Homework 5 (due Wednesday, April 5, 2006)

March 31, 2006

1. MCMC implementation: Consider the objective function

$$E(s) = -\left[\frac{1}{2}\sum_{m=0}^{N-1}\sum_{n=0}^{N-1}J_{mn}s_ms_n + \sum_{n=0}^{N-1}H_ns_n\right]$$
(1)

with $s_m \in \{-1, 1\}, \forall m$. In (1), $J_{mn}, n = m \oplus 1$ or $n = m \oplus 1$ is drawn from a normal distribution with mean zero and standard deviation 1. Similarly, H_n is also drawn from a normal distribution with mean zero and standard deviation 1. (In the above, $m \oplus 1 = 0$ when m = N - 1 and $m \oplus 1 = N - 1$ when m = 0.) $J_{mn} = 0$ when $n \neq m \oplus 1$ or $n \neq m \oplus 1$. The corresponding probability distribution is

$$\Pr(S=s) = \frac{\exp\{-\beta E(s)\}}{Z(\beta)}.$$
(2)

- Construct the probability table over the 1024 possibilities of s corresponding to N = 10 for $\beta = 0.1$, 0.3, 1, 3, 10.
- Implement a Gibbs sampler by successively sampling from $\Pr(s_k|s_l, l \neq k)$ and beginning with a suitably chosen random initial condition. Show the approach to convergence for all values of β above using histograms.
- Implement a Metropolis-Hastings sampler of your choice google for different choices of $Q(s'; s^{(t)})$. Show the approach to convergence for all values of β above using histograms.
- In all cases, estimate $\frac{1}{N}\sum_{n=0}^{N-1} \langle s_n \rangle$ for different values of β and compare it to the true value.