Homework 3
 (due Friday, October 14, 2004)

1. Let the training set comprise $\left(y_{1}, x_{1}\right), \ldots,\left(y_{l}, x_{l}\right), x \in R^{n}, y \in\{-1,1\}$. Define a unit vector ϕ and a constant c such that

$$
\left(x_{i} * \phi\right)>c, \text { if } x_{i} \in C_{1} \text { and }\left(x_{j} * \phi\right)<c, \text { if } x_{j} \in C_{2} .
$$

For any unit vector ϕ, we also define the two values

$$
c_{1}(\phi)=\min _{x_{i} \in C_{1}}\left(x_{i} * \phi\right), c_{2}(\phi)=\max _{x_{j} \in C_{2}}\left(x_{j} * \phi\right) .
$$

Based on the above, the margin $\rho(\phi)=\frac{c_{1}(\phi)-c_{2}(\phi)}{2}$.
Now define a vector ψ and a threshold b such that

$$
\left(x_{i} * \psi\right)+b \geq 1 \text {, if } y_{i}=1, \text { and }\left(x_{j} * \psi\right)+b \leq-1 \text {, if } y_{i}=-1 .
$$

The above equation is valid if the data are linearly separable which you may assume. Now let $\psi=\frac{\phi}{\rho(\phi)}$.

- Find an appropriate value of b such that the patterns are linearly separable.
- For this choice of ψ, evaluate $(\psi * \psi)$.

2. This question is designed to help you understand the transition from $L(\psi, b, \alpha)$ to $W(\alpha)$. Given that the optimal $\psi_{0}=\sum_{i=1}^{l} \alpha_{i}^{0} y_{i} x_{i}$,

- Show that the optimal $\left(\psi_{0} * \psi_{0}\right)=\left(\sum_{i=1}^{l} \alpha_{i}^{0} y_{i} x_{i}\right) *\left(\sum_{j=1}^{l} \alpha_{j}^{0} y_{j} x_{j}\right)=\sum_{i=1}^{l} \alpha_{i}^{0}$ by using the constraints which are satisfied by the optimal α_{0}, namely $\sum_{i=1}^{l} \alpha_{i}^{0}\left[y_{i}\left(\left\{x_{i} * \psi\right\}+b_{0}\right)-1\right]=0$ and $\sum_{i=1}^{l} \alpha_{i}^{0} y_{i}=0$.
- Since the optimal $\rho\left(\phi_{0}\right)=\frac{1}{\left|\psi_{0}\right|}$, what is $\rho\left(\phi_{0}\right)$ in terms of α_{0} ?
- Show that $W\left(\alpha_{0}\right)=\frac{1}{2} \sum_{i=1}^{l} \alpha_{i}^{0}$. Relate $W\left(\alpha_{0}\right)$ and $\rho\left(\phi_{0}\right)$. What does this mean to you?
- How do you determine the optimal b_{0} ?
- Reconcile the apparent contradiction between seeking the maximum of $\rho(\phi)$ and the maximum of $W(\alpha)$.

3. This question is designed to help you better understand the geometry of the SVM objective function.

- For a standard two class problem, determine the hyperplane of the two "riverbanks" corresponding to C_{1} and C_{2} in terms of both ϕ and ψ.
- Given a set of linearly separable patterns x_{i}, can you determine an origin x_{0} such that $\left(x_{i}-x_{0}\right) * \phi_{0}>0$ for $x_{i} \in C_{1}$ and $\left(x_{j}-x_{0}\right) * \phi_{0}<0$ for $x_{j} \in C_{2}$? [You only need to do this for the optimal vector ϕ_{0}].
- What is the relationship between x_{0} and the "bias" b_{0} [in the $\left(\psi_{0}, b_{0}\right)$ language]?

4. A pattern $x^{(n)} \in R^{D}, n \in\{1, \ldots, N\}$ is defined as $\left\{x_{1}^{(n)}, \ldots, x_{D}^{(n)}\right\}$.

- For a set of two dimensional patterns, $x^{(n)} \in R^{2}$, show that the polynomial kernel $k(x, y)=(x \cdot y+1)^{3}$ is non-negative definite.
- Also, show that the polynomial kernel $k(x, y)=(x \cdot y+1)^{d}$ is non-negative definite for D dimensional patterns. You'll need to expand $\left(\sum_{i=1}^{D} x_{i}^{(m)} x_{i}^{(n)}+1\right)^{d}=\sum_{d_{0}=0}^{D} \ldots \sum_{d_{D}=0}^{D} \frac{d}{\prod_{i=0}^{D} d_{i}!} \prod_{i=0}^{D}\left(p_{i}\right)^{d_{i}}$, where $p_{0}=1, p_{i}=x_{i}^{(m)} x_{i}^{(n)}, i>0$ and $\sum_{i=0}^{D} d_{i}=d$. This problem is much easier than you think.

