
Homework 2
(due Friday, Feb 10, 2006)

February 1, 2006

1. The Fisher information matrix arises from multiparameter densities, where the (i, j) entry of the
matrix is given by

gij(θ) =
∫

p(x|θ) ∂

∂θi
log p(x|θ) ∂

∂θj
log p(x|θ)dx (1)

Intuitively one can think of the Fisher information as a measure of the amount of information
present in the data about a parameter θ.

The Fisher information matrix also satis�es the properties of a metric on a Riemannian man-
ifold. Don't worry too much about what exactly a Riemannian manifold is at this point. In this
manifold, p ∈ M is a probability density with its local coordinates de�ned by the model parameters.
For example, a bivariate Gaussian density can be represented as a single point on 4 -dimensional
manifold with coordinates θ = (µ1, µ2, σ1, σ2)T , where as usual these represent the mean and stan-
dard deviation of the density. It can be shown that many of the other common distance measures
on probability densities (e.g. Kullback-Leibler, Jensen-Shannon, etc.) can be written in terms of
the Fisher-Rao metric given that the densities are close. For example, the Kullback-Leibler distance
between two parametric densities θ and θ + δθ is proportional to the Fisher-Rao metric g by

D (p(x|θ + δθ)||p(x|θ)) ≈ 1
2
δθT gδθ (2)

In other words, the Fisher-Rao metric is equal to, within a constant, a quadratic form with the
Hessian being the second derivative of the Kullback-Leibler distance. Thus given two parametric
densities, we can formulate a path length between them as

s =
∫ 1

0

M∑

i=1

M∑

j=1

gij θ̇
iθ̇jdt (3)

where M is the cardinality of the set {θi} and θ̇i = dθi

dt is the parameter time derivative. Technically,
(3) is the square of the geodesic distance, but has the same minimizer as

∫ 1
0

√∑M
i=1

∑M
j=1 gij θ̇iθ̇jdt.

The functional (3) is minimized using standard calculus of variations techniques leading to the
following Euler-Lagrange equations

δs

δθk
= −2

M∑

i=1

gkiθ̈
i +

M∑

i=1

M∑

j=1

{
∂gij

∂θk
− ∂gik

∂θj
− ∂gkj

∂θi

}
θ̇iθ̇j = 0. (4)

This is a highly non-linear system of partial di�erential equations (PDEs) and not analytically
solvable except in special cases. One can use gradient descent to �nd a local solution to the system
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with update equations
θk
τ+1(t) = θk

τ (t)− ατ
δs

δθk
τ (t)

, ∀t (5)

where τ represents the iteration step and α the step size.
In (5), the path parameter t has been discretized. Consequently, you have to use discrete

approximations to the derivatives θ̇k = θk(t + 1)− θk(t) and θ̈k = θk(t + 1)− 2θk(t) + θk(t− 1).

• Let p(x|θ) = 1√
2π

exp{−1
2(x − µ1)2} + 1√

2π
exp{−1

2(x − µ2)2}. Assume that (µ1(0), µ2(0)) =
(−1,−1) and (µ1(1), µ2(1)) = (1, 1). Divide the path interval t into ten time steps. Initialize
the geodesic by a straight line from (−1,−1) to (1,1). In order to compute gij and its deriva-
tives, you'll have to numerically perform the integration in gij(θ) =

∫
p(x|θ) ∂

∂θi log p(x|θ) ∂
∂θj log p(x|θ)dx

and in the integrals of ∂gij

∂θk . Since x is one-dimensional, assume an integration interval of [-
10,10]. You will have to carefully take care of under�ow errors. Run a gradient descent
algorithm until you get reasonable convergence of the entire path. At each step τ , you should
choose a step size parameter ατ such that s(τ + 1) ≤ s(τ). Show the resulting geodesic.

• Prove that the Fisher geodesic for a simple Gaussian p(x|θ) = 1√
2πσ

exp{− 1
2σ2 (x − µ)2} is a

straight line.
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