CIS6930/4930 Intro to Computational Neuroscience Fall 2007 Home Work Assignment 3:
 Due Thursday 10/18/07 before class

1. Consider the following function over the range $[0,1]$

$$
\begin{gathered}
f(x)=-2 \times x \quad \text { if } \quad x \in\left[0, \frac{1}{3}\right] \\
f(x)=1 \quad \text { if } \quad x \in\left(\frac{1}{3}, \frac{2}{3}\right) \\
f(x)=0 \quad \text { if } x \in\left[\frac{2}{3}, 1\right]
\end{gathered}
$$

Note that the function is such that

$$
\int_{0}^{1} f(x) d x=0
$$

First translate and scale uniformly the domain of the fuction so that it now lies on $[-\pi,+\pi]$. All future references to $f(x)$ is this scaled and translated version. Your goal will be to find an approximation of this function as a fourier series, and show the graphs of successive approximations overlayed on the actual function.
Consider the fourier basis $e^{i n x}$ for $n=-N, \ldots,+N$, and the corresponding sum

$$
\sum_{n=-N}^{+N} c_{n} e^{i n x}
$$

Calculate the values of c_{n} by numerically approximating the integral

$$
\int_{-\pi}^{+\pi} f(x) e^{-i n x} d x
$$

, that is, by dividing the range $[-\pi,+\pi]$, into small intervals and approximating the integral as a sum. Show graphs of how well $f(x)$ is approximated by overlaying the series over $f(x)$ for various values of N (for example, $N=5,10,20,50$).

