Homework 2
(due Friday, Feb 10, 2006)

February 1, 2006

1. The Fisher information matrix arises from multiparameter densities, where the (i, j) entry of the
matrix is given by

5(0) = [ p(xl0) 1o logp(x16) 20 ogp(x16)dx )

Intuitively one can think of the Fisher information as a measure of the amount of information
present in the data about a parameter 6.

The Fisher information matrix also satisfies the properties of a metric on a Riemannian man-
ifold. Don’t worry too much about what exactly a Riemannian manifold is at this point. In this
manifold, p € M is a probability density with its local coordinates defined by the model parameters.
For example, a bivariate Gaussian density can be represented as a single point on 4-dimensional
manifold with coordinates 6 = (p1, 2, 01,02)", where as usual these represent the mean and stan-
dard deviation of the density. It can be shown that many of the other common distance measures
on probability densities (e.g. Kullback-Leibler, Jensen-Shannon, etc.) can be written in terms of
the Fisher-Rao metric given that the densities are close. For example, the Kullback-Leibler distance
between two parametric densities § and 6 + 66 is proportional to the Fisher-Rao metric g by

D (p(al6 -+ 50)|Ip(al6)) ~ 536950 @)

In other words, the Fisher-Rao metric is equal to, within a constant, a quadratic form with the
Hessian being the second derivative of the Kullback-Leibler distance. Thus given two parametric
densities, we can formulate a path length between them as
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where M is the cardinality of the set {#*} and 6 = 4% ig the parameter time derivative. Technically,

(3) is the square of the geodesic distance, but has the same minimizer as fo \/Ei:l ijl gz-jH 03 dt.
The functional (3) is minimized using standard calculus of variations techniques leading to the
following Euler-Lagrange equations

0gij  0gik 09k \ jipg
22%9 +ZZ{8@I§ T o0 895}993 - W

=1 j=1

This is a highly non-linear system of partial differential equations (PDEs) and not analytically
solvable except in special cases. One can use gradient descent to find a local solution to the system



with update equations

051 (t) = 05 (t) — armyw (5)

k
where T represents the iteration step and « the step size.

In (5), the path parameter ¢ has been discretized. Consequently, you have to use discrete
approximations to the derivatives 6% = 0%(t + 1) — 6%(t) and 0¥ = 0 (t + 1) — 20%(¢t) + 6% (t — 1).

o Let p(x]6) = \/%exp{—%(x —uh?} + \/% exp{—21(z — *)?}. Assume that (u'(0), 4(0)) =
(—1,—1) and (p'(1), #?(1)) = (1,1). Divide the path interval ¢ into ten time steps. Initialize
the geodesic by a straight line from (-1, —1) to (1,1). In order to compute g;; and its deriva-
tives, you'll have to numerically perform the integration in g;;(6) = j’p(x|9)% log p(x|9)% log p(x]0)dx
and in the integrals of g%i,f. Since z is one-dimensional, assume an integration interval of |-
10,10]. You will have to carefully take care of underflow errors. Run a gradient descent
algorithm until you get reasonable convergence of the entire path. At each step 7, you should

choose a step size parameter «, such that s(7 + 1) < s(7). Show the resulting geodesic.
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e Prove that the Fisher geodesic for a simple Gaussian p(z|f) = exp{—#(m —w?lis a

straight line.



