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1. |30 points] Fisher linear discriminant: In a two class problem, the Fisher linear
discriminant is a useful technique for determining the one dimension alongTWhich the patterns
{x;, Vi € C1} and {x;, Vj € Cy} have the largest value of Jy (w) = ¥25% where Sy =

wl Sy w?

(my —my)(my —my)" and Sw = Y5, ¢, (xi —my)(xi —my)" + 370, (x5 — my) (x; — my) "
The means for class C; and Cy are m; and ms respectively. The single dimension along
which the patterns are projected to is y, = W' x; where X}, is a pattern that could be from
either class. Here it should be understood that 1 is the weight vector that maximizes Jy (w).
Unless otherwise specified, if the index k is used as a pattern index, it means that the index
is applicable to all patterns and not merely patterns from C; or Cj.

One drawback of the Fisher linear discriminant is that all of the feature vectors are
collapsed into a one dimensional space. Quite often, there is useful information not just in
the single best dimension of discrimination, but in the second best, the third best etc.

a) [10 points] We would like you to set up the Fisher discriminant in order to recover not
just the single best dimension {y;}, but also the second best dimension {y,(f)}. Give
a conceptual level approach for achieving this objective. You are free to conceptually
incorporate the hint given in the next question. (A purely mathematical answer with
no conceptual elaboration will not be given many points.)

b) |5 points| One way of achieving this is the following. After first obtaining w, project all
the features into a subspace that is orthogonal to the first dimension. That is, given
the original patterns, find a way of obtaining a new set of patterns {X,(f)} which all
have the property that ©7x(?) = 0. [Hint: This can be achieved by setting x? = x—zy
for an appropriate choice of the vector z]. Show how this projection procedure can be
used to obtain the second best dimension {y,(f)} of discrimination.



c) [5 points] Now, let’s move over to a (possibly infinite-dimensional) Hilbert space. Each
feature vector x is mapped to a new vector ®(x). A Kernel Fisher discriminant is used
to find the single best dimension y. What is the solution for % in this Kernel Fisher
setup? Under what circumstances is it computable?

d) [10 points|] Now determine the second best dimension {y,(f)} by setting ®@(x?) =
®(x) — zy and requiring the inner product between w and ®® (x(?) to be zero. As

before, determine z and {y,(f)}.

2. |20 points] Multi-layer perceptrons: Assume a two-layer perceptron (with one hidden
layer). The equations for the input-to hidden layer are

a; = Zwﬂx,
z = 9"(a))

and the equations for the hidden-to-output layer are

ar = E W24
J

2k = 9(2) (ak)

a) [10 points| Show that the multi-layer perceptron is equivalent to a single-layer perceptron
if the hidden layer unit z; is a linear function of its input a;. Write down the equation
for the equivalent single-layer perceptron.

b) [3 points|] What happens if 2; = > u;ja; where {u;;} is a further set of weights? Do
you still get an equivalent single-layer perceptron?

c) [7 points| Argue at a conceptual level, the minimum requirement for keeping the higher
layers of a multi-layer perceptron from “crashing down” and giving you an effective
single layer perceptron. (Once again, a purely mathematical answer with no conceptual
elaboration will not be given many points.)

3. [20 points] SVM learning: Assume that you have optimized the SVM cost function

W(a) = vazl o — 3 >4 @i;yiyi(xi - x;) and that you have in your possession a set {d;, i €
{1,...,N}}. You may also assume that only a subset {&s, s € S} are greater than zero.

Please note that no kernel is being used here.

a) |7 points] What inequalities must the solution for b satisfy? Explain. You may assume
that the patterns are linearly separable.



b) [7 points] Now assume that the patterns are not linearly separable due to a small subset
of patterns (2 which can be regarded as outliers. Assume that you have the global
maximum of the above cost function W («) subject to the constraints 0 < o; < C and
Zfil a;y; = 0. How do you identify which patterns are outliers based on the obtained
solution? What inequalities must the solution for b now satisfy? Explain.

c) [6 points| Calculate the margin p(¢) and ¢;(4) and co(4) in terms of {Aozi, x;},b and {y;}.
You may assume that the patterns are linearly separable for this sub-question.

4. [30 points] Obtaining a distance from an inner product kernel: If we have two
feature vectors x and y, the square of the Euclidean distance between the feature vectors
is written as ||x — y||> = 3.0, (2x — yx)? where it should be understood that the feature
vectors x and y live in a D—dimensional space. Now, if the feature vectors are projected
into a (usually higher dimensional) Hilbert space, the resulting new feature vectors can be
written as ®(x) and ®(y) corresponding to x and y respectively with ®(-) denoting the
mapping.

a) |10 points| If the squared distance between x and y is defined as d(x,y) e ||®(x) —
®(y)||?, evaluate d(x,y) for a i) polynomial kernel kpyy(x,y) = (x -y + 1)% and for a

ii) Gaussian radial basis function kernel kgrpr(x,y) = exp{—%”xgig'w}.

b) [5 points| This next question concerns a “walk” from a feature vector x to a feature
vector x + Ax where Ax should be read as a very small displacement. Equipped with
the formulas for the squared distance d(x,y) for the two kernels above, evaluate the
distances once again but now for d(x,x + Ax).

c) [15 points| Taking the limit as Ax — 0, derive a general formula for d(x,x + Ax) in
terms of the partial derivatives of the kernel. This quantity is called the metric and
plays an extremely important role in analysis.



