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1. [25 points] Fisher linear discriminants: In a two class problem, the Fisher linear discrim-
inant is a useful technique for determining the one dimension along which the patterns {xi ∈
R

D, ∀i ∈ C1} and {xj ∈ R
D, ∀j ∈ C2} have the largest value of the Fisher linear discrim-

inant (FLD) objective function JW (w) = w
T SBw

wT SW w
, where SB = (m2 − m1)(m2 − m1)

T and

SW =
∑

i∈C1
(xi − m1)(xi − m1)

T +
∑

j∈C2
(xj − m2)(xj − m2)

T . The means for classes C1 and
C2 are m1 and m2 respectively. The single dimension along which the patterns are projected to is
yk = ŵTxk where xk is a pattern that could be from either class. Here it should be understood that
ŵ is the weight vector that maximizes JW (w). Unless otherwise specified, if the index k is used as
a pattern index, it means that the index is applicable to all patterns and not merely patterns from
either C1 or C2.

It is often desirable to visualize the patterns in 2D or in 3D. Since the patterns usually live in a
high dimensional space, this is impossible at the present time. The aim of this question is to come
up with a mathematical criterion by which we have a “best” way of looking at the patterns in 2D
or in 3D.

To this end, for 2D visualization, we would like to recover a D × 2 weight matrix W rather
than a weight vector w and for 3D visualization, we would like to recover a D × 3 weight matrix
W rather than a weight vector w. After obtaining the weight matrix Ŵ, the new 2D or 3D feature
vector corresponding to xk is yi = ŴT xk. The set of new feature vectors {yk} can be visualized
in a 2D plane or in a 3D volume depending on whether D is two or three.

(a) [10 points] We would like you to set up a Fisher linear discriminant to recover the best two- (for
2D) or best three- (for 3D) dimensional feature vectors. Give a conceptual level approach for
achieving this aim. In particular, please ensure that you conceptually handle the issue that
the different columns (2 for 2D and 3 for 3D) of Ŵ have to be different for the visualization
to be meaningful. Why is this necessary?

(b) [10 points] A simple way of achieving this aim is to repeatedly run the Fisher linear discriminant
while making sure that the second (and/or the third) weight vector are not the same as the
first. You are NOT allowed to use this recursive approach. Instead, try and design a “batch”
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objective function JW (W) which when maximized, yields Ŵ. What constraints must you
impose on W such that you can avoid the problem of identical columns.

(c) [5 points] Repeat (b) above for the Kernel Fisher discriminant. Each feature vector x is
mapped to a new vector Φ(x). Design a Kernel Fisher discriminant to find W .

2. [25 points] Support Vector Machines: Two-dimensional patterns are placed at x1 = (1, 0),
x2 = (−1, 0), x3 = (0, 1) and x4 = (0,−1). You are given the classification x1 ∈ C1, x2 ∈ C2, x3 ∈
C1 and x4 ∈ C2. In addition, we also add N − 4 2D patterns obeying the criterion

If x(1) + x(2) > 1, thenx ∈ C1,

If x(1) + x(2) < −1, thenx ∈ C2,

−1 ≤ x(1) + x(2) ≤ 1 is impossible

with the understanding that −1 ≤ x(1) + x(2) ≤ 1 is only allowed for the above four “privileged”
patterns.

(a) [10 points] Find a solution to the SVM optimization problem

α0 = arg max
α

W (α) = arg max
α

N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

αiαjyiyj(xi · xj) (1)

subject to the constraints

N∑

i=1

αiyi = 0, αi ≥ 0, ∀i ∈ {1, . . . , N}. (2)

Since the patterns are linearly separable, the notation (xi·xj) denotes a standard vector-vector
dot product.

(b) [5 points] Once you have found the optimal α0 = {α
(0)
i }, determine the best b0 and

ψ0 =
∑N

i=1 α
(0)
i yixi.

(c) [5 points] Having obtained ψ0, compute φ0.

(d) [5 points] Compute the margin [c1(φ0) − c2(φ0)]/2, W (α0) and ψ0 · ψ0.

3. [25 points] Kernels: Assume standard feature vectors x,y ∈ R
D. If the feature vectors are

projected into a higher dimensional space, the resulting new feature vectors can be written as Φ(x)
and Φ(y) corresponding to x and y respectively with Φ(·) denoting the mapping.

(a) [5 points] If the mapping is from a D dimensional space to a K dimensional space with K > D,
specify the nature and number of functions involved in the mapping Φ. For example, if the
mapping is from 2D to 3D, you need three functions each of which maps R

2 → R.
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(b) [8 points] Assume that K is finite. Give a conceptual level answer to the following question.
Since K is finite, we can directly compute inner products between Φ(x) and Φ(y) using the
standard vector space formula for an inner product. That is, we can think of Φ(x) and Φ(y)

as vectors u and v with the inner product u ∗ v
def
=

∑
i uivi. Is there a contradiction between

using this direct “vector space” inner product and the kernel inner product formula? Explain
using an example.

(c) [7 points] Again assuming that K is finite, derive a relationship between the kernel and the
functions in Φ(x) such that the direct inner product Φ(x) · Φ(y) gives the same answer as
k(x,y) where k(·, ·) is the kernel function used.

(d) [5 points] Show that the polynomial kernel of degree two (x ·y)2 satisfies your criterion. You’ll
have to define Φ(x) such that this works.

(e) [Extra credit: 15 points] Is it possible to show that taking inner products using Φ(x) · Φ(y)
is the same as using a kernel inner product k(x,y) for a polynomial kernel of non-negative
integer degree d—k(x,y) = (x ·y)d? You have to show this for x,y ∈ R

D. There is no partial
credit for this question.

4. [25 points] Relational Clustering: The K-means clustering algorithm can be seen as mini-
mizing the following objective function

min
(M,y)

Ecluster(M,y) = min
(M,y)

N∑

i=1

K∑

a=1

Mia||xi − ya||
2 (3)

subject to the constraints
∑K

a=1Mia = 1 and Mia ∈ {0, 1} where {xi} is the data, {ya} the set of
cluster centers and {Mia} the set of memberships of data points in clusters. The chicken and egg
problem of computing the memberships and cluster centers with both being unknown is now cast
as an optimization problem wherein we have two sets of unknowns—the memberships {Mia} and
the cluster centers {ya}.

(a) [3 points] Show that the solution for {Mia} while keeping the clusters centers {ya} fixed is
equivalent to choosing Mia = 1 for the cluster center ya which is closest to xi.

(b) [2 points] Show that the solution for {ya} while keeping the memberships {Mia} fixed is
equivalent to choosing ya to be the centroid of all data points {xi} which “belong” to it.

We now move from point clustering to relational clustering. In the previous K-means clustering
case, we assigned the membership of a data point to the current nearest cluster center. Instead
of doing this, we now wish to assign the membership of data point “i” by also examining the
membership of nearby data point “j” and how close “j” is to cluster “a”. To do this, we first parse
the data and generate a nearest neighbor graph {Gij}. If Gij = 1, it implies that “i” and “j” are
neighbors. For the sake of simplicity, assume that this graph is symmetric. That is, if “i” is a
neighbor of “j”, then “j” is a neighbor of “i”.
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(c) [10 points] Given this graph G, design a new pairwise relational clustering objective function
somewhat similar to (3). The new objective function should have the following properties.
i) It should only have quadratic terms linking {xi} to {ya} [for example ‖ xi − ya ‖2], ii)
it should cover the pairs of data {xi} which are neighbors in G, iii) it should use both the
memberships of data point “i” in “a” and of data point “j” in “a” for neighbors “i” and “j” in
G. Give a conceptual level explanation followed by a mathematical one.

(d) [5 points] Derive the solution for Mia which should depend on the current value of ya and the
memberships Mja of ”i”s neighbors “j” in G.

(e) [5 points] Derive the solution for ya which should depend on the current value of {Mia}.
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