
Homework 4

(due Friday, November 4th, 2005)

25th October 2005

1. A pattern x(n) ∈ RD, n ∈ {1, . . . , N} is defined as {x
(n)
1 , . . . , x

(n)
D }.

(a) For a set of two dimensional patterns, x(n) ∈ R2, show that the polynomial kernel

k(x, y) = (x · y + 1)3 is non-negative definite.

(b) Also, show that the polynomial kernel k(x, y) = (x ·y+1)d is non-negative definite for D

dimensional patterns. You’ll need to expand (
∑D

i=1 x
(m)
i x

(n)
i +1)d =

∑D
d0=0 . . .

∑D
dD=0

d∏
D

i=0
di!

∏D
i=0(pi)

di ,

where p0 = 1, pi = x
(m)
i x

(n)
i , i > 0 and

∑D
i=0 di = d. This problem is much easier than

you think.

2. Work out a table of equivalents between the finite dimensional vector space and the infinite

dimensional Hilbert space. Specifically, write down the equivalents for the index set, inner

product, eigenvectors, eigenvalues, orthonormality condition, positive definiteness criterion,

function expansion where f =
∑N

i=1(f
T ei)ei in the finite dimensional case, eigenvalue relation

where Σei = λiei in the finite dimensional case, kernel function expansion where f(x) =
∑l

i=1 αlK(x, xl) in the infinite dimensional case and l the number of patterns in the training

set, the RKHS property which is < σi, σj >= σij in the finite dimensional case and finally

the inner product when the functions are expanded using a kernel as in < f, g > where

f(x) =
∑l

i=1 αlK(x, xl) and g(x) =
∑l

i=1 βlK(x, xl) in the infinite dimensional case.

3. Relational Clustering: The K-means clustering algorithm can be seen as minimizing the

following objective function

min
(M,y)

Ecluster(M,y) = min
(M,y)

N∑

i=1

K∑

a=1

Mia||xi − ya||
2 (1)

1



subject to the constraints
∑K

a=1 Mia = 1 and Mia ∈ {0, 1} where {xi} is the data, {ya} the

set of cluster centers and {Mia} the set of memberships of data points in clusters. We now

move from point clustering to relational clustering. In the previous K-means clustering case,

we assigned the membership of a data point to the current nearest cluster center. Instead of

doing this, we now wish to assign the membership of data point “i” by also examining the

membership of nearby data point “j” and how close “j” is to cluster “a”. To do this, we first

parse the data and generate a nearest neighbor graph {Gij}. If Gij = 1, it implies that “i”

and “j” are neighbors. For the sake of simplicity, assume that this graph is symmetric. That

is, if “i” is a neighbor of “j”, then “j” is a neighbor of “i”.

(a) Given this graph G, design a new pairwise relational clustering objective function some-

what similar to (1). The new objective function should have the following properties. i)

It should only have quadratic terms linking {xi} to {ya} [for example ‖ xi − ya ‖2], ii)

it should cover the pairs of data {xi} which are neighbors in G, iii) it should use both

the memberships of data point “i” in “a” and of data point “j” in “a” for neighbors “i”

and “j” in G.

(b) Derive the solution for Mia which should depend on the current value of ya and the

memberships Mja of ”i”s neighbors “j” in G.

(c) Derive the solution for ya which should depend on the current value of {Mia}.
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