
Solutions to Homework # 1

Bishop 1.1: Plug inx = d/2 into 1.41, we get
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∏
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If we plug ind = 2 , we getSd = 2π
Γ(1) = 2π, similarly, whend = 3,Sd = 2π

3
2

Γ( 3
2
)

= 4π, both verify thatSd is

the surface area of the unit sphere.

Bishop 1.2: We can do integration based on the following formula:

Vd =
∫ a
0 Sd × rd−1dr = Sd × rd

d
|a0= Sdad

d
, the geometric meaning ofSd × rd−1 × dr is the volume of the

thin shell whose bottom surface area is given bySd, the whole hypersphere’s volume is the sum of all such

thin shells. Thus,volume of sphere
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)
. Using Stirling’s approximation, we can get
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, whend → ∞, the ratio becomes:

lim
d→∞

π
d

2 e
d

2
−1

d2d−1(d
2 − 1)

d

2
− 1

2

= lim
d→∞

2

d
lim

d→∞
(
π

4
)

d

2 lim
d→∞

e
d

2
−1

(d
2 − 1)

d−1
2

= 0 × 0 × ( lim
d→∞

e
d
2 − 1

)
d

2
−1 × lim

d→∞
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= 0

Similarly,

distance from center of the cube to a corner
distance from center to a face

=

√
d×4a2

2

a

=
√

d

As d → ∞, the above ratio→ ∞.
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Bishop 3.2: There are several possible ways in which to generalize the concept of linear discriminant

functions from two classes toc classes. One possibility would be to use(c − 1) linear discriminant

functions, such thatyk(x) > 0 for inputsx in classCk andyk(x) < 0 for inputs not in classCk. By

drawing a simple example in two dimensions forc = 3, show that this approach can lead to regions of

x-space for which the classification is ambiguous. Another approach would be to use one discriminant

functionyjk(x) for each possible pair of classesCj andCk , such thatyjk(x) > 0 for patterns in classCj

andyjk(x) < 0 for patterns in classCk. Forc classes, we would needc(c − 1)/2 discriminant functions.

Again, by drawing a specific example in two dimensions forc = 3, show that this approach can also lead to

ambiguous regions.

Part 1: Since there are 3 classes,c = 3 and there are 2 discriminant functionsy1(x) and y2(x). For

x ∈ C1, y1(x) > 0 and forx ∈ C2, y2(x) > 0. This leads to the following problem. How do we classify

input patternsx which have the property thaty1(x) > 0 AND y2(x) > 0. Clearly they belong to both

classC1 AND C2. Figure 1 illustrates the problem. Making the discriminantlines parallel to each other

does not resolve the problem since the intersectiony1(x) > 0 AND y2(x) > 0 is non-empty. Note that the

intersection is a null set if and only if the two lines coincide which meansy1(x) = y2(x).

Part 2: Since there are 3 classes,c(c − 1)/2 = 3 and there are three discriminant functions,y12(x), y13(x)

andy23(x). The classification structure is as follows.

1. If y12(x) > 0 AND y13(x) > 0, thenx ∈ C1.

2. If y12(x) < 0 AND y23(x) > 0, thenx ∈ C2.

3. If y13(x) < 0 AND y23(x) < 0, thenx ∈ C3.

This leads to the following problems as illustrated in Figure 2. The following regions are unclassified.

1. y12(x) < 0 AND y13(x) > 0.

2. y12(x) > 0 AND y23(x) > 0 AND y13(x) < 0.

The intersections are null sets if and only ify12(x) = y13(x) = y23(x).

Bishop 3.4: Given a set of data points{xn} we can define the convexhull to be the set of pointsx given by

x =
∑

n

αnxn (1)

whereαn ≥ 0 and
∑

n αn = 1. Consider a second set of points{z}m and its corresponding convex

hull. The two sets of points will be linearly separable if there exists a vector̂w and a scalarw0 such that

ŵT xn +w0 > 0 for all xn, andŵT zm +w0 < 0 for all zm. Show that, if their convex hulls intersect, the two
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Figure 1: The two dividing linear discriminant boundaries clearly leave a region of space classified into two

classes.

Figure 2: The three dividing linear discriminant boundaries clearly leave a region of space unclassified.
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sets of points cannot be linearly separable, and converselythat, if they are linearly separable, their convex

hulls do not intersect.

First, let’s calculate the linear discriminants for the points belonging to the two convex hulls. For points

in the convex hull of{xn}, the linear discriminant is:

y(x) = ŵT xn + w0. (2)

Substituting (1) in (2), we get

y(x) = ŵT (
∑

n

αnxn) + w0. (3)

Sinceαn is a scalar quantity, we can bring the summation in (3) outside resulting in

y(x) =
∑

n

αn

(

ŵT xn
)

+ w0

=
∑

n

αn

(

ŵT xn + w0

)

(4)

where we’ve made us of the fact that
∑

n αn = 1. Similarly, we can develop the linear discriminant for the

points belonging to the convex hull of{zm}:

y(z) =
∑

m

βm

(

ŵT zm + w0

)

(5)

whereβm ≥ 0 and
∑

m βm = 1.

Convex hulls intersect: If the convex hulls intersect, there must be at least one point in common between

{x} and{z}. Let’s call that pointxz. Sincexz belongs to both convex hulls, there must be a set of{αn} and

{βm} that give rise toxz. The linear discriminant forxz can now be written in two separate but equivalent

ways. From (4) and (5), we get

y(xz) =
∑

n

αn

(

ŵT xn + w0

)

=
∑

m

βm

(

ŵT zm + w0

)

. (6)

For linear separability, we must have

y(xn) = ŵT xn + w0 > 0

andy(zm) = ŵT zm + w0 < 0. (7)

From the non-negativity and simplex constraints onα andβ, (6) and (7), we have a contradiction. The linear

discriminanty(xz) has to besimultaneously greater than and less than zero which is impossible.

Patterns are linearly separable: If the patterns are linearly separable, we know that

y(xn) = ŵT xn + w0 > 0

andy(zm) = ŵT zm + w0 < 0. (8)
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Assume that there is a pointxz lying in the intersection of the convex hulls. From (6) above

y(xz) =
∑

n

αn

(

ŵT xn + w0

)

=
∑

m

βm

(

ŵT zm + w0

)

. (9)

The equality in (9) is not possible given the fact from (8) that the patterns are linearly separable.

Bishop 3.7 Ignore the prior probabilities’ ratio question, it is not clear.

The sum-of-squares error function is

E = 3

∫ 3

0
{y(x) − 1}2dx +

∫ 5

4
{y(x) + 1}2dx

= 3

∫ 3

0
[w2x2 + (w0 − 1)2 + 2(w0 − 1)wx]dx +

∫ 5

4
[w2x2 + (w0 + 1)2 + 2(w0 + 1)wx]dx

= 3[w2 x3

3
|30 +(w0 − 1)2x |30 +(w0 − 1)wx2 |30] + [w2 x3

3
|54 +(w0 + 1)2x |54 +(w0 + 1)wx2 |54]

=
142

3
w2 + 36ww0 + 10w2

0 − 18w − 16w0 + 10

min E =
142

3
w2 + 36ww0 + 10w2

0 − 18w − 16w0 + 10

∂E

∂w
=

142 × 2

3
w + 36w0 − 18 = 0

∂E

∂w0
= 36w + 20w0 − 16 = 0

Solve the above linear equations, we getw = −0.36161,w0 = 1.450893.Thus, the linear desciminant

function isy(x) = −0.36161x + 1.450893. Sincey(0) = 1.450893, y(3) = 0.366063,class 1 will be

projected to the interval[y(3), y(0)]; y(4) = 0.004453, y(5) = −0.35716,class 2 will be projected to the

interval [y(5), y(4)],clearly, y(0)=0 cannot seperate the above line segements.

Since the two classes are linearly seperable from Figure 3.16, a single-layer perceptron will find a solution

to separates the two classes exactly by the perceptron convergence theorem. The least-square algorithm can

solve many problem in closed form, thus saving learning time. However,it sometimes will fail to seperate

classes that are linearly seperable. The perceptron algorithm can find a solution if the classes are linearly

seperatable, however, it cannot find solution for non-linear seperable problem and the learning time may

become an issue.

Bishop 3.11: Using the definitions of the between-class and within-classcovariance matrices given by (3.84)

and (3.85) respectively, together with (3.91) and (3.92) and the choice of target values described in Section

3.6.2, show that the expression (3.90) which minimizes the sum-of-squares error function can be written in

the form (3.93).
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SB = (m2 − m1)(m2 −m1)
T , andSW =

∑

n∈C1

(x(n) − m1)(x
(n) − m1)

T +
∑

n∈C2

(x(n) − m2)(x
(n) − m2)

T .

When the partial derivative of 3.88 is taken w.r.t.w and the result set to zero, we obtain

N
∑

n=1

(wT
x

(n) + w0 − t(n))x(n) = 0, (10)

wherew0 = −w
T
m, andt(n) = N

N1
if x

(n) ∈ C1 andt(n) = − N
N2

if x
(n) ∈ C2 andm = 1

N
(N1m1 +

N2m2). Substituting the expressions forw0, t(n) into (10), we get

N
∑

n=1

[wT
x

(n) − w
T
m− t(n)]x(n) = 0.

This can be further expanded as

∑

n∈C1

[wT
x

(n) − w
T
m− N

N1
]x(n) +

∑

n∈C2

[wT
x

(n) − w
T
m +

N

N2
]x(n) = 0.

More algebra yields

[
∑

n

x
(n)

x
(n)T − Nmm

T ]w = N(m1 − m2).

Using the definitions ofSwandSB ,we get

SW +
N1N2

N
SB =

∑

n∈C1

x
(n)

x
(n)T −N1m1m

T
1 +

∑

n∈C2

x
(n)

x
(n)T −N2m2m

T
2 +

N1N2

N
(m2m

T
2 −m2m

T
1 −m1m

T
2 +m1m

T
1 ).

Using the fact thatN2m2 = Nm− N1m1,we can expand the last term involvingm1andm2.

m2m
T
2 −m2m

T
1 −m1m

T
2 + m1m

T
1 = m2m

T
2 − (Nm − N1m1)

N2
m

T
1 − (Nm − N2m2)

N1
m

T
2 + m1m

T
1 .

From this, we get

N1N2(m2m
T
2 −m2m

T
1 −m1m

T
2 +m1m

T
1 ) = N1N2m2m

T
2 +N1N2m1m

T
1 −N1(Nm−N1m1)m

T
1 −N2(Nm−N2m2)m

T
2

Finally, we can simplify

−N1m1m
T
1 − N2m2m

T
2 +

N1N2

N
(m2m

T
2 − m2m

T
1 − m1m

T
2 + m1m

T
1 ) = −Nmm

T

using which we may write

(SW +
N1N2

N
SB)w = (

∑

n

x
(n)

x
(n)T − Nmm

T )w = N(m1 − m2).
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