Homework 2 (due Friday, Feb 10, 2006)

February 1, 2006

1. The Fisher information matrix arises from multiparameter densities, where the (i, j) entry of the matrix is given by

$$
\begin{equation*}
g_{i j}(\theta)=\int p(\mathbf{x} \mid \theta) \frac{\partial}{\partial \theta^{i}} \log p(\mathbf{x} \mid \theta) \frac{\partial}{\partial \theta^{j}} \log p(\mathbf{x} \mid \theta) d \mathbf{x} \tag{1}
\end{equation*}
$$

Intuitively one can think of the Fisher information as a measure of the amount of information present in the data about a parameter θ.

The Fisher information matrix also satisfies the properties of a metric on a Riemannian manifold. Don't worry too much about what exactly a Riemannian manifold is at this point. In this manifold, $p \in M$ is a probability density with its local coordinates defined by the model parameters. For example, a bivariate Gaussian density can be represented as a single point on 4-dimensional manifold with coordinates $\theta=\left(\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}\right)^{T}$, where as usual these represent the mean and standard deviation of the density. It can be shown that many of the other common distance measures on probability densities (e.g. Kullback-Leibler, Jensen-Shannon, etc.) can be written in terms of the Fisher-Rao metric given that the densities are close. For example, the Kullback-Leibler distance between two parametric densities θ and $\theta+\delta \theta$ is proportional to the Fisher-Rao metric g by

$$
\begin{equation*}
D(p(x \mid \theta+\delta \theta) \| p(x \mid \theta)) \approx \frac{1}{2} \delta \theta^{T} g \delta \theta \tag{2}
\end{equation*}
$$

In other words, the Fisher-Rao metric is equal to, within a constant, a quadratic form with the Hessian being the second derivative of the Kullback-Leibler distance. Thus given two parametric densities, we can formulate a path length between them as

$$
\begin{equation*}
s=\int_{0}^{1} \sum_{i=1}^{M} \sum_{j=1}^{M} g_{i j} \dot{\theta}^{i} \dot{\theta}^{j} d t \tag{3}
\end{equation*}
$$

where M is the cardinality of the set $\left\{\theta^{i}\right\}$ and $\dot{\theta}^{i}=\frac{d \theta^{i}}{d t}$ is the parameter time derivative. Technically, (3) is the square of the geodesic distance, but has the same minimizer as $\int_{0}^{1} \sqrt{\sum_{i=1}^{M} \sum_{j=1}^{M} g_{i j} \dot{\theta}^{i} \dot{\theta}^{j}} d t$. The functional (3) is minimized using standard calculus of variations techniques leading to the following Euler-Lagrange equations

$$
\begin{equation*}
\frac{\delta s}{\delta \theta^{k}}=-2 \sum_{i=1}^{M} g_{k i} \ddot{\theta}^{i}+\sum_{i=1}^{M} \sum_{j=1}^{M}\left\{\frac{\partial g_{i j}}{\partial \theta^{k}}-\frac{\partial g_{i k}}{\partial \theta^{j}}-\frac{\partial g_{k j}}{\partial \theta^{i}}\right\} \dot{\theta}^{i} \dot{\theta}^{j}=0 . \tag{4}
\end{equation*}
$$

This is a highly non-linear system of partial differential equations (PDEs) and not analytically solvable except in special cases. One can use gradient descent to find a local solution to the system
with update equations

$$
\begin{equation*}
\theta_{\tau+1}^{k}(t)=\theta_{\tau}^{k}(t)-\alpha_{\tau} \frac{\delta s}{\delta \theta_{\tau}^{k}(t)}, \forall t \tag{5}
\end{equation*}
$$

where τ represents the iteration step and α the step size.
In (5), the path parameter t has been discretized. Consequently, you have to use discrete approximations to the derivatives $\dot{\theta}^{k}=\theta^{k}(t+1)-\theta^{k}(t)$ and $\ddot{\theta}^{k}=\theta^{k}(t+1)-2 \theta^{k}(t)+\theta^{k}(t-1)$.

- Let $p(x \mid \theta)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2}\left(x-\mu^{1}\right)^{2}\right\}+\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2}\left(x-\mu^{2}\right)^{2}\right\}$. Assume that $\left(\mu^{1}(0), \mu^{2}(0)\right)=$ $(-1,-1)$ and $\left(\mu^{1}(1), \mu^{2}(1)\right)=(1,1)$. Divide the path interval t into ten time steps. Initialize the geodesic by a straight line from $(-1,-1)$ to $(1,1)$. In order to compute $g_{i j}$ and its derivatives, you'll have to numerically perform the integration in $g_{i j}(\theta)=\int p(\mathbf{x} \mid \theta) \frac{\partial}{\partial \theta^{2}} \log p(\mathbf{x} \mid \theta) \frac{\partial}{\partial \theta^{j}} \log p(\mathbf{x} \mid \theta) d \mathbf{x}$ and in the integrals of $\frac{\partial g_{i j}}{\partial \theta^{k}}$. Since x is one-dimensional, assume an integration interval of $[-$ $10,10]$. You will have to carefully take care of underflow errors. Run a gradient descent algorithm until you get reasonable convergence of the entire path. At each step τ, you should choose a step size parameter α_{τ} such that $s(\tau+1) \leq s(\tau)$. Show the resulting geodesic.
- Prove that the Fisher geodesic for a simple Gaussian $p(x \mid \theta)=\frac{1}{\sqrt{2 \pi \sigma}} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\}$ is a straight line.

