on the

posterior estimation efficiency. Here, the value of p was fixed at 2 and the computation

of 0F1

(
n
2 ,

D2

4

)
developed in Section 6.2 was utilized. In the second setup, we analyzed

data on Vn,p to demonstrate the generic applicability of our framework by setting p = 3

, n = 5. Here, we used the procedure in Koev and Edelman (2006) to calculate the value

0F1

(
n
2 ,

D2

4

)
.
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7.1 Simulation Setup (p = 2)

We present results from experiments with simulated data where we varied the dimension
of the Stiefel manifold, n, across a range of values. The objective of this simulation
study was to see how the error rates varied with the dimension n. Specifically, we
generated 3000 observations usingML distribution on V3,2, V5,2, V10,2, and V15,2. These
correspond to the Stiefel Manifolds with dimension [n = 3, p = 2], [n = 5, p = 2],
[n = 10, p = 2], and [n = 15, p = 2], respectively. We generated 50 datasets for each
simulation setting using the algorithm mentioned in Hoff (2009). In order to generate
data for each dataset we fixed the parameters M and V to the canonical orthogonal
vectors of appropriate dimension and generated two entries of the parameter D from
two independent gamma distributions.

We ran posterior inference for each of these datasets using 3000 MCMC samples with
an initial 1000 samples as burn-in. We used the posterior mean of the parameter F as
the point estimate F̂ . Finally we assessed our performance by computing the relative
error for the estimate of Ftrue = MtrueDtrueV

T
true. We define the relative error as:

‖F̂ − Ftrue‖
‖Ftrue‖

,

where ‖ · ‖ denotes the matrix Frobenious norm. Figure 4 shows the average relative
error with the corresponding standard deviation of estimation for V3,2, V5,2, V10,2, and
V15,2 for N = 2000 (panel (a)) and for N = 3000 (panel (b)). The average relative errors
do not seem to exceed 11% and 9% for N = 2000 and 3000, respectively even with the
dimension as high as 15. The error rate tends to increase with higher dimension, i.e.,
value of n. Also, we investigated the relationship with the total sample size and found
these error rates to decrease with larger sample sizes. For example, the reduction in
average relative error rate for n = 5 and N = 2000 is around 2%. Overall, these results
demonstrate the robustness of our inference procedure.

7.2 Simulation Setup (p > 2)

Having demonstrated the efficiency of our method for a range of values of n with p = 2,
we now present an example of a generalized simulation scenario for p > 2. Here we
use the procedure in Koev and Edelman (2006) to numerically approximate the value of

0F1

(
n
2 ,

D2

4

)
where D is a p×p dimensional matrix with p > 2 (See Remark 2). Through

the entire simulation we fixed the tuning parameter required in the computation of

0F1

(
n
2 ,

D2

4

)
to a large prespecified value. Here we give a specific example with n = 5

and p = 3. We generated 50 datasets of 500 observations each using theML distribution
with different parameters, on V5,3. We then ran posterior inference for each of these
datasets using 1100 MCMC samples with an initial 100 sample burn-in. We used the
posterior mean of the parameter F as before as the estimate of the true parameter
F . Using the same metric we computed the average relative error of the estimation
(Figure 5). We observed that our sampling algorithm for di (i = 1, 2, 3) runs with a
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(a) with 2000 data points (b) with 3000 data points

Figure 4: Relative error of F̂ for matrices with different dimensions
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Figure 5: Average relative error for datasets on V5,3

very low rejection rate. As can be seen in Figure 5, the average relative errors do not

exceed 3%, demonstrating the general applicability of our framework beyond p = 2.
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Codes for the algorithms are available at https://github.com/ssra19/Stiefel_Bayes.
git.

8 Application

Finally, to showcase the methodology developed in this paper, we analyzed the vec-
torcardiogram dataset discussed in Downs et al. (1971). The dataset contains vector-
cardiograms of 56 boys and 42 girls aged between 2 and 19 years. Individuals in the
dataset are partitioned into four groups: groups 1 and 2 consist of boys aged between
2 − 10 and 11 − 19 years, while groups 3 and 4 consist of girls aged between 2 − 10
and 11−19 years. Each sample contains vectorcardiograms acquired using two different
measurement systems, the Frank lead system (Frank, 1956; Downs et al., 1971) and the
McFee lead system (Downs et al., 1971). Here, we restrict ourselves to groups 1 and 3
and measurements acquired using the McFee lead system. For each individual sample,
we considered the pair of orthogonal vectors that provides the orientation of the “QRS
loop” (Downs et al., 1971) in R3. Each orientation in the sample is defined by a 3 × 2
matrix with orthonormal columns, i.e., an element in V3,2. Additional details regarding
the measurements, data structures, and data processing can be found in Downs et al.
(1971).

8.1 MCMC convergence diagnostics

We ran several MCMC convergence diagnostic tests for the MCMC samples from the
posterior of F = MDV T , which is the natural parameter of the Matrix Langevin distri-
bution. The parameter F uniquely identifies and is uniquely identified by the parameters
M,D, V . Moreover the elements of the matrix M and V are interrelated whereas the
components of F are not thus constrained. We therefore focused the diagnostics on
F and studied its estimation accuracy. As notation, Fi,j denotes the [i, j]-th element
of F . We first ran convergence diagnostics based on potential scale reduction factor
(PSRF) Gelman et al. (1992). We ran the MCMC procedure three times with different
random seeds for 10, 000 MCMC iterations with a 1000 sample burn-in. The PSRF is a
weighted sum of within-chain and between-chain variances. The calculated PSRF was
1.00 with an upper confidence bound 1.01, indicating no evidence of lack of convergence.
We show how the PSRF changed with the iterations in Figure 6 for all components of
F . We also calculated a multivariate potential scale reduction factor (MPSRF) that was
proposed by Gelman and Brooks Brooks and Gelman (1998). The calculated MPSRF
was 1.01, also confirming that there was no lack of convergence. The log-likelihood is
yet another measure representative of the multi-dimensional parameters. In this case
too, the calculated PSRF for log-likelihood was 1.0 with an upper confidence bound 1.0,
indicating no evidence of lack of convergence. Finally, we calculated the Heidelberg and
Welch (HW) diagnostic Heidelberger and Welch (1981, 1983) which is a test statistic
based on the Cramer-von Mises test statistic to accept or reject the null hypothesis that
the MC is from a stationary distribution. This diagnostic has two parts and the MC
chain for F passed both the Stationarity and Halfwidth Mean tests. This test too, then,
showed no evidence for lack of convergence.
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Figures 7(a), 7(b) and 8 show the traceplots, autocorrelations and densities of different
components of the posterior samples of F from the three runs, respectively. Notably,
the densities of all the components of F are unimodal, confirming convergence.
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Figure 6: PSRF for all six components of posterior samples of F .

8.2 Parameter estimation

We modeled the vectorcardiogram dataset usingML distributions on V3,2. There were
28 and 17 observations in groups 1 and 3, respectively. We assumed that each i.i.d ob-
servation in group 1 follows a ML distribution with parameters Mgroup1,dgroup1 and
Vgroup1, and likewise, i.i.d observations in group 3 follow aML distribution with param-
eters Mgroup3,dgroup3 and Vgroup3. We used the uniform improper prior for estimation of
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Figure 7: Traceplots and autocorrelations of all six components of posterior samples of
F from three runs.

the parameters related to both groups (see Section 4). From Equation 5.4, we note that
the posterior distributions of (Mgroup1,dgroup1, Vgroup1) and (Mgroup3,dgroup3, Vgroup3)
given the data are

JCPD
(
· ; 28, W group1

)
and JCPD

(
· ; 17, W group3

)
where

W group1 =

0.687 0.576
0.551 −0.737
0.122 0.142

 and W group3 =

0.682 0.585
0.557 −0.735
0.125 0.055


are the sample means of the observations in groups 1 and 3, respectively. We verified the
spectral norm condition in Theorem 1 for the posterior distributions to be well defined;
we found

∥∥W group1

∥∥
2

= 0.946 and
∥∥W group3

∥∥
2

= 0.941.

Using Theorem 3, we can infer that the above-mentioned posterior distributions have
unique modes. Also from Theorem 3 we can compute the posterior mode and they were

M̂group1 =

−0.650 0.733
0.743 0.668
−0.157 0.127

 , d̂group1 =

[
16.329
5.953

]
, V̂group1 =

[
−0.059 0.998
−0.998 −0.059

]
.

Similarly, we can compute the posterior mode for the parameters of group 3 (not re-
ported here). To estimate the posterior mean for the parametric functions

Fgroup1 = Mgroup1Dgroup1V
T
group1 and Fgroup3 = Mgroup3Dgroup3V

T
group3,
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Figure 8: Densities of all six components of posterior samples of F from three runs.

we ran the MCMC based posterior inference procedure described in Section 6 to generate
MCMC samples from each of the posterior distribution.

For group 1, the posterior mean for the parametric function Fgroup1 = Mgroup1Dgroup1V
T
group1

was

̂̂F group1 =

5.183 9.086
3.583 −10.996
0.919 2.221

 , SD(̂̂F group1) =

1.527 2.354
1.475 2.665
0.596 0.898

 ,
where the entries of the matrix SD(̂̂F group1) provides the standard deviation for the

corresponding entries of ̂̂F group1. From the MCMC samples, we also estimated the
posterior density of each entry of Fgroup1 and Fgroup3. Figure 9 shows the corresponding
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Figure 9: Estimated posterior density for the parameter F . The estimated density for
Group 1 and Group 3 are marked with Red and Blue lines respectively.

density plots. The estimates related to group 3 were

̂̂F group3 =

3.249 8.547
3.798 −10.658
1.605 0.796

 and SD(̂̂F group3) =

1.263 2.123
1.359 2.624
0.603 0.83

 .
8.3 Hypothesis testing

Finally, we conducted a two sample hypothesis test for comparing different data groups
on the Stiefel manifold. We have chosen hypothesis testing as one of our demonstra-
tions because a general two sample test that does not rely on asymptotics or on the
concentration being very large or very small, has not been reported in the literature for
data lying on the Stiefel manifold (Khatri and Mardia, 1977; Chikuse, 2012). The pro-
cedure described here is valid for finite sample sizes and does not require any additional
assumptions on the magnitude of the parameters.

We considered the VCG dataset and carried out a test to compare the data group 1
against the data group 3 , i.e.

H0 : Fgroup1 = Fgroup3 vs HA : Fgroup1 6= Fgroup3.

To test the hypotheses in a Bayesian model selection framework, we considered two mod-
els Model0 and Model1. In Model0, we assumed Mgroup1 = Mgroup3, dgroup1 = dgroup3,
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Vgroup1 = Vgroup3 while in Model1, we did not impose any structural dependencies be-
tween the parameters. We assumed the prior odds between the models to be 1 and
computed the Bayes factor

B0,1 =
P (Data |Model0)

P (Data |Model1)
,

where Data denotes the combined data from both groups. Since an analytic form for the
Bayes factor is not available in this case, we used an MCMC based sampling technique
to estimate the Bayes factor. We used the empirical prior (see Section 4) with the choice
of prior concentration set at 1 percentage of the corresponding sample size. We followed
the procedure described in Section 6 to generate MCMC samples from each of the
required posterior distribution. We used the harmonic mean estimator (HME) (Newton
and Raftery, 1994) to estimate the marginal likelihoods required for computing the
Bayes factor. It is well known that the HME may not perform well when using improper
priors. Consequently, unlike in Section 8.2 where we focus on the parameter estimation,
we use an informative prior for this part of the analysis. We observed that the HME
estimator is stable for the current context. The estimate of log(B01) was 51.994. Hence,
we conclude that there is not enough evidence to favor Model1 over Model0.

9 Discussion and Future Directions

In this article, we have formulated a comprehensive Bayesian framework for analyzing
data drawn from aML distribution. We constructed two flexible classes of distributions,
CCPD and JCPD , which can be used for constructing conjugate priors for the ML
distribution. We investigated the priors in considerable detail to build insights into
their nature, and to identify interpretations for their hyper-parameter settings. Finally,
we explored the features of the resulting posterior distributions and developed efficient
computational procedures for posterior inference. An immediate extension would be to
expand the framework to mixtures ofML distributions, with applications to clustering
of data on the Stiefel manifold.

On a related note, we observed that the tractability of the set of procedures proposed
in this article depends crucially on one’s capacity to compute the hypergeometric func-
tion 0F1

(
n/2, FTF/4

)
as a function the matrix F . We were naturally led to a modified

representation of 0F1

(
n/2, D2/4

)
(see Section 2) as a function of a vector argument

d. We explored several properties of the function 0F1

(
n/2, D2/4

)
, that are applica-

ble to research areas far beyond the particular problem of interest in this article. As
a special note, we should highlight that we designed a tractable procedure to com-
pute the hypergeometric function of a n × 2 dimensional matrix argument. There are
many applications in the literature (Mardia and Khatri, 1977; Jupp and Mardia, 1979;
Chikuse, 1998, 2003; Lin et al., 2017) where the mentioned computational procedure

of 0F1

(
n
2 ,

D2

4

)
can make a significant impact. As such, the manner in which we have

approached this computation is entirely novel in this area of research and the procedure
is scalable to “high-dimensional” data, such as in diffusion tensor imaging. In the near
future, we plan to further explore useful analytical properties of the hypergeometric

imsart-ba ver. 2014/10/16 file: BA1176_paper.tex date: August 11, 2019



36

function, and extend our procedure to build reliable computational techniques for the
hyper-geometric function where the dimension of the matrix argument is n × p with
p ≥ 3.

Finally, there is scope for extending the newly proposed family of prior distributions
to a larger class of Bayesian models involving more general densities on manifolds.
The properties of the prior and posterior discovered can also be seamlessly generalized.
The coming together of state-of-the-art Bayesian methods incorporating topological
properties of the underlying space promises to be a rich area of research interest.
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