Homework 5 (due Wednesday, April 5, 2006)

March 31, 2006

1. MCMC implementation: Consider the objective function

$$
\begin{equation*}
E(s)=-\left[\frac{1}{2} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} J_{m n} s_{m} s_{n}+\sum_{n=0}^{N-1} H_{n} s_{n}\right] \tag{1}
\end{equation*}
$$

with $s_{m} \in\{-1,1\}, \forall m$. In (1), $J_{m n}, n=m \oplus 1$ or $n=m \ominus 1$ is drawn from a normal distribution with mean zero and standard deviation 1. Similarly, H_{n} is also drawn from a normal distribution with mean zero and standard deviation 1. (In the above, $m \oplus 1=0$ when $m=N-1$ and $m \ominus 1=N-1$ when $m=0$.) $J_{m n}=0$ when $n \neq m \oplus 1$ or $n \neq m \ominus 1$. The corresponding probability distribution is

$$
\begin{equation*}
\operatorname{Pr}(S=s)=\frac{\exp \{-\beta E(s)\}}{Z(\beta)} \tag{2}
\end{equation*}
$$

- Construct the probability table over the 1024 possibilities of s corresponding to $N=10$ for $\beta=0.1$, $0.3,1,3,10$.
- Implement a Gibbs sampler by successively sampling from $\operatorname{Pr}\left(s_{k} \mid s_{l}, l \neq k\right)$ and beginning with a suitably chosen random initial condition. Show the approach to convergence for all values of β above using histograms.
- Implement a Metropolis-Hastings sampler of your choice - google for different choices of $Q\left(s^{\prime} ; s^{(t)}\right)$. Show the approach to convergence for all values of β above using histograms.
- In all cases, estimate $\frac{1}{N} \sum_{n=0}^{N-1}<s_{n}>$ for different values of β and compare it to the true value.

