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Midterm II

FEEDS Midterm

1. [30 points] Relationship between supervised and unsupervised learning:

Supervised learning: Regardless of whether a radial basis function (RBF) or multi-layer per-

ceptron (MLP) is used for supervised learning, the underlying thread is the same. Given a set

of feature vectors xi ∈ R
D, i ∈ {1, . . . , N} and a set of outputs yi ∈ {0, 1}, i ∈ {1, . . . , N}, fit a

function f(x;w) that minimizes the least-squares objective function
∑N

i=1
|yi − f(xi;w)|2. When

a Gaussian radial basis function approximation is used, the function is explicitly written as

f(x; c, z) =
K∑

a=1

ca exp{−
‖ x − za ‖2

2σ2
} (1)

where f(x; c, z) is a Gaussian radial basis function (GRBF) approximation which depends on the

unknown centers za ∈ R
D, a ∈ {1, . . . ,K} and the unknown coefficients ca ∈ R

1, a ∈ {1, . . . ,K}.

The function f(x; c, z) is just a more elaborate form of f(x;w). We use the semicolon notation to

denote the fact that w or (c, z) are a set of parameters. The parameter σ is a free parameter but

it can also be estimated from the data.

Unsupervised learning: Regardless of whether a mixture model or other density estimation

methods are used for unsupervised learning, the underlying thread is the same. Given a set of feature

vectors xi ∈ R
D+1, i ∈ {1, . . . , N}, fit a probability density function p(x;w) that minimizes the

negative log-likelihood −
∑N

i=1
log p(xi;w). When a Gaussian mixture model density approximation

is used with isotropic covariances, the density function is explicitly written as

p(x;π, z) =

K∑

a=1

πa exp{−
‖ x− za ‖2

2σ2
} (2)

where p(x;π, z) is a Gaussian mixture model (GMM) approximation which depends on the un-

known centers za ∈ R
D+1, a ∈ {1, . . . ,K} and the unknown occupancy probabilities πa ∈ R

1, a ∈

{1, . . . ,K} and
∑K

a=1
πa = 1, πa > 0. The parameter σ is a free parameter but it can also be

estimated from the data.
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• [5 points] Consider the case where σ is very small and where the number of centers K is

equal to the number of data points N , i.e. K = N . For both the GRBF and the GMM

models, what are the optimal choices for z? What are the optimal choices for c and π for the

GRBF and GMM models respectively? In both cases, assume a value of σ which can be made

as small as possible while remaining positive. Explain your choice for the optimal solution.

• [5 points] How do you convert a supervised learning function approximation problem into

an unsupervised learning density estimation problem? That is, show how you can incorporate

the labels yi, i ∈ {1, . . . , N} into the feature vectors xi, i ∈ {1, . . . , N}. Qualitatively, explain

the difference in perspective as you make this transition from supervised to unsupervised

learning using GRBFs for supervised learning and GMMs for unsupervised learning. [In

other words, try and explain how and why these two approaches—functional fit and density

estimation—are so closely related. Once you understand that supervised learning can be

viewed as unsupervised learning but with an extra feature dimension, then you’re set on this

question.]

• [5 points] Once the labels have been incorporated into the feature vectors, what is the

expression for p(y|x) in terms of the GMM parameters (π, z, σ)? [Recall that the unsupervised

learning will give you p(x, y). Can you obtain p(y|x) from this?

• [5 points] Having converted a supervised learning problem into an unsupervised learning

problem, show how you would classify an incoming pattern. That is, write down a formula

that clearly does the job of classifying a new incoming pattern x whose label y is unknown.

Explain your choice.

• [10 points] There is no reason why GRBF approximations should be restricted to the case

where yi ∈ {0, 1}. Consider the general situation where yi ∈ R
1. Using an example where

xi ∈ R
1 (for the sake of simplicity), show how you can use either the GRBF approximation

or the GMM density approximation to fit the set of samples (xi, yi), i ∈ {1, . . . , N}. That

is, if a GRBF is used, you need to treat it as a supervised learning problem where x is the

input and y the “label.” If a GMM is used, you are fitting a Gaussian mixture model to the

pairs (xi, yi). What are the similarities and differences between using these two methods? We

want the results from the two methods to be identical. [Obviously the methods themselves

are very different.] Write down a formula which guarantees equivalence.

2. [30 points] Bayesian networks: Imagine that you are in charge of a political survey where each

subject is classified according to four category spaces—a) conventional (C): {liberal (0), conservative

(1)}, b) nonlinear (N): {moderate (0), radical (1)}, c) orthogonal (O): {authoritarian (0), libertarian

(1)} and d) moral (M): {exclusivist (0), integral (1)}. In each space, please note that we have

assigned binary values to the labels. For example, liberal is assigned ’0’ and conservative ’1’ etc.

We are interested in studying the co-occurrences between these spaces.
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• [5 points] Using a histogramming scheme, how would you estimate the joint probability

Pr(C,N,O,M) between the four spaces from the data? [Explain qualitatively how you’d

build up the four-way probability distribution.]

• [5 points] You are given the following: Pr(C = 0) = x, Pr(N = 0) = y, Pr(O = 0) = z,

and Pr(M = 0) = w. Also, Pr(C = 0, N = 0) = a, Pr(N = 0, O = 0) = b, Pr(O =

0,M = 0) = c, and Pr(M = 0, C = 0) = d. Evaluate the pairwise joint probabilities

Pr(C,N),Pr(N,O),Pr(O,M) and Pr(M,C) given this information. [You’ll need to use basic

rules relating two variable probability distributions to single variable probability distributions.

Pretend that a, b, c, d and x, y, z, w are numbers. Now, write all the probabilities in terms of

these 8 numbers. You’ll need to know that
∑

c p(C = c,N) = p(N).]

• [10 points] Given the above pairwise probabilities, estimate the full joint probability Pr(C,N,O,M)

two ways. In case 1, remove Pr(M,C) to get a tree. In case 2, remove Pr(C,N) to get a

tree. List the conditional probability approximations in both cases. Write down all 16 pos-

sibilities for both cases. [Warning: This will take some time. However, since the Fall 2002

class botched this question, I’m making sure that if I asked you ten years from now to do this

question, you’ll do it like a zombie. We’re going for permanent memory etching here. If you

think this is horse%$#@, please realize that it builds character.]

• [10 points] For both cases above, evaluate Pr(C,O) which was not given to you. [Establish

expressions such that both approaches give you the same answer for all four possibilities.

You cannot assume that you have the co-occurrences from the data from which to estimate

Pr(C,O).]

3. [40 points] Topological clustering: Consider the following objective function for standard

point feature clustering.

E(M,y) =
1

2σ2

N∑

i=1

K∑

a=1

Mia ‖ xi − ya ‖2 +
N∑

i=1

λi(
K∑

a=1

Mia − 1) +
N∑

i=1

K∑

a=1

Mia log Mia (3)

where Mia ∈ R
1 and Mia > 0 is the usual membership matrix (albeit analog). The cluster centers

are denoted by ya, a ∈ {1, . . . ,K} and the feature vectors are xi, i ∈ {1, . . . , N}.

• [5 points] Minimize the above objective function w.r.t. y by differentiating E(M,y) w.r.t.

y and setting the result to zero. What is the closed form solution that you get for y? [You

can differentiate separately for each ya to solve this problem.]

• [5 points] Minimize the above objective function w.r.t. M by differentiating E(M,y) w.r.t.

M and setting the result to zero. What is the closed form solution that you get for M? [You

can differentiate separately for each Mia to solve this problem.]

• [5 points] Eliminate λ from the closed form solution for M by satisfying the constraint
∑K

a=1
Mia = 1. What is the closed form solution that you get for λ? [To solve this, all
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you need to do is to satisfy
∑K

a=1
Mia = 1 for the solution you got for M from the previous

question.]

• [5 points] How do the pair of closed form solutions that you get for (M,y) differ from the

solutions that we obtained from the EM algorithm for a Gaussian mixture model.

Let us now extend the above objective function to perform topological clustering. Assume that the

clusters ya are organized in a graph whose (a, b) adjacency matrix entry is Gab [Gab ∈ {0, 1}. If

Gab = 0 then there is no topological link. If Gab = 1 then a and b are topologically connected. For

example, if we seek a two dimensional topology, then the graph G would have a mesh structure.

The topological clustering objective function is

E(M,y) =
1

2σ2

N∑

i=1

N∑

j=1

K∑

a=1

K∑

b=1

MiaMjbGab(‖ xi − ya ‖2 + ‖ xj − yb ‖
2 + ‖ ya − yb ‖

2) (4)

+

N∑

i=1

λi(

K∑

a=1

Mia − 1) +

N∑

i=1

K∑

a=1

Mia log Mia.

• [5 points] Explain the first term [the term with the four summations is referred to as the

first term] of the objective function using a 1-D topology example. What is G for the 1-D

topology? [You may assume an open curve and a suitable number of clusters (such as 10)

in order to explain the basic idea. In an open curve, you know the neighborhood structure

of the clusters as in who is ahead of me on the curve and who is behind me on the curve,

where I am a cluster center on the curve. Using this, qualitatively explain what the objective

function is trying to accomplish.]

• [10 points] Minimize the above objective function w.r.t. y by differentiating E(M,y) w.r.t.

y and setting the result to zero. What is the closed form solution that you get for y? [Very

tough question and you’ll get full points only if you solve for y in closed form.]

• [5 points] Minimize the above objective function w.r.t. M by differentiating E(M,y) w.r.t.

M and setting the result to zero. What is the solution that you get for M? You won’t be able

to do this in closed form but you can express Mia in terms of Mjb. [Easier than you think.

Just differentiate w.r.t. Mia and set the result to zero. Solve for Mia in terms of Mjb and y.]
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