Solutionsto Homework # 1
Bishop 1.1: Plug inz = d/2 into 1.41, we get
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Usingr = /u to replace r, we get
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If we plug ind = 2, we getS,; = % = 2m, similarly, whend = 3,55 = I%’(Tf) = 4, both verify thatS, is
2

the surface area of the unit sphere.

Bishop 1.2: We can do integration based on the following formula:

Vi=J3§Sqxr?tdr =Sy x % |¢= ngld , the geometric meaning &f; x %! x dr is the volume of the

thin shell whose bottom surface area is givenSqythe whole hypersphere’s volume is the sum of all such
thin shells. ThusYelume of sphere 4

~ volume of cube ~ d2d-1r (<)
volume of sphere - .

= —, whend — oo, the ratio becomes:
volume of cube dzd,leﬁg,l)(%_l)%

. Using Stirling’s approximation, we can get
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Similarly,
distance from center of the cube to a corner 7%4“2
distance from center to a face B a
— Vi

As d — oo, the above ratic— oo.



Bishop 3.2: There are several possible ways in which to generalize theeg of linear discriminant
functions from two classes toclasses. One possibility would be to uge- 1) linear discriminant

functions, such thag;(x) > 0 for inputsx in classCy, andyy(X) < 0 for inputs not in clas€’y. By

drawing a simple example in two dimensions for 3, show that this approach can lead to regions of
x-space for which the classification is ambiguous. Anoth@ragch would be to use one discriminant
functiony;(x) for each possible pair of class€s andCj, , such thaty;;(x) > 0 for patterns in clas€’;
andy;,(x) < 0 for patterns in clasé€’;,. Forc classes, we would needc — 1) /2 discriminant functions.
Again, by drawing a specific example in two dimensionsder 3, show that this approach can also lead to

ambiguous regions.

Part 1. Since there are 3 classes,= 3 and there are 2 discriminant functiops(x) and y2(X). For

x € C1,y1(X) > 0 and forx € Cs,y2(x) > 0. This leads to the following problem. How do we classify
input patterns< which have the property that (x) > 0 AND y2(x) > 0. Clearly they belong to both
classC; AND (5. Figure 1 illustrates the problem. Making the discriminknés parallel to each other
does not resolve the problem since the interseafid®) > 0 AND y»(x) > 0 is non-empty. Note that the
intersection is a null set if and only if the two lines coireithich meang; (X) = ya(X).

Part 2: Since there are 3 classe$; — 1)/2 = 3 and there are three discriminant functions(x), y13(X)

andys3(X). The classification structure is as follows.

1. If y12(X) > 0 AND y;13(x) > 0, thenx € C4.
2. If y12(X) < 0 AND yo3(x) > 0, thenx € Cs.

3. If y13(X) < 0 AND yo3(x) < 0, thenx € Cs.

This leads to the following problems as illustrated in Fgg@r The following regions are unclassified.
1. y12(X) < 0 AND y13(x) > 0.
2. y12(X) > 0 AND y93(x) > 0 AND 713(X) < 0.

The intersections are null sets if and onlyif(X) = y13(X) = y23(X).

Bishop 3.4: Given a set of data points} we can define the convédwlll to be the set of points given by
X = Z ap X" (1)

wherea,, > 0 and})_, «, = 1. Consider a second set of pointg}"” and its corresponding convex
hull. The two sets of points will be linearly separable ifria@xists a vectow and a scalatv, such that

WX +wo > 0 for all X, andw’ 2™ +wy < 0 for all z™. Show that, if their convex hulls intersect, the two



Figure 1: The two dividing linear discriminant boundari¢sagly leave a region of space classified into two

classes.

Figure 2: The three dividing linear discriminant boundsutgearly leave a region of space unclassified.



sets of points cannot be linearly separable, and convetisatyif they are linearly separable, their convex
hulls do not intersect.
First, let’s calculate the linear discriminants for therisibelonging to the two convex hulls. For points

in the convex hull of x"}, the linear discriminant is:
_wITyn
y(X) = W' X" + wyp. (2)

Substituting (1) in (2), we get
y(x) = W (Y anx™) + wo. (3)

Sinceq, is a scalar quantity, we can bring the summation in (3) oatsggulting in
_ ~Ton
y(x) = Zan (W X )+w0
= > an (WX + ) (4)

where we've made us of the fact tha}, o, = 1. Similarly, we can develop the linear discriminant for the

points belonging to the convex hull ¢ }:
y(2) = 3 B (W2 + o) (5)

whereg,, > 0and>_,, B, = 1.

Convex hullsintersect: If the convex hulls intersect, there must be at least onet poicommon between
{x} and{z}. Let’s call that pointxz. Sincexz belongs to both convex hulls, there must be a sé¢tgf} and
{Bm} that give rise toxz. The linear discriminant foxz can now be written in two separate but equivalent

ways. From (4) and (5), we get

y(xz) = > (WTX" + wo) =Y B (Wsz + wo) . (6)
For linear separability, we must have
y(x") = WIX" 4wy >0
andy(z") = W'Z™ +wy < 0. 7)

From the non-negativity and simplex constraintshaeind3, (6) and (7), we have a contradiction. The linear
discriminanty(xz) has to besimultaneously greater than and less than zero which is impossible.

Patterns arelinearly separable: If the patterns are linearly separable, we know that

y(x") = WIX" 4wy >0

andy(z") = W'Z™ +wy < 0. (8)
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Assume that there is a poirt lying in the intersection of the convex hulls. From (6) above
y(xz) = > o (WTX" + wo) =Y B (Wsz + wo) . (9)
The equality in (9) is not possible given the fact from (8)tttine patterns are linearly separable.

Bishop 3.7 Ignore the prior probabilities’ ratio question, it is nokat.

The sum-of-squares error function is

E = 3/03{3/(95) - 1}2dﬂc—|—A5{y(m) + 1}2dx

3 5
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Solve the above linear equations, we get —0.36161,wy = 1.450893.Thus, the linear desciminant
function isy(z) = —0.36161x + 1.450893. Sincey(0) = 1.450893, y(3) = 0.366063,class 1 will be
projected to the intervdy(3), y(0)]; y(4) = 0.004453,y(5) = —0.35716,class 2 will be projected to the

interval [y(5), y(4)],clearly, y(0)=0 cannot seperate the above line segements.

Since the two classes are linearly seperable from Figu& a.3ingle-layer perceptron will find a solution

to separates the two classes exactly by the perceptronrgemee theorem. The least-square algorithm can
solve many problem in closed form, thus saving learning tikh@vever,it sometimes will fail to seperate
classes that are linearly seperable. The perceptron #ilgodan find a solution if the classes are linearly
seperatable, however, it cannot find solution for non-lirsegoerable problem and the learning time may

become an issue.

Bishop 3.11: Using the definitions of the between-class and within-atassriance matrices given by (3.84)
and (3.85) respectively, together with (3.91) and (3.92) thie choice of target values described in Section
3.6.2, show that the expression (3.90) which minimizes time-ef-squares error function can be written in
the form (3.93).



Sp = (my—m;)(my —m;)’, and Sy = Z x™ —my)(x™ —m))T + Z (x™ — my)(x™ — my)T.
neCt neCs

When the partial derivative of 3.88 is taken w.mt.and the result set to zero, we obtain
N
Z Tx(M) 4 4py — tM)x™ = 0, (10)

wherewy = —w’m, andt™ = L if x(W e C; andt™ = — L if x" € Gy andm = & (Nymy +

Nomy). Substituting the expressions fap, ¢ into (10), we get

N
Z T — wlm — t™)x™ = 0.

n=1

This can be further expanded as

N
wlx wlim x + wix\"™ —w'm + = 0.
More algebra yields
D" x™®x™" — Nmm”Jw = N(m; — my).

Using the definitions 08,,andS 5 ,we get

NiN

N1 N
Sw+ N S = Z x(")x(")T—Nlmlm{—i- Z x(")x(")T—Ngmgmg—F }V Q(mgmg—mgm{—mlmg—kmlmr{).
neCi neCs
Using the fact thatVoms = Nm — Nymj,we can expand the last term involvimg; andms.
Nm — Nym Nm — Nom
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From this, we get
NlNg(mgmg—mgm{ m1m2 +m1m1 ) N1N2m2m2 +N1N2m1m1 —Nl(Nm Nlml) —Ng(NHl—NgIIlg)HIz
Finally, we can simplify
N1 N
—Nymym?! — Nymym? + L2 (mom? — mom? — mm? + mm?) = —-Nmm?

using which we may write
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(Sw + = (X x"x™" — NmmT)w = N(m; — my).



