
January 26th, 2005

1 Introduction to Classification Trees:

Classification Trees serve to limit the class of classifiers. They are not the most accurate
in this regard, but have two important properties:

1. They can be built efficiently

2. They are easy to interpret (also known as transparency)

• Easy compared to implementing neural networks, which are not as intu-
itive.

Classification trees are easy to interpret because the representation provides a lot of
intuition into what is going on. This gives confidence to the user that the classifications
indeed produce the correct result.

2 What is a Classification Tree?

A classification tree is a model with a tree-like structure. It contains nodes and edges.
There are two types of nodes:

• Intermediate nodes - An intermediate node is labeled by a single attribute, and
the edges extending from the intermediate node are predicates on that attribute

• Leaf nodes - A leaf node is labeled by the class label which contains the values
for the prediction.

The attributes that appear near the top of the tree typically indicate they are more
important in making the classifications.

A classification tree example

Suppose we have information about drivers in a database. (which we can consider
to be the training data for making the classification tree)

1



Figure 1. Example Training Database

Here, Car Type, Driver Age, and Children are discrete attributes and Lives in Sub-
urb is the prediction attribute. We are trying to find a mapping between the discrete
attributes to the prediction attribute.

A possible classification tree is shown below:

2



Figure 2. Example of a Classification Tree for the training data in Figure 1.

The resulting predictions can be made using this classification tree:

CarType Age of Children Lives in Suburb?
Sedan 23 0 YES

Sports Car 16 0 Predicts→ NO
Sedan 35 1 Predicts→ YES

Classification trees are piece-wise predictors. Suppose we map each of the three
criteria attributes in a 3-dimensional space. If you begin to partition the space using
the classification tree shown in Figure 2, you will see that the resulting partitions are
disjoint and occupy the entire defined space. Each partition can then be marked as
either Yes or No to answer the question of Lives in Suburb. This can be seen by the
following diagram:

3



Figure 3. Graph for partitioning all possible combinations of attribute values.

Another representation of the classification tree can be made by a list of rules:

If Age is <= 30 and CarType = Sedan
Then return yes

If Age is <= 30 and CarType = Truck/Sports car
Then return no

If Age is > 30 and Children= 0 and CarType = Sedan
Then return no

If Age is > 30 and Children= 0 and CarType = Truck/Sports car
Then return yes

If Age is > 30 and Children> 0 and CarType = Sedan
Then return yes

If Age is > 30 and Children> 0 and CarType = Truck/Sports car
Then return no

This representation is not as compact as the tree representation.

Types of Classification Trees:

Simple Subtask
We are trying to build a classification tree with 1 split and 2 leaves. What is the

best attribute and predicate to use?

To determine this, we must determine which type of classification tree we are us-
ing. There are two types of classification trees:

1. Quinlan (1986), which is modeled from a machine learning perspective

4



2. Breiman (1984), which is modeled from a statistics perspective

For continuous attributes, both Quinlan and Breiman split the predicates with the
left side containing<= and the right side containing>. For discrete attributes, Quin-
lan splits on all values of the attributes, while Breiman splits values into two sets,
essentially making it a binary tree.

Quinlan approach:

Advantage

• You only need to decide what the split attribute is, after which it is
immediately obvious what the split predicates should be.

Disdvantage

• A lot of work is repeated. The data can be fragmented too quickly.
This approach can be easily influenced by noise in the data.

Breiman approach:

Advantage

• Avoids repeating work.

Disdvantage

• Because every node is split into two groups, the number of splits will
be 2(attributes), which can be tricky to deal with as the number of
attributes grows.

How to determine whether a split is good?

The probability of splitting something to the left can be represented as P(x) and the
probability of splitting something to the right can be represented as P(x). Goodness of
the split can then be measure by a formula

Goodness(x, P (x))

Using the training dataD as the attribute label, we can represent a predictor (yes/no)
with NY andNN , which represent the number of yes and the number of no predictions.
After a split the left sideDL will haveLY andLN , which represent the number of yes
and the number of no predictions in the left side. The same can be said for the right
side

5



Figure 4. Splitting the data into two disjoint datasets.

The ideal case is that only YES occurs on one side and that only NO occurs on the
other. The worst case is if the ratio ofNy andNn in the parent node is preserved after
the split. The ratio can be expressed by the following formula:

P [Y |D] = NY /(NN + NY )

P [N |D] = NN/(NN + NY )

There are ways to measure the quality of the split. This is called an impurity mea-
sure. Here a good split reduces the impurity. A very simple impurity measure can be
represented by the following formula.

Figure 5. A simple impurity formula.

Types of Impurity Measures:

Gini index (of diversity)
Here, if the split is pure, then there is no diversity. The formula for a Gini index can be
represented by the following:

gini(Py, Pn) = 1P 2
y P 2

n

The graph of this function is as follows:

6



Figure 6. A graph of a standard gigiindex.

Entropy
This can be represented by the following formula

entropy(Pi, . . . , Pk) = −
k∑
i

(Pilg(Pi))

Scribed by: Vahe Koestline and Tim Clark

7


