# Homework 4 (due Tuesday, March 7th, 2006) 

March 2, 2006

1. Imagine that you are in charge of a political survey where each subject is classified according to four category spaces-a) conventional (C): \{liberal (0), conservative (1) \}, b) nonlinear (N): \{moderate (0), radical (1)\}, c) orthogonal $(\mathrm{O})$ : \{authoritarian (0), libertarian (1)\} and d) moral (M): \{exclusivist (0), inclusivist (1) \}. In each space, please note that we have assigned binary values to the labels. For example, liberal is assigned ' 0 ' and conservative ' 1 ' etc. We are interested in studying the co-occurrences between these spaces.

- Given a pool of candidates who have been classified according to the four category structures above, how would you estimate the joint probability $\operatorname{Pr}(C, N, O, M)$ between the four spaces from the data? [Explain qualitatively how you'd build up the four-way probability distribution.]
- You are given the following: $\operatorname{Pr}(C=0)=x, \operatorname{Pr}(N=0)=y, \operatorname{Pr}(O=$ $0)=z$, and $\operatorname{Pr}(M=0)=w$. Also, $\operatorname{Pr}(C=0, N=0)=a, \operatorname{Pr}(N=$ $0, O=0)=b, \operatorname{Pr}(O=0, M=0)=c$, and $\operatorname{Pr}(M=0, C=0)=d$. Evaluate the pairwise joint probabilities $\operatorname{Pr}(C, N), \operatorname{Pr}(N, O), \operatorname{Pr}(O, M)$ and $\operatorname{Pr}(M, C)$ given this information. [You'll need to use basic rules relating two variable probability distributions to single variable probability distributions. Pretend that $a, b, c, d$ and $x, y, z, w$ are numbers. Now, write all the probabilities in terms of these 8 numbers. You'll need to know that $\sum_{c} \operatorname{Pr}(C=c, N)=\operatorname{Pr}(N)$.]
- Given the above pairwise probabilities, estimate the full joint probability $\operatorname{Pr}(C, N, O, M)$ two ways. In case 1 , remove $\operatorname{Pr}(M, C)$ to get a tree. In case 2, remove $\operatorname{Pr}(C, N)$ to get a tree. List the conditional probability approximations in both cases. Write down all 16 possibilities for both cases. [Warning: This will take some time. However, since the Fall 2002 class completely botched this question, I'm making sure that if I asked you ten years from now to answer this question, you'll do it like a zombie. We're going for permanent memory etching here. If you think this is horse\% \$ \# @, please realize that it builds character.]
- For both cases above, evaluate $\operatorname{Pr}(C, O)$ which was not given to you. [Establish expressions such that both approaches give you the same answer for all four possibilities. You cannot assume that you have the co-occurrences from the data from which to estimate $\operatorname{Pr}(C, O)$.]

2. Show the equivalence of the following free energy to the Bethe free energy

$$
\begin{array}{r}
F_{\text {equiv }}\left(\left\{p_{i j}, p_{i}, \sigma_{i j}, \rho_{i}, \gamma_{i j}, \lambda_{i j}\right\}\right)=\sum_{i j: i>j} \sum_{x_{i}, x_{j}} p_{i j}\left(x_{i}, x_{j}\right) \log \frac{p_{i j}\left(x_{i}, x_{j}\right)}{\sigma_{j i}^{\delta}\left(x_{i}\right) \sigma_{i j}^{\delta}\left(x_{j}\right)} \\
+\delta \sum_{i j: i \neq j} \sum_{x_{i}} \sigma_{i j}\left(x_{j}\right)+\sum_{i} \sum_{x_{i}} p_{i}\left(x_{i}\right) \log \frac{p_{i}\left(x_{i}\right)}{\rho_{i}^{q_{i}}\left(x_{i}\right)}+\sum_{i} q_{i} \sum_{x_{i}} \rho_{i}\left(x_{i}\right) \\
-\sum_{i j: i>j} \sum_{x_{i}, x_{j}} p_{i j}\left(x_{i}, x_{j}\right) \log \psi_{i j}\left(x_{i}, x_{j}\right) \psi_{i}^{\xi_{i}}\left(x_{i}\right) \psi_{j}^{\xi_{j}}\left(x_{j}\right)-\sum_{i} r_{i} \sum_{x_{i}} p_{i}\left(x_{i}\right) \log \psi_{i}\left(x_{i}\right) \\
+\sum_{i j: i>j} \sum_{x_{j}} \lambda_{i j}\left(x_{j}\right)\left[\sum_{x_{i}} p_{i j}\left(x_{i}, x_{j}\right)-p_{j}\left(x_{j}\right)\right]+\sum_{i j: i>j} \sum_{x_{i}} \lambda_{j i}\left(x_{i}\right)\left[\sum_{x_{j}} p_{i j}\left(x_{i}, x_{j}\right)-p_{i}\left(x_{i}\right)\right] \\
+\sum_{i j: i>j} \gamma_{i j}\left(\sum_{x_{i}, x_{j}} p_{i j}\left(x_{i}, x_{j}\right)-1\right) \tag{1}
\end{array}
$$

What are the fixed point equations for $\left\{p_{i j}, p_{i}, \sigma_{i j}, \rho_{i}\right\}$ ? [You'll have to provide the constraints on $\delta, q_{i}, r_{i}, \xi_{i}$ in order to establish equivalence.]

