
145 IEEE TRANSACTIONS ON INFORMATION THEORY. VOL. 37, NO. I ,  JANUARY 1991 

001 8-9448/9 I /0 100.0 145$0 I .00 0 199 1 IEEE 

Divergence Measures Based on the Shannon Entropy 

Jianhua Lin, Member, IEEE 

Abstract -A new class of information-theoretic divergence measures 
based on the Shannon entropy is introduced. Unlike the well-known 
Kullback divergences, the new measures do not require the condition of 
absolute continuity to be satisfied by the probability distributions in- 
volved. More importantly, their close relationship with the variational 
distance and the probability of misclassification error are established in 
terms of bounds. These bounds are crucial in many applications of 
divergence measures. The new measures are also well characterized by 
the properties of nonnegativity, finiteness, semiboundedness, and 
boundedness. 

Index Terms-Divergence, dissimilarity measure, discrimination in- 
formation, entropy, probability of error bounds. 

I. INTRODUCTION 

Many information-theoretic divergence measures between two 
probability distributions have been introduced and extensively 
studied [2], [7], [12], [15], [17], [19], [20], [30]. The applications of 
these measures can be found in the analysis of contingency 
tables [lo], in approximation of probability distributions [6], [16], 
[21], in signal processing [13], [14], and in pattern recognition 
[3]-[5]. Among the proposed measures, one of the best known is 
the I directed divergence [17], [19] or its symmetrized measure, 
the J divergence. Although the I and J measures have many 
useful properties, they require that the probability distributions 
involved satisfy the condition of absolute continuity [17]. Also, 
there are certain bounds that neither I nor J can provide for the 
variational distance and the Bayes probability of error [28], [31]. 
Such bounds are useful in many decisionmaking applications [3], 
151, [111, [141, [311. 

In this correspondence, we introduce a new directed diver- 
gence that overcomes the previous difficulties. We will show 
that this new measure preserves most of the desirable properties 
of I and is in fact closely related to 1. Both the lower and upper 
bounds of the new divergence will also be established in terms 
of the variational distance. A symmetric form of the new di- 
rected divergence can be defined in a similar way as J ,  defined 
in terms of I .  The behavior of I , J  and the new divergences will 
be compared. 

Based on Jensen’s inequality and the Shannon entropy, an 
extension of the new measure, the Jensen-Shannon divergence, 
is derived. One of the salient features of the Jensen-Shannon 
divergence is that we can assign a different weight to each 
probability distribution. This makes it particularly suitable for 
the study of decision problems where the weights could be the 
prior probabilities. In fact, it provides both the lower and upper 
bounds for the Bayes probability of misclassification error. 

Most measures of difference are designed for two probability 
distributions. For certain applications such as in the study of 
taxonomy in biology and genetics [24], [25], one is required to 
measure the overall difference of more than two distributions. 
The Jensen-Shannon divergence can be generalized to provide 
such a measure for any finite number of distributions. This is 
also useful in multiclass decisionmaking. In fact, the bounds 
provided by the Jensen-Shannon divergence for the two-class 
case can be extended to the general case. 

The generalized Jensen-Shannon divergence is related to the 
Jensen difference proposed by Rao [23], [24] in a different 
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context. Rao’s objective was to obtain different measures of 
diversity [24] and the Jensen difference can be defined in terms 
of information measures other than the Shannon entropy func- 
tion. No specific detailed discussion was provided for the Jensen 
difference based on the Shannon entropy. 

11. THE KULLBACK I A N D  J DIVERGENCE MEASURES 

Let X be a discrete random variable and let p I  and p 2  be 
two probability distributions of X .  The I directed divergence 
[17], [19] is defined as 

The logarithmic base 2 is used throughout this correspondence 
unless otherwise stated. It is well known that Z (p I ,p2 )  is non- 
negative, additive but not symmetric [12], [17]. To obtain a 
symmetric measure, one can define 

which is called the J divergence [22]. Clearly, I and J diver- 
gences share most of their properties. 

It should be noted that I ( p l , p 2 )  is undefined if p 2 ( x ) = 0  
and p , ( x )  # 0 for any x E X .  This means that distribution p I  
has to be absolutely continuous [17] with respect to distribution 
p 2  for Z(pl,p2) to be defined. Similarly, J ( p 1 , p 2 )  requires that 
p I  and p r  be absolutely continuous with respect to each other. 
This is one of the problems with these divergence measures. 

Effort [18], [27], [28] has been devoted to finding the relation- 
ship (in terms of bounds) between the I directed divergence and 
the variational distance. The variational distance between two 
probability distributions is defined as 

(2.3) 
x r x  

which is a distance measure satisfying the metric properties. 
Several lower bounds for I ( p l , p r )  in terms of V ( p , , p , )  have 
been found, among which the sharpest known is given by 

where 

established by Vajda [28] and 

derived by Toussaint [27]. 
However, no general upper bound exists for either l ( p l I p ? )  

or J ( p I , p Z )  in terms of the variational distance [28]. Thls IS 
another difficulty in using the I directed divergence as a mea- 
sure of difference between probability distributions [161, [311. 

111. A NEW DIRECTED DIVERGENCE MEASURE 

In an attempt to overcome the problems of I and J diver- 
gences, we define a new directed divergence between two distri- 
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Fig. 1. Comparison of I ,  J ,  K ,  and L divergence measures. 

butions p I  and p 2  as 

This measure turns out to have numerous desirable proper- 
ties. It is also closely related to I .  From the Shannon inequality 
[ l ,  p. 371, we know that, K ( p l , , p 2 ) 2 0 a n d  K ( p , , p , ) = O  i f a n d  
oniy i f p ,  = p z ,  which is essential for a measure of difference. It 
is clear that K ( p , , p , )  is well defined and independent of the 
values of p , ( x )  and p 2 ( x ) ,  x E X .  

From both the definitions of K and I, it is easy to see that 
K ( p , , p , )  can be described in terms of I ( p l , p 2 ) :  

The following relationship can also be established between I 
and K .  

The L divergence is related to the J divergence in the same way 
as K is related to I .  From inequality (3.3), we can easily derive 
the following relationship, 

1 

2 L ( P l , P , ) ~ - J ( P l , P d .  (3.5) 

A graphical comparison of I ,  J, K, and L divergences is 
shown in Fig. 1 in which we assume p I  = ( t , l - t )  and p z  = 

(1 - t ,  t ) ,  0 I t I 1. I and J have a steeper slope than K and L. 
It is important to note that I and J approach infinity when t 
approaches 0 or 1. In contrast, K and L are well defined in the 
entire range 0 I t I 1. 

Theorem 2: The following lower bound holds for the K di- 
rected divergence: 

Theorem I :  The K directed divergence is bounded by the I 

1 

where L ,  and L ,  are defined by (2.5) and (2.6), respectively. 
divergence: Proof From equality (3.2) and inequality (2.4), we have 

K ( P , > P , )  p ” P ’ > .  (3.3) 

Proof: Since p , ( x ) >  0 and p 2 ( x ) 2  0 for any x E X ,  by the 
inequality of the arithmetic and geometric means, we have 

Since 
2 

Thus, it follows 

P l ( X >  (3.6) follows immediately. 0 

&” In contrast to situations for the I and J divergences, upper 
bounds also exist for the L divergence in terms of the varia- 

c p , ( x ) l o g  

1 P d X )  1 

\ E X  P d  x 1 

\ E X  

= -  p l ( x ) l o g - = ~ I ( p l , p 2 ) .  0 tional distance. 

K ( ~ , , ~ , )  is obviously not a symmetric measure, we can Theorem 3: The variational distance and the L divergence 

define a symmetric divergence based on K as: measure satisfy thc inequality: 

L ( P l , P , )  = K ( P l , P , ) +  K ( P , , P l ) .  (3.4) L ( P l , P , )  I V ( P l , P , ) .  (3.7) 
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It has been proved in [8, p. 5211 that, for any 0 < a < 1, 

H ( a , l -  U )  2 2 m i n ( a , l -  U ) .  

Since 

1 

2 
min (a ,  1 - a )  = - ( I  - la - ( I  - a ) [ ) ,  

it follows that 

1 -  H ( a , l -  a )  < [ a - ( l -  a ) [ .  

Since K ( p , , p , )  is clearly not greater than L ( p , , p , ) ,  from 
Theorem 3 we immediately obtain the following bound for the 
K divergence: 

K ( P , , P 2 )  5 V ( P , > P Z ) .  (3.10) 

Thus, the variational distance serves as an upper bound to both 
the K and L divergences. 

The K and L divergences have several other desirable prop- 
erties. As we mentioned earlier, both K and L are nonnegatil,e, 
which is essential for being measures of difference. They are 
also finite and semibounded, that is, 

for all probability distributions p I  and p 2 .  This can easily be 
seen from the definition of K or  L and the Shannon inequality. 

Another important property of the K and L divergences is 
their boundednrss, namely, 

The second inequality can be easily derived from (3.9) and the 
fact that the Shannon entropy is nonnegative and the sum of 
two probability distributions is equal to 2. The bound for 

~ 

147 

K ( p , , p , )  follows directly from its definition (3.1): 

From the equality given in (3.8), we have 

= 2 H ( F ) -  H ( p , ) - H ( p , ) ,  (3.14) 

where H is the Shannon entropy function. Equation (3.14) 
provides one possible physical interpretation of L ( p , ,  p,) .  This 
entropic description also leads to a natural generalization of the 
L divergence. 

The K divergence coincides with the f-divergence for f (x)  = 
x log(2x/( l+ x)). The f-divergence is a family of measures 
introduced by Csiszdr [7] and its many properties were studied 
in [29], [30]. Additional properties of the K divergence can thus 
be derived from the results for the f-divergence. 

Iv. Tiit J ~ N S E N  -SHANNON D l v t R G t N C t  MEA SUR^ 

Let n-,,r2 2 0, x ,  + x ,  = 1, be the weights of the two proba- 
bility distributions p I and p z ,  respectively. The generalization 
of the L divergence is defined as 

which can be termed the Jensen-Shannon divergence. Since H 
is a concave function, according to Jensen’s inequality, 
JS,(p,,p,) is nonnegative and equal to zero when p ,  = p ? .  One 
of the major features of the Jensen-Shannon divergence is that 
we can assign different weights to the distributions involved 
according to their importance. This is particularly useful in the 
study of decision problems. In fact, we will show that 
Jensen-Shannon divergence provides both the lower and upper 
bounds to the Bayes probability of error. 

Let us consider a classification problem of two classes C = 

(c lrc2)  with a priori probabilities p ( c , ) =  n-,, p ( c 2 ) =  n-, and let 
the corresponding conditional probability distributions be 
p ( x l c , ) =  pl(x),  p(xlc,)= p , ( x ) .  The Bayes probability of error 
[ l l ]  is given by 

Theorem 4: The following upper bound, 

holds, where H ( n - , , a , ) =  - n-, logn-, - x , loga2 .  

Proof: It has been shown in [ l l ]  that 

1 

2 P,( P I ,  P . )  5 -H(CIX), (4.4) 
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Fig, 2. Shannon entropy and geometric mean. 

where 

H(CIX) = p ( x ) H ( C l x )  
x E x 

= - P ( X )  P ( c l x ) ~ o g P ( c l x ) ,  (4.5) 
X t X  C E C  

which is the equivocation or the conditional entropy [91. It is 
also known that 

H ( C I X ) = H ( C ) +  H ( X I C ) -  H ( X ) .  (4.6) 

Since there are only two classes involved, we have 

H ( C )  = H (  P ( C l ) , P ( C Z ) )  = H(Tl>TTT?), 

H (  XlC) = p ( c , ) H (  Xlc,)  + P ( C Z ) H (  Xlcz) 

(4.7) 
and 

= 7 7 1  H (  PI + T , H (  P 2 ) .  (4.8) 
Also observing that 

P ( X >  = T l P l ( x > +  . r r , P , ( X ) ,  

H ( X )  = H(TlPl+  " 2 P r ) .  (4.9) 

we have 

Combining (4.7), (4.8), and (4.9) into (4.6), we obtain from 
inequality (4.4) that 

1 
P,(PI>PTT?) ' T ( H ( " ' . T 7 ) + T l H ( P I ) + T Z H ( P 2 )  

- H(TlPI + TTT?P2)) 

1 

2 = - ( H (  7-r 1 9 T 7 - JS,( P I 3 P 2 ) ) . 0 

The previous inequality is useful because it provides an upper 
bound for the Bayes probability of error. In contrast, no similar 
bound exists in terms of either I or J divergence [31] although 
several lower bounds have been found [14], [26]. 

Theorem 5: The following lower bound also holds for the 
Bayes probability of error: 

1 

4 4 , ( ~ 1 , ~ 2 ) 2  - ( N ( ~ , , T T T ~ ) - J S , ( P I , P ~ ) ) ~ .  (4.10) 

Proot By the definition of H ( C I X )  and the Cauchy in- 
equality, we have 

H 2 ( C I X ) I  ( P W ) - j  c P ( X ) H 2 ( C I X ) )  
X € X  X € X  

= p ( x ) . H ' ( C l x ) .  (4.11) 
X t X  

For any 0 5 t 5 I, it can be shown that 

1 
- H ( t , l -  t )  IJ-, 
2 

(4.12) 

holds as depicted in Fig. 2.  A rigorous proof of this inequality is 
given in the Appendix (Theorem 8). 

Therefore, inequality (4.1 1) can be rewritten as 

H2(CIX)  5 4.  c P(cllx)P(c,lx)) 
X € X  

- < 4. c P ( x ) m i n ( P ( c , l x ) , P ( c , l x ) )  

= 4 .  m i n ( . r l p l ( x ) , T 2 p 2 ( x ) )  = 4 . f ' , ( ~ , , ~ , ) .  

I € x 

5 t x 

From (4.6)-(4.9), inequality (4.10) follows immediately. 0 

The Jensen-Shannon divergence J ( p , ,  p 2 )  was called the 
increment of the Shannon entropy in [32] and used to measure 
the distance between random graphs. It was introduced as a 
criterion for the synthesis of random graphs. In the normaliza- 
tion process, an upper bound had to be used. Based on com- 
puter simulation, Wong and You [32] conjectured that the 
increment of entropy cannot be greater than 1. This conjecture 
can be easily verified from inequality (4.3). Since the Bayes 
probability of error is nonnegative, we have from (4.3) that, 

J S , ( P , , P z )  5 H(T, ,T2) -2Pc(P l ,Pz )  IH(TI,TTT7) 5 1 .  

This further justifies the use of this measure in [32]. 

v. TtiE GENERALIZLD JENSEN -SHANNON 
DivtRC;ENCt M ~ A S U R L  

Most measures of difference, including the Jcnsen-Shannon 
divergence previously discussed, are designed for two probability 
distributions. For certain applications such as in the study of 
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taxonomy in biology and genetics [24], [25], i t  might be necessary 
to measure the overall difference of more than two distribu- 
tions. The Jcnsen-Shannon divergence can be generalized to 
provide such a measure for any finite number of distributions. 
This is useful for the study of decision problems with more than 
two classes involved. 

Let pI,pZ;. . , p , /  be n probability distributions with weights 
rlr  T?, ’ . ., T , ~ ,  respectively. The generalized Jenscn-Shannon 
divergence can be defined as 

J~,(P,~PZ>...~P,/) = H c n-,P, - c T , H ( P , ) ,  (5.1) i., i 
where n- = ( T ~ , T ~ , . .  . ,T ,~) .  Consider a decision problem with n 
classes cI ,cZ; .  . , c , ~  with prior probabilities n - , , ~ ~ : ~  The 
Bayesian error for n classes can be written as 

P ( e ) =  p ( x ) (  I -max(p(c,Ix),p(c,lx);..,p(c,,lx)). 

(5.2) 
. I € X  

The relationship between the generalized Jensen-Shannon di- 
vergence and the previous Bayes probability of error is given by 
the following theorems. 

Theorem 6: 

where 

H ( n - ) = -  ~ n - , l o g a ,  and p , ( x ) = p ( x I c , ) ,  i=1 ,2 ; . . , n .  
/ I  

/ = I  

Proof The proof of this inequality is much the same as that 
of (4.3). 0 

Theorem 7: 

Proof: From (4.11) and Theorem 9 in the Appendix, we 
have 

/ I  - I 

H’(ClX)5 c P ( X )  2 c ~ P ( c r l x ) ( 1 - P ( C , l x ) )  
I E x i ,=I 

(5.5) 

By the Cauchy inequality, (5.5) becomes 
/ I  - I 

.Y E x 
(5.6) 

Assume, without loss of generality, that the p ( c , l x )  have been 
reordered in such a way that p ( c , , l x )  is the largest. Then from 

H’(CIX) 4 4 P (  x ) (  1 - max { P (  c,Ix)} ]( n - 1) 
.v t x 

= 4 ( n - I ) P ( e ) ,  

we immediately obtain the desired result. O 

It should be pointed out that the bounds previously presented 
are in explicit forms and can be computed easily. Implicit lower 
and upper bounds for the probability of error in terms of the 
f-divergence can be found in [3]. It should be useful to study the 
relationship between these bounds but it will not be done in this 
correspondence. 

~ 
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VI. CONCLUSION 

Based on the Shannon entropy, we were able to give a unified 
definition and characterization to a class of information-theo- 
retic divergence measures. Some of these measures have ap- 
peared earlier in various applications. But their use generally 
suffered from a lack of theoretical justification. The results 
presented here not only fill this gap but provide a theoretical 
foundation for future applications of these measures. Some of 
the results such as those presented in the Appendix are related 
to entropy and are useful in their own right. 

The unified definition is also important for further study of 
the measures. We are currently studying further properties of 
the class. Some of their key applications are also under investi- 
gation. 
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APPENDIX 
Theorem 8: For any 0 I x 5 1, 

L 

Proof: Consider a continuous function f ( x )  in the closed 
interval [O, 11: 

f (  x) = 24- + x log x + (1  - x) log (1 - x )  . 

f ( x )  is twice differentiable in the open interval (0, l) ,  

where In is the natural logarithm. There are two different real 
solutions of the equation, f ” ( x )  = 0, 

1 - 4 1 - ( 1 n 2 ) ~  1 + 41 -(ln212 

2 
It can be easily shown that 0 < x, < 1/2 < x 2  < 1. 

From (A.31, it is clear that the function f ” ( x )  is continuous in 
(0 , l )  and the denominator of f ” ( x )  is nonnegative in [O, 11. Since 

lim ( 2 4 m - 1 n 2 )  = -1n2, 

f ” ( x , )  = 0, and there exists no x E (0, x , )  such that f ” ( x )  = 0, by 
the continuity of f ” ( x ) ,  it  follows, f ” ( x )  < 0 for 0 < x < x,, and 
thus the function f ( x )  is concave in ( O , x , ) .  

and x 2 =  
2 

X I  = 

.I + o +  

For x = 1/2 E ( x , ,  x ? ) ,  we obtain 

2 J m - 1 n 2  = 1 - 1 n 2 >  0, 

which implies f”(1/2) > 0. Since f ” ( x , )  = f “ ( x 2 )  = 0 and there 
exists no x E (x,, x ? )  such ihat f ” ( x )  = 0, we can conclude that 
f ” ( x ) >  0 for x ,  < x < x 2 .  f ( x )  is therefore convex in ( x , , x z ) .  
Similarly, from 

lim ( 2 4 m - 1 1 1 2 )  = -1112, 
A - 1 -  

it follows f “ ( x )  < 0 for x?  < x < 1. This means that the function 
f ( x )  is concave in (x2,1).  In summary, the function f ( x )  is 
concave in both open intervals (0, x , )  and ( x ? ,  l), and convex in 
(x l ,x2).  ( x , , f ( x , ) )  and ( x 2 . f ( x 2 ) )  are the points of inflections 
for f (x 1. 
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Since f ( x )  is continuous in [ x l r x 2 ]  and convex in (xl,x2), it 
has a unique minimum in [xI,x2]. The minimum is obtained at 
x,,, = 1/2 and f(x,,,)=O. Thus, we have, for any x E[xI ,x2] ,  

f ( x )  2 f (x , , , )  = 0. (‘4.4) 

Also, since f ( x )  is continuous in [O, x , ]  and concave in (O,x,) ,  
we have 

f ( x ) > m i n ( f ( o ) , f ( x , ) ) > m i n  f ( 0 )  f - = 0 ,  ( ( 2 )  
for x E [ O , X ~ ] .  ( A S )  

Similarly, 

for x E [ x , , ~ ] .  (A.6) 

By combining (A.4), (AS), and (A.61, we finally obtain 

f ( x )  0, for 0 I x I 1, (‘4.7) 

Theorem 9: Let q = ( q l , q 2 , . . . , q , l ) ,  O I q , i l ,  1 1 i I t 1 ,  and 

from which inequality (A.1) follows immediately. 

Cy= I qJ = 1 .  Then 
1 
2 - H ( q )  I ’i’ d m .  (A.8) 

J - 1  

Proof: By the recursivity of the entropy function [1, p. 301, 
we have 

H (  4 1 = H (  4 I 3 42 ? . ’ ’ > q,, - I + qJI )  

+ dqu - I( 1 - q!l- I )  ’ 

I 1  - I 

= c Jm. 0 
, = I  
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On the Error Probability of Signals in Additive 
White Gaussian Noise 

Brian Hughes, Member, IEEE 

Absrracr -A new upper bound is presented to the probability of error 
in detecting one of M equally probable signals in additive white Gauss- 
ian noise. This bound is easy to calculate, can be applied to any signal 
set, and is always better than the union and minimum distance bounds. 

Index Terms -Error probability, Gaussian noise, signal detection, 
performance bounds. 

I. INTRODUCTION 

Consider the classical problem of detecting one of M signals 
in additive white Gaussian noise: An integer message m ,  equally 
likely to be any element of (0; . ., M - I), is transmitted over an 
N-dimensional vector channel by sending a corresponding vector 
x g ; ~  ’ , x M -  I E R N .  When m = i is transmitted, the received 
vector is 

y = x ,  + n ,  

where the components of n are independent, identically dis- 
tributed N(0,v’ )  random variables. An estimate of m is made 
at the receiver using the maximum likelihood rule. From ele- 
mentary communication theory, the problem of detecting one of 
M equally likely waveforms in additive white Gaussian noise 
with two-sided power spectral density u7 can be expressed in 
this form. 
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Let P,,,, be the error probability of the maximum likelihood 
detector given that m = 0 is sent. There are several simple, 
generally applicable. upper bounds for this error probability. 
Two of the most commonly used are the union hound 

M - l  

P,..II 5 c ! a d ,  / 2 u ) ,  (1 .2 )  
/ = I  

where 

Q( x )  = / : ( 2 2 )  I ”  exp ( - t 2 / 2 )  dt and d ,  = Ix, - xi,\; 

and the minimum distance bound 

P,. , , ,<Pr{lnl2 d m i , , / 2 )  = T ( N / 2 , d ; , , / 8 a 2 ) ,  (1.3) 

where d,,, = min, d , ,  and 

is a (normalized) incomplete gamma function. Unfortunately, 
(1.2) is somewhat loose for small values of d,,, /2u  or large M ,  
and (1.3) is loose for all but the smallest values of N .  

In this note, we present a new upper bound to the probability 
of error that is also straightforward to calculate and generally 
applicable and improves upon the bounds in (1.2) and (1.3). In 
Section 11, we show 

M - l  

P‘,.O< c A N ( d , / a f , > d , / 2 a ) ?  (1.5) 
I =  I 

where a,, is the unique solution of 

and where’ 

. r  ( ( N - 1 ) / 2 ,  ( y - 1 ) + z / 2 )  dz , ( 1 .7) 

? ( a ,  x )  = 1 - T(a ,  x ) .  (1 .8)  

Moreover, for virtually all signal sets of practical interest, we 
show that this bound reduces to 

p c , , O  Nmi,AN(Po,dmin/2a),  (1.9) 
where d,,, = min, + d , ,  Nml,,, is the number of vectors for which 
d ,  = d,,,, and where P,, satisfies 

N m i n A N ( P o , o )  = ’ .  (1 .IO) 

In Section 111, we present series expansions for A , ( y , x )  and 
A,(y,O) that allow rapid calculation of (1.5) and (1.9). Finally, 
the bound is calculated for two examples in Section IV. 

11. DERIVATION OF THE BOUND 

For the channel ( 1 . 1 )  the maximum likelihood detector is the 
minimum Euclidean distance rule: 

with ties resolved arbitrarily. For convenience, we resolve ties in 
favor of the lurger index, and define decision regions D, = 

(y lA(y)  = i ) ,  0 I i I M - 1. 

‘For any real number x, x +  = max(0, x) 
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