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Computational science & engineering and computer science & engineering have a natural 
and long-standing relation.   

Scientific and engineering problems tend to place some of the most demanding 
requirements on computational power, thereby driving the engineering of new bit-device 
technologies and circuit architectures, as well as the scientific & mathematical study of 
better algorithms and more sophisticated computing theory.   The need for finite-
difference artillery ballistics simulations during World War II motivated the ENIAC, and 
massive calculations in every area of science & engineering motivate the PetaFLOPS-
scale* supercomputers on today’s drawing boards (cf. IBM’s Blue Gene [1]).   

Meanwhile, computational methods themselves help us to build more efficient 
computing systems.  Computational modeling and simulation of manufacturing 
processes, logic device physics, circuits, CPU architectures, communications networks, 
and distributed systems all further the advancement of computing technology, together 
achieving ever-higher densities of useful computational work that can be performed using 
a given quantity of time, material, space, energy, and cost.  Furthermore, the long-term 
economic growth enabled by scientific & engineering advances across many fields helps 
make higher total levels of societal expenditures on computing more affordable.  The 
availability of more affordable computing, in turn, enables whole new applications in 
science, engineering, and other fields, further driving up demand. 

Partly as a result of this positive feedback loop between increasing demand and 
improving technology for computing, computational efficiency has improved steadily and 
dramatically since computing’s inception.  When looking back at the last forty years (and 
the coming ten or twenty), this empirical trend is most frequently characterized with 
reference to the famous "Moore’s Law" [2], which describes the increasing density of 
microlithographed transistors in integrated semiconductor circuits.  (See figure 1.)34 

Interestingly, although Moore’s Law was originally stated in terms that were 
specific to semiconductor technology, the trends of increasing computational density 
inherent in the law appear to hold true even across multiple technologies.  One can trace 
the history of computing technology back through discrete transistors, vacuum tubes, 
electromechanical relays, and gears, and amazingly, we still see the same exponential 
curve extending across all these many drastic technological shifts.  Furthermore, when 
looking back far enough, the curve even appears to be super-exponential; the frequency 
of doubling of computational efficiency appears to itself increase over the long term ([5], 
pp. 20-25). 

Naturally, we wonder just how far we can reasonably hope this fortunate trend to 
take us. Can we continue indefinitely to build ever more and faster computers using our 
available economic resources, and apply them to solve ever larger and more complex 
scientific and engineering problems?  What are the limits?  Are there limits?  When 
                                                        
* Peta = 1015, FLOPS = FLoating-point Operations Per Second 



semiconductor technology reaches its technology-specific limits, can we hope to maintain 
the curve by jumping to some alternative technology, and then to another one after that 
one runs out? 

Obviously, it is always a difficult and risky proposition to forecast future 
technological developments.  However, 20th-century physics has given forecasters a 
remarkable gift, in the form of the very sophisticated modern understanding of physics, 
as embodied in the Standard Model of particle physics.  Although of course many 
interesting unsolved problems remain in physics at higher levels (cf. [6]), all available 
evidence tells us that the Standard Model, together with general relativity, explains the 
foundations of physics so successfully that apparently no experimentally accessible 
phenomenon fails to be encompassed within it at present.  That is to say, no definite and 
persistent inconsistencies between these fundamental theories and empirical observations 
have been uncovered in physics within the last couple of decades. 

And furthermore, in order to probe beyond the range where the theory has already 
been thoroughly verified, physicists find that they must explore subatomic-particle 
energies above a trillion electron volts, and length scales far tinier than a proton’s radius.  
The few remaining serious puzzles in particle physics, such as the masses of particles, the 
disparity between the strengths of the fundamental forces, and the unification of general 
relativity and quantum mechanics are of a rather abstract and aesthetic flavor.  Their 
eventual resolution (whatever form it takes) is not currently expected to have any 
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Figure 1.  Trends for minimum feature size in semiconductor technology.  The data in the middle 
are taken from the 1999 edition of the International Technology Roadmap for Semiconductors [3].  The 
point at left represents the first planar transistor, fabricated in 1959 [4].  Presently, the industry is 
actually beating the roadmap targets that were set just a few years ago; ITRS targets have historically 
always turned out to be conservative, so far. From this data, wire widths, which correspond most directly 
to overall transistor size, would be expected to reach near-atomic size by about 2040-2050, unless the 
trend line levels off before then.  It is interesting to note that in some experimental processes, some 
features such as gate oxide layers are already only a few atomic layers thick, and cannot shrink further.  



significant applications until one reaches the highly extreme regimes that lie beyond the 
scope of present physics (although, of course, we cannot assess the applications with 
certainty until we have a final theory). 

In other words, we expect that the fundamental principles of modern physics have 
"legs," that they will last us a while (many decades, at least) as we try to project what will 
and will not be possible in the coming evolution of computing.  By taking our best 
theories seriously, and exploring the limits of what we can engineer with them, we push 
against the bounds of what we think we can do.  If our present understanding of these 
limits eventually turns out to be seriously wrong, well, then the act of pushing against the 
limits is probably the activity that is most likely to lead us to that very discovery.  (This 
methodological philosophy is nicely championed by Deutsch [7].)  

So, I personally feel that forecasting future limits, even far in advance, is a useful 
research activity.  It gives us a roadmap showing where we may expect to go with future 
technologies, and helps us know where to look for advances to occur, if we hope to ever 
circumvent the limits imposed by physics, as it is currently understood. 

Interestingly, just by considering fundamental physical principles, and by 
reasoning in a very abstract and technology-independent way, one can arrive at a number 
of firm conclusions about upper bounds, at least, on the limits of computing.  I have 
furthermore found that often, an understanding of the general limits can be applied to 
improve one’s understanding of the limits of specific technologies. 

Let us now review what is currently known about the limits of computing in 
various areas.  Throughout this article, I will focus primarily on fundamental, technology-
independent limits, since it would take too much space to survey the technology-specific 
limits of the many present and proposed future computing technologies. 

But first, before we can talk sensibly about information technology in physical 
terms, we have to define information itself, in physical terms. 

Physical Information and Entropy 
From a physical perspective, what is information?  For purposes of discussing the limits 
of information technology, the relevant definition relates closely to the physical quantity 
known as entropy.  As we will see, entropy is really just one variety of a more general 
sort of entity which we will call physical information, or just information for short.  (This 
abbreviation is justified because all information that we can manipulate is ultimately 
physical in nature [8].) 

The concept of entropy was introduced in thermodynamics before it was 
understood to be an informational quantity.  Historically, it was Boltzmann who first 
identified the maximum entropy S of any physical system with the logarithm of its total 
number of possible, mutually distinguishable states.  (This discovery is carved on his 
tombstone.)  I will also call this same quantity the total physical information in the 
system, for reasons to soon become clear. 

In Boltzmann’s day, it was a bold conjecture to presume that the number of states 
for typical systems was a finite one that admitted a logarithm.  But today, we know that 
operationally distinguishable states correspond to orthogonal quantum state-vectors, and 
the number of these for a given system is well-defined in quantum mechanics, and 
furthermore is finite for finite systems (more on this later). 



Now, any logarithm, by itself, is a pure number, but the logarithm base that one 
chooses in Boltzmann’s relation determines the appropriate unit of information.  Using 
base 2 gives us the information unit of 1 bit, while the natural logarithm (base e) gives us 
a unit I like to call the nat, which is simply (log2 e) bits.  In situations where the 
information in question happens to be entropy, the nat is more widely known as 
Boltzmann’s constant kB.  

Any of these units of information can also be associated with physical units of 
energy divided by temperature, because temperature itself can be defined as just a 
measure of energy required per increment in the log state count, T = ∂E/∂S (holding 
volume constant).  For example, the temperature unit 1 Kelvin can be defined as a 
requirement of 1.38 × 10-23 Joules (or 86.2 µeV) of energy input per increase of the log 
state count by 1 nat (that is, to multiply the number of states by e).  A bit, meanwhile, is 
associated with the requirement of 9.57 × 10-24 Joules (59.7 µeV) energy per Kelvin that 
is needed to double the system’s total state count. 

Now, that’s information, but what distinguishes entropy from other kinds of 
information?  The distinction is fundamentally observer-dependent, but in a way that is 
well-defined, and that coincides for most observers in simple cases. 

Let known information be the physical information in that part of the system 
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Figure 2.  Physical Information, Entropy, and Known Information.  Any physical system, when 
described only by constraints that upper-bound its spatial size and its total energy, still has only a finite 
number of mutually distinguishable states consistent with those constraints.  The exact number N of 
states can be determined using quantum mechanics (with help from general relativity in extreme-gravity 
cases).  We define the total physical information in a system as the logarithm of this number of states; it 
can be expressed equally well in units of bits or nats (a nat is just Boltzmann’s constant kB).  In the 
example at right, we have a system of 3 two-state quantum spins, which has the 23=8 distinguishable 
states shown.  It therefore contains a total of 3 bits = 2.08 kB  of physical information. 

Relative to some knowledge about the system’s actual state, the physical information can be 
divided into a part that is determined by that additional knowledge (known information), and a part that 
is not (entropy).  In the example, suppose we happen to know (through preparation or measurement) 
that the system is not in any of the 4 states that are crossed out (i.e., has 0 amplitude in those states).  In 
this case, the 1 bit (0.69 kB) of physical information that is associated with spin number 2 is then known 
information, whereas the other 2 bits (1.39 kB) of physical information in the system are entropy. 

The available knowledge about the system can change over time.  Known information 
becomes entropy when we forget or lose track of it, and bits of entropy can become known information 
if we measure them.   However, the total physical information in a system is exactly conserved, unless 
the system’s size and/or energy changes over time (as in an expanding universe, or an open system). 
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whose state is known (by a particular observer), and entropy be the information in the part 
that is unknown.  The meaning of "known" can be clarified, by saying that a system A 
(the observer) knows the state of system B (the observed system) to the extent that some 
part of the state of A (e.g. some record or memory) is correlated with the state of B, and 
furthermore that the observer is able to access and interpret the implications of that record 
regarding the state of B. 

To quantify things, the maximum known information or maximum entropy of any 
system is, as already stated, just the log of its possible number of distinguishable states.  
If we know nothing about the state, all the system’s physical information is entropy, from 
our point of view.  But, as a result of preparing or interacting with a system, we may 
come to know (or learn) something more about its actual state, besides just that it is one 
of the N states that were originally considered "possible." 

Suppose we learn that the system is in a particular subset of M<N states; only the 
states in that set are then possible, given our knowledge.  Then, the entropy of the system, 
from our new point of view, is log M, whereas to someone without this knowledge, it is 
log N.  For us, there is (log N) − (log M) = log(N/M) less entropy in the system.  We say 
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Figure 3.  Shannon Entropy.  The figure shows an example of Shannon’s generalization of Boltzmann 
entropy for a system having ten distinguishable states.  The blue bars correspond to a specific 
nonuniform probability distribution over states, while the purple bars show the case with a uniform 
(Boltzmann) distribution.  The upper-left chart shows the two probability distributions.  Note that in the 
nonuniform distribution, we have a 50% probability for the state with index 4.  The upper-right chart 
inverts the probability to get the odds against the state; state 4 is found in 1 case out of 2, whereas state 
10 (for example) appears in 1 case out of 70.  The logarithm of this "number of cases" (lower left) is the 
information gain if this state were actually encountered; in state 4 we gain 1 bit; in case 10, more than 6 
bits (26=64).  Weighting the information gain by the state probability gives the expected information 
gain.  Because the logarithm function is concave-down, a uniform distribution minimizes the expected 
log-probability, maximizes its negative (the expected log-odds, or entropy), and minimizes the 
information  (the expected log-probability, minus that of the uniform distribution). 
 



we now know log(N/M) more information about the system, or in other words that 
log(N/M) more of the physical information that it contains is known information (from 
our point of view).  The remaining log M amount of information, i.e., the physical 
information still unknown in the system, we call entropy. 

So, you can see that if we know nothing about the system’s state, then it has 
entropy log N and we know log N − log N = 0 of the information in it.  If we know the 
exact state of the system, then it has log 1 = 0 entropy, and we know the other log N − 0 
= log N information in it.  Anywhere in between, the system has some intermediate 
entropy, and we know some intermediate amount of its information.   

Claude Shannon showed how the definition of entropy could be appropriately 
generalized to situations where our knowledge about the state x is expressed not as a 
subset of states, but as a probability distribution px over states.  In that case the entropy is 
just ∑−=

x
xx ppH .log  The known information is then log N − H.  Note that the 

Boltzmann definition of entropy is just the special case of Shannon entropy where px 
happens to be a uniform distribution over all N states (see figure 3).   

Anyway, regardless of our state of knowledge, note that the sum of the system’s 
entropy and its known information is always conserved.  Known information and entropy 
are just two forms of the same fundamental quantity, somewhat analogously to kinetic 
and potential energy.  Whether a system contains known information or entropy just 
depends on whether our state is correlated (in a known way) with the system’s state, or 
whether the states are independent.  Information is just known entropy.  Entropy is just 
unknown information. 

Interestingly, physical information is apparently, like energy, a localized 
phenomenon.  That is, it has a definite location in space, associated with the location of 
the subsystem whose state is in question.  Even information about a distant object can be 
seen as just information in the state of a local object (e.g. a memory cell) whose state 
happens to have become correlated with the state of the distant object through a chain of 
interactions.  Information can be viewed as always flowing locally through space, even in 
quantum systems [9].  In particular, quantum field theory, the global Hamiltonian of a 
system can always be constructed by combining Hamiltonians describing only local 
interactions. 

Further, a system’s entropy may be converted to known information by 
measurement, and known information may be converted into entropy by forgetting (or 
erasure of information).  But the sum of the two in a given system is always a constant, 
unless the maximum number of possible states in the system is itself changing, which 
may happen if the system’s changes in size, or if energy is added or removed.  Actually, it 
turns out that in an expanding universe, the number of states (and thus the total physical 
information) is increasing, but in a small, local system with constant energy and volume, 
we will see that it is a constant. 
 To say that entropy may be converted to known information through observation 
may at first sound like a contradiction of the second law of thermodynamics, that entropy 
always increases in closed systems.  But remember, if we are measuring a system, then it 
isn’t completely closed, from an informational point of viewthe measurement requires 
an interaction that manipulates the state of the measurement apparatus in a way that 
depends on the state of the system.  From a point of view that is external to the whole 



measurement process, where we wrap a closed box around the whole process, the 
entropy, even if extracted from the original system through measurement, is still there 
(and still entropy) from this external point of view. (See figure 4.) 

But, if entropy can be moved out of a system by measurement, then couldn’t you 
theoretically remove all the entropy from a cylinder of gas (for example) by repeated 
measurements, freezing it into a known state, and gaining its heat energy as work?  Then, 
couldn’t you get more free energy, by allowing the cylinder to be warmed again by its 
surroundings while expanding against a piston, and repeat the experiment ad infinitum as 
a perpetual motion machine?   

This question is exactly the famous Maxwell’s Demon "paradox" [10], which only 
seemed like a paradox (resisting all attempts at resolution) before Charles Bennett of 
IBM finally resolved it [11] with the realization that you have to keep track of where the 
extracted information goes.  Sure, you can take entropy (and energy) out of a system, but 
you have to put the information somewhere, you can’t just "disappear" it.  Wherever you 
put it, you will require energy to store it.  You’ll need less energy, if you put the 
information in a lower-temperature system, but the resulting gain of work isn’t forbidden 
by thermodynamics, it’s just how any heat engine works! 
 Now, Boltzmann developed his definition of entropy in the context of classical 
mechanics by making the seeming ad hoc assumption that even the seemingly-continuous 
states of classical mechanics were somehow discretized into a finite number that admitted 
a logarithm.  However, this notion was later vindicated, when Max Planck and the entire 
subsequent development of quantum mechanics showed that the world was discretized, at 
least in the relevant respects.  
The entire classical 
understanding of the relations 
between entropy, energy, 
temperature, etc., remained 
essentially valid, forming the 
whole field of quantum 
statistical mechanics, a 
cornerstone of modern physics.  
Only the definition of entropy 
had to be further generalized, 
since partially-known states in 
quantum mechanics are 
described not by probability 
distributions, but by a 
generalization of a probability 
distribution called a mixed state 
or density operator, which can 
be represented (in finite cases) 
by density matrices.  However, 
entropy can still be defined for 
these more complex objects in a 
way that remains perfectly 
consistent with the more 
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Figure 4.  Entropy & measurement.  Suppose system B, 
which contains 1 bit of entropy (two possible states, labeled 0 
and 1), is measured by system A (arrow).  Now, system A is 
correlated with B, and B’s physical information is now known 
information, from A’s point of view.  But from the point of 
view of an outside observer C who does not have access to A’s 
record, the combined system still has 1 bit of entropy, since it 
could be either in state (A=0,B=0) or state (A=1,B=1).  Since 
physics is invertible, the number of possible states of the 
whole system can’t decrease from the point of view of an 
outsider who isn’t measuring its state.  But it can increase, for 
example, if C loses track of the interactions taking place 
between A and B, in which case all 4 joint states of the AB 
system might become possibilities from C’s point of view. 



restricted cases addressed by Boltzmann and Shannon (see fig. 5).  
 The study of the dynamic evolution of mixed states in quantum mechanics leads 
to a fairly complete understanding of how the irreversible behavior described by the 
second law arises out of reversible microphysics, and how the quantum world appears 
classical at large scales.  Basically, it all comes down to information and entropy.   

Quantum states, obeying Schrödinger’s wave equation, tend to disperse outside of 
any localized region of state space to which they are initially confined (except for the 
case of energy eigenstates, such as electron orbitals, which are stable).  Systems evolve 
deterministically, but when you project their quantum state down to a classical 
probability distribution, you see that an initial sharp probability distribution tends to 
spread out, increasing the Shannon entropy of the state over time.  The state, looked at 
from the right perspective or basis, is still as definite as it was, but as a matter of practice, 
we generally lose track of its detailed evolution; so the known information the system had 
(from our point of view) effectively becomes entropy. 
 The new field of quantum computing, on the other hand (cf. [12]), is all about 
isolating a system and maintaining enough control over its evolution so that we can keep 
track of its exact quantum state as it deterministically changes.  The physical information 
in a quantum computer is therefore known information, not true entropy. 
 However, most systems are not so well isolated; they leak state information to the 
outside world; the environment "measures" their state, as it were.  The environment 
becomes then correlated with the system’s state, and so copies of the system’s state 
information become mixed up with and redundantly spread out over arbitrarily large-
scale surrounding systems.  This precludes any control over the precise evolution of that 
state information, and so we fail to be able to elicit any quantum interference effects, 
which can only appear in well-defined deterministic situations, where multiple dynamic 
trajectories are made to converge onto a single state of the whole system. 

The precise way in which even gradual measurement by the environment eats 
away at quantum coherences, effectively devolving a pure quantum state into a (higher-
entropy) mixed state, and making the large-scale world appear to have an objective but 
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Figure 5.  Density matrix representation of probabilistic mixtures of  
quantum states.  The rows and columns of ρ are indexed by the system’s  
distinguishable states (in any basis).  Each diagonal element ρii just gives the probability of basis state i.  
The off-diagonal elements ρij, i≠j are complex numbers that specify quantum coherences between the basis 
states.  Any density matrix ρ has a unique basis such that when ρ is re-expressed in that basis, the resulting 
matrix ρ’ is diagonal, and represents a classical mixture of ≤n basis states.  The basis-independent von 
Neumann entropy of a mixed state is given by H = −Tr ρ ln ρ (where ln represents a matrix logarithm, 
defined as the inverse of matrix exponential, which is defined by a Taylor-series expansion of eM).  This 
quantity is exactly the same as the Shannon entropy (in nat units) of the probability distribution specified 
along the diagonal of the diagonalized density matrix ρ’.  The von Neumann entropy of a (not necessarily 
diagonal) density matrix ρ is always less than or equal to the Shannon entropy of ρ’s own diagonal, which 
is in turn always less than or equal to the Boltzmann entropy, ln n. 
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nondeterministically determined classical state, is by now well understood by those who 
have studied this problem, particularly Zurek [13].  Straightforward, deterministic 
quantum theory actually requires no modifications (such as ad hoc "wavefunction 
collapse") in order to explain classical macro-behavior perfectly well as an emergent 
phenomenon, an insight first elucidated by Everett [14].  Unfortunately, these important 
facts are not as widely known or understood as they should be, and as a result, this 
elegant theory is still undeservedly controversial in many circles, where it is still 
imagined to conflict with macroscopic experience. 

Information Storage Limits 
Now that we know what information physically is (more or less), let’s talk about some of 
the limits that can be placed on it, based on known physics. 
 An arbitrary quantum wavefunction, as an abstract mathematical entity, in general 
could require infinite information to describe precisely, because in principle there is an 
uncountable set of possible wavefunctions.  (Note, however, that there are only countably 
many finite descriptions, or computable wavefunctions.)  But remember, the key 
definition for physical information, ever since Boltzmann, is not the number of states that 
might mathematically exist, but rather the number of operationally distinguishable states.  
Quantum mechanics gives distinguishability a precise meaning: Namely, two states are 
100% distinguishable if and only if (considered as complex vectors) they are orthogonal.   

A basic result in quantum statistical mechanics is that the total number of 
orthogonal states for a system consisting of a constant number of non-interacting 
particles, having relative positions and momenta, is roughly given by the numerical 
volume of the particles’ joint configuration space or phase space (whatever its shape), 
when expressed in length and momentum units chosen so that Planck’s constant h (which 
has units of length times momentum) is equal to 1 (cf. sec. 2.D of [15]).  Therefore, so 
long as the number of particles is finite, and the volume of space occupied by the 
particles is bounded, and their total energy is bounded, then even though (classically) the 
number of point particle states is uncountably infinite, and even though the number of 
possible quantum wavefunctions is also uncountably infinite, the amount of information 
in the system is finite!   
 Now, this model of a constant number of non-interacting particles is a bit 
unrealistic, since in quantum field theory (the relativistic version of quantum mechanics), 
particle number is not constant; particles can split (radiation) and merge (absorption).  To 
refine the model one has to talk about possible field states with varying numbers of 
particles.  However, this still turns out not to fundamentally change the conclusion of 
finite information for any system of bounded size and energy.  In independent papers, 
Warren Smith of NEC [16] and Seth Lloyd of MIT [17] have given an excellent 
description of the quantitative relationships involved.   

In his paper, Smith argues for an upper bound to entropy S per unit volume V of 
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where q is the number of distinct particle types (including different quantum states of a 
given particle type), c is the speed of light, �  is Planck’s constant, and M is the total 



(gravitating) mass-energy of the system.*  As a numerical example, using only photons 
with two polarization states (which are argued to be the dominant entropy carriers at high 
temperatures), a 1 m3 box containing 1000 kg of light could contain at most 6×1034 bits, 
or 60 kb per cubic Ångstrom (1Å=10-10 m; 1Å3 is roughly a hydrogen-atom-sized 
volume).  However, achieving this limit for stable storage is probably unrealistic, since 
light with this mass density (that of water) would have a temperature of nearly a billion 
degrees (cf. [16], eq. 13), and exert a pressure on the order of 1016 pounds per square 
inch!† 

In [17], Lloyd presents a bound nearly identical to Smith’s, and derived based on 
similar arguments.  It differs from Smith’s only in that it is tighter by the small constant 

factor of 22 .  Lloyd presents the example of a 1 kg, 1 liter "ultimate laptop" (at the 
density of water again) for which, using the same 2-state photon assumption as Smith, the 
maximum entropy would be 2.13×1031 bits, i.e., the same entropy density as in Smith’s 

example, less the factor of 22 . 
One should note that these field-theory based limits do not take into account the 

effects of gravity and general relativity.  Based on very general grounds, Bekenstein [18] 
has proved a (usually much looser) entropy limit for a system of given size and energy, 
that holds even when taking general relativity into account: cERS �/2π< , where E is 
total energy and R is the system’s radius.  The only systems known to actually attain this 
entropy bound are black holes.  The physical system of least radius that can contain a 
given amount of entropy is a black hole.  (Black hole "radius" has a standard, meaningful 
definition even in the severely warped spacetime in and around a black hole.)  
Interestingly, the entropy of a black hole is proportional to its surface area (suitably 
defined), not to its volume, as if all the information about the hole’s state were stuck at its 
surface (event horizon).  A black hole has exactly 1/4 nat of entropy per square Planck 
length of surface area (a Planck length is a fundamental unit of length equal to 1.6×10-35 
m).  In other words, the absolute minimum physical size of 1 nat’s worth of information is 
a square exactly 2 Planck lengths on a side! 

The Bekenstein bound is truly enormous.  A hypothetical 1-meter radius 
(mainframe-sized) machine that achieved this bound would have an average entropy 
density throughout its volume‡ of 1039 bits per cubic Ångstrom, much higher than the 
limit for the water-density machines described earlier.  However, this "machine" would 
also be a black hole with roughly the mass of the planet Saturn.  Needless to say, this is 
not very practical. 
 Now of course, both the field-theory and Bekenstein bounds on entropy density 
are only technology-independent upper bounds.  Whether we can come anywhere close to 
reaching these bounds in any realistic computing technology is another question entirely.  
Both these bounds require considering all the possible states of quantum fields.  
However, it seems impossible to constrain or control the state of a field in definite ways 
without a stable surrounding and/or supporting structure.  Arbitrary field states in general 
are not stable structures. For stability, it seems that one requires the use of long-lived, 
                                                        
* Cf. eq. (22) in [Smi95], which gives the equivalent value in bits (the unit "bit" is there given by context).  
Here we have just removed the ln 2 factor, to express the value in nats, and made the unit explicit. 
† Estimated by converting mass density to energy density using E=mc2, and expressing the result in 
pressure units. 
‡ Volume calculated assuming a spherical shape and ignoring spacetime curvature. 



bound particle states, such as one finds in molecules, atoms and nuclei.  This leads us to 
our next logical question: 

How many bits can you store in an atom? 
 Nuclei may have an overall spin orientation, which is encoded using a state-vector 
space of only dimensionality 2, so the spin only holds 1 bit of information.  Aside from 
its spin variability, at normal temperatures a given nucleus is normally frozen into its 
quantum ground state.  It can only contain additional information if it is excited to higher 
energy levels.  But, excited nuclei are not stable—they are radioactive and decay rapidly, 
emitting high-energy, damaging particles.  Not too nice for consumer safety! 
 Electron configuration is another possibility.  Outer-shell electrons may have spin 
variability, as well as excited states that, although still unstable, at least do not present a 
radiation hazard.  Further, there may be many ionization states for a given atom that may 
be reasonably stable in a sufficiently well-isolated environment.  This presents another 
few potential bits. 
 The choice of nuclear species in the atom in question presents another opportunity 
for variability.  However, there are only a few hundred reasonably stable isotopes, so at 
best (even if you have a storage location that can hold any type of atom) this only gives 
you at most an additional 8 bits or so. 
 An atom in a solid is in a potential energy well (relative to its neighbors) and 
generally has 6 restricted degrees of freedom, three of position and three of momentum.  
At normal temperatures, each one of these contributes kB/2 to its heat capacity, which 
contributes an equivalent amount of entropy for each factor of e increase in temperature 
beyond the regime where the excited states become accessible.  So this gives us a few 
more bits per atom, encoded in these vibrational states.  However, phonons (the quantum 
"particles" of mechanical vibration) can easily dissipate out into any mechanical 
supporting structure, so they do not represent stable storage. 

Of course, an arbitrarily large number of bits could be encoded in an atom's 
position and momentum along unrestricted degrees of freedom, i.e., in infinitely large 
open spaces.  However, given bounded spaces and energies, the entropy is still limited by 
the classical limit of log phase-space-volume (mentioned earlier).  Since entropy per 
atom grows with only log volume, entropy density (per volume) actually shrinks with 
increasing volume.  So, spreading atoms out, though it increases entropy per atom (by 
some small number of bits) does not increase entropy density.  If we are interested in 
maximizing information density using atoms, then we should stick with dense, solid-state 
materials (which also have the advantage of stability). 

For example, a rough estimate I performed of the entropy density in pure copper, 
based on standard CRC tables of empirically-derived thermochemical data, suggests that 
(at atmospheric pressures) the actual entropy density falls in the rather narrow range of 
only about 0.5 to 1.5 bits per cubic Ångstrom, over a wide range of temperatures, from 
room temperature up to just below the metal's boiling point.*  Entropy densities in a 
variety of other pure elemental materials are also near this level, though copper had the 
highest entropy density of the materials I studied.  The entropy density would be 
expected to be somewhat greater for mixtures of elements, but not by much. 

                                                        
* This estimate was arrived at by integrating the approximate heat capacity, divided by temperature, over 
the temperature range, and adding in the change of entropy during the solid-liquid transition. 



One can try to further increase entropy densities by applying high pressures.  At 
the moment, it is unclear what may be the ultimate limits to pressures achievable in stable 
structures.  The only clear limit I know of is the pressure at the core of neutron star just 
below the critical mass (~3.2 suns) for black hole collapse (~1030 atmospheres*). But of 
course, stellar-scale engineering is, at best, only a very long-term prospect. 

Based on all this, I would be quite surprised if an information density greater than, 
say, ~10 bits per cubic Ångstrom could be achieved for stable, retrievable storage of 
digital information anytime within, say, the next 100 years.  

Note, however, that even at an information density of only 1 bit/Å3 (which the 
Moore's Law trend would have us reach in only 40 years or so), a convenient 1 cm3 
(sugar-cube size) lump of material could theoretically hold 1024 bits of information.  This 
quantity (or actually the slightly greater quantity 280 bits) is known, in obscure jargon†, as 
1 yottabit or 1 Yb.  In more familiar units, it is ~100 billion terabytes, much greater than 
the total digital storage in the entire world today. 

Minimum Energy for Information Storage 
One of the most important raw resources involved in computing, besides time and 

space and manufacturing cost, is energy.  When we talk about "using up energy," we 
really mean converting free energy into (low-temperature, or degraded) heat energy, 
since energy itself is conserved.  Free energy can be loosely defined as that part of the 
accessible energy that we could potentially organize into a structured configuration, work 
(such as a directed energy of motion) that would accomplish some desired transformation 
of some system of interest.‡   

These concepts relate to information, as follows.  A given chunk of energy can be 
thought of as carrying an associated chunk of information describing the state of that 
energy. Heat can be broadly defined as any energy all of whose information happens to 
be entropy.  In other words, its state is completely unknown.  For a system with entropy S 
at temperature T, we can even define its internal heat as ST. 

However, part of the heat in any high-temperature system is also free energy, 
because it can be converted to work, by extracting its entropy into a smaller amount of 
heat that is expelled into a lower-temperature system—this is just what any heat engine 
does. Temperature, as we saw earlier, is just the slope of the energy vs. information curve 
for a given (open) system whose total energy and physical information are (for whatever 
reason) subject to change. 

If a system has entropy S and the coolest available reservoir large enough to hold 
this entropy has temperature TC, then we know that an amount STC of the energy in the 
system is permanently committed to storing this entropy.  We can call this the spent 
energy.  After excluding the entropy and its associated spent energy from the system, the 
rest of the system's accessible energy will be in a known state—but, this does not 
necessarily mean a desired state.  We may need to manipulate the system's information to 
get it into the form we want. 

                                                        
* The equivalent pressure corresponding to several times the nuclear saturation density of 2.7×1014 g/cm3. 
† The "yotta" prefix was adopted in 1990 by the 19th Conférence Générale des Poids et Mesures (CGPM), 
cf. http://www.bipm.fr/enus/3_SI/si-prefixes.html. 
‡ More precisely defined measures of free energy include Gibbs free energy and Helmholtz free energy, but 
their particular definitions are not required for our present purposes. 



What are the constraints on manipulations that we can do?  One major constraint 
comes from the fact that physics is reversible, meaning that in a closed system it 
transforms one state to another over time in a mathematically invertible way.  Another 
way of saying this is that it is deterministic looking backwards in time.  This follows 
from the unitary nature of the time-evolution operator in quantum mechanics, but is also 
a feature of any mechanics that admits of a Hamiltonian description.* 

Reversibility can be seen as directly implying the second law of thermodynamics: 
If a bit of entropy in a closed, unmeasured system were to disappear (be transformed to a 
known state), this would not be reversible, because multiple possible prior states would 
be mapped to the same resulting state.  Such a transformation would have no inverse.  In 
contrast, appearance of entropy only requires the "knower" to forget or lose track of the 
system’s state, which is easy to do.† 

Now, let us return to the topic of this section: the energy required for information 
storage.  What do we mean by information storage?  Namely, that "we" (namely, the 
entity in question, whether a human or a computer) have learned some piece of 
information— either via a measurement (input operation), or by some internal 
computation— and we wish to record a copy of it, temporarily or permanently, in some 
accessible system (a "storage location") in such a way that we can use it later.  That is, we 
wish the system's state to become correlated with the information obtained. 

The question is: What happens to the physical information that was already in the 
storage location to be correlated with the new information?  Due to the reversibility of 
physics, it cannot simply disappear and be replaced by the known information. There are 
only three possibilities: 

 
(1) If the storage location is in a known state, that means it is correlated to or 

redundant with some other system that we can access (namely, wherever our 
knowledge resides), and further that we know the form of this correlation.  As 
a result, it may be possible to reversibly return the storage location to some 
standard, "empty" state— for example, by the reverse of the operation that 
created the correlation to begin with, or, there are sometimes other methods.  
We call this uncomputing the information.   

Once its informational content has been uncomputed, the system is then in 
the empty state and can be reused— a reversible tranformation can now take it 
to a new state that explicitly represents the particular information that we wish 
to store.  To the extent that we can avoid creating any new entropy during this 
entire reversible process, we can avoid spending any energy.  (Recall the 
definition of spent energy from above.)  The reversible reuse of storage for 

                                                        
* Note that reversibility is not the same thing as time symmetry.  Although most physical laws are time-
symmetric, particle physics has shown that one must also negate all electrical charges and replace all spatial 
configurations with their mirror-images in order to obtain exactly identical laws.  Particle physics is now 
thought to obey only "charge-parity-time" or CPT symmetry.  However, regardless of the precise 
symmetry, all the currently tenable theories are (apart from the required sign changes) unchanged in overall 
form with respect to time reversals, and so they remain reversible; that is, reverse-deterministic. 
† There is a small subtlety here— is information considered known if it is merely deducible from known 
information?  The problem is that deductions can be arbitrarily difficult.  Information that is infeasible to 
deduce is, at least, effectively unknown, and thus effectively entropy, though note that it would "become" 
non-entropy if one went through the time and trouble to deduce it. 



multiple computations that produce useful results was first shown 
theoretically possible by Charles Bennett of IBM [19], although earlier work 
by Landauer [20] and Lecerf [21] came close to making this discovery. 

 
(2) If the storage location is in an unknown state (contains entropy), then the best 

that we can do is to reversibly move the entropy S away to some system at 
temperature T, which requires that, at least, the corresponding energy ST must 
go along with it.  For example, if S = 1 bit (kB ln 2), then at least kBT ln 2 
energy must be dissipated. Landauer was the first to detail the argument about 
the minimum energy expenditure in this case (1961, [20]).* *22 

 
(3) This third possibility is rarely considered.  The existing information in the 

storage location can be reversibly transformed in a way that depends on the 
new information, but also on the old.  If the contents of the storage location 
are measured both before and after such transformations, then the correlations 
between the states of the storage location at different times can potentially be 
harnessed to effectively utilize the new "stored" information, despite the fact 
that the old information remains present (though possibly in altered form).  
However, the usefulness of this particular technique may be quite limited.† 

  
An interesting fact about present-day commercial computer technology is that every act 
of information storage (e.g. every bit-operation performed by each of the millions of 
logic gates in a modern CPU every nanosecond) treats the previous contents of the 
storage location as being unknown, and uses method (2), and furthermore with many 
orders of magnitude of added energy-inefficiencies on top of this. 
 However, there is now a new research field (small, but growing) of reversible 
computing, which is concerned with investigating the alternative of using technique (1) 
instead, and of engineering systems that approach the theoretical possibility of zero 
dissipation as closely as possible. 

It seems that real technologies can indeed approach these predictions, as indicated 
by Likarev’s analysis of his reversible superconducting "parametric quantron" [23], as 
well as by the adiabatic‡ CMOS circuits that have been a popular topic of investigation 
and experimentation (for myself and co-workers, among others) in recent years (cf. 
[24,25,26,27]). 

 Our group at MIT designed and built several adiabatic processors (see fig. 6), 
demonstrating that there is nothing inherently impossible or even especially difficult 
about building real computer architectures based on reversible logic.  These techniques 

                                                        
* Von Neumann had discussed but not proven this limit in an earlier (1949) lecture, published 
posthumously in 1963 [22]. 
† The only nontrivial example of this trick that I know of is in a group-theoretic circuit construction by 
Coppersmith and Grossman [CG75] showing that arbitrary Boolean functions of n-bit inputs can 
(surprisingly) be reversibly computed "in place" using the input locations plus at most 1 extra bit of storage, 
which need not initially be empty.  Unfortunately, in that example, the technique does not lead to a 
practical (time-efficient) algorithm. 
‡ Adiabatic processes are ones that asymptotically approach thermodynamic reversibility at low speeds, 
although we should note that no highly-structured system can be fully adiabatic, because it is always 
subject to some nonzero background rate of decay towards a less structured equilibrium ensemble. 



may even soon lead to cost-efficiency benefits in electronics applications that demand 
extremely low power consumption. 

However, some interesting fundamental research problems remain to be solved 
before the practicality of these kinds of approaches for breaching sub-kBT energy levels 
can be firmly established.  Let us elaborate. 

Some Open Problems in Reversible Computing 
First, there is an open research issue of how to provide appropriate synchronization in a 
scalable, parallel reversible processor.  Let us explain. 

In order to make rapid forward progress through the computation, the machine 
state needs to evolve nearly ballistically (that is, dominated by its forward momentum, 
rather than by a random walk) along its trajectory in configuration space. Zurek, 
however, showed that a certain ballistic asynchronous (clockless) reversible processor 
would be disastrous under classical physics, since small misalignments in the arrival 
times of different ballistically-propagating signals would throw off the interactions and 
lead to chaos [28] (specificially, in Ed Fredkin’s original "billiard ball model" [29] of 
ballistic reversible computing).* However, Zurek’s paper also showed that quantum 

                                                        
* Smith [Smi99] later described a classical reversible machine that also avoided instability, but it was not 
hardware-efficient (each location could be used only once), so did not really demonstrate sub-kT dissipation 
per operation if the energy cost of building the hardware is taken into account. 

 
Figure 6.  Reversible chips designed at MIT, 1996-99.  As graduate students in Tom Knight’s group, 
my co-workers (Josie Ammer, Nicole Love, Scott Rixner, Carlin Vieri) and I designed, outsource-
fabricated and tested these four proof-of-concept reversible chips, using the "Split-Level Charge 
Recovery Logic" (SCRL) adiabatic CMOS logic family that had been introduced by Knight and Younis 
in 1993-94 [24].  Cadence design tools and a 0.5-µm process provided by MOSIS were used.  TICK was 
a benchmark for comparison purposes, an 8-bit, non-adiabatic implementation of a reversible instruction 
set architecture, while PENDULUM was a 12-bit fully-adiabatic implementation with a similar ISA, but 
designed to achieve much lower power [26].  Before PENDULUM, we built the much simpler FLATTOP, a 
fully-adiabatic programmable array of 400 simple 1-bit processing elements; arrays of these chips could 
in principle be programmed to simulate arbitrary reversible circuits in a scalable way [25,27].  XRAM

was a small fully-adiabatic static RAM chip. 



systems need not suffer from such instabilities, and that their errors could in principle be 
corrected with relatively little dissipation.  

Zurek’s insight was taken further by Feynman [30] who constructed a detailed 
quantum model of a serial (one operation at a time) reversible computer that required no 
global synchronization; only local, self-timed interactions.  Margolus [31] extended this 
technique to a parallel model, but was able to prove a steady rate of computation for only 
1 dimension of parallelism, that is, for architectures with at most order N1 active locations 
accessible within time N.  For improved spacetime efficiency of algorithms, we would 
prefer that order N3 elements be accessible (the maximum possible in flat 3-dimensional 
space).  Whether Margolus’ technique, or any other, will work for self-synchronizing 
reversible computations with scalability in more than 1 dimension remains to be seen. 

If the self-timed approach does not work out, then apparently an accurate, 
synchronous global timing signal will need to be provided in order to keep the logic 
signals in the machine aligned in time.  In fact, all reversible machine implementations 
proposed so far (including the quantum computers) depend on this approach, as do most  
irreversible commercial processors (although irreversible self-timed chips have already 
been commercially demonstrated [32]).  One expects it to be theoretically possible to 
construct a resonant clock generator that recycles energy with arbitrarily high efficiency. 

However, no one has yet proposed a specific mechanism for such a clock 
generator that is accompanied by a sufficiently detailed scaling analysis (preferably 
backed up by experiment, or at least a detailed simulation) to establish that the entire 
system (including the clock generator) can clearly and obviously be scaled to sub-kT 
dissipation levels per logic operation that it drives, while also scaling up cost-effectively 
to arbitrarily large numbers of processing elements working together in parallel, 
preferably in 3-dimensional arrays.  Indeed, some early indications suggest that there may 
be quantum limits that imply that global timing signals ultimately will not scale properly, 
due to quantum uncertainty [33]. 

Merkle and Drexler’s helical logic proposal [34], involving a cylindrical spindle of 
wires rotating slowly in an electrostatic field, is one example of an implementation 
concept which might have potential, but its engineering details have probably not been 
worked out with quite enough thoroughness yet to convince everyone of its feasibility.  

As an example of a skeptical viewpoint, Smith [35] conjectures a "no free lunch" 
principle, that any physical mechanism offering sub-kT computational operations must 
necessarily suffer from fatal asymptotic space-time overheads, such as an inability to 
reuse hardware.  Another notable expression of skepticism about reversible computing is 
that found in Mead and Conway’s well-known VLSI textbook [36]. 

However, despite these doubts, and despite the lack of any experimentally 
validated implementation as a counter-example, none of the skeptics have given any 
rigorous proof, or even any very convincing argument (in my opinion) why a hardware-
efficient and scalable sub-kBT logic technology must be fundamentally impossible for any 
technology, as opposed to merely being unattained by various specific mechanisms. 

So, to the best of my knowledge, at the moment it is still technically an open 
question whether computing with arbitrarily little entropy generation per operation (with 
hardware reuse, and scalable 3-D parallelism) is truly permitted, or not.  Finding the 
definitive answer to this crucial question (whether it be yes or no) is a key goal of my 
own research at the moment. 



Interestingly, even if efficient physically-reversible computing turns out to be 
permitted in principle, it is probably not quite as good as it sounds at first for all 
applications, because of the algorithmic overheads that appear to be associated with 
reversible computing in general [37].   Definitively proving lower bounds on the 
magnitude of these overheads is another fundamental open problem. 

Furthermore, in any fixed device technology having a minimum rate of energy 
leakage, one can show that there will be a maximum degree of reversibility that can be 
beneficial, so that any given technology’s dissipation per operation, even if much less 
than kBT, is not arbitrarily smaller.  Accurately characterizing the cost-efficiency 
tradeoffs in this situation is another open problem that is less fundamental, but important 
for near-term applications. 

So, to wrap up our discussion of information storage, what is the minimum energy 
required to "store a bit of information?"  That depends.  If all that is needed is to 
reversibly change the state of a storage location from one definite state to another, then 
there is no lower limit, apparently [19,11].  However, if the storage location already 
contains entropy, or just some information that we wish to forget, then we have to move 
this existing information out of the system to the unlimited space in the external world, 
which costs kBT ln 2 free energy, where T is the temperature at the point where we finally 
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Figure 7: Trendline of minimum ½CV2 transistor switching energy.  Values were calculated using the 
goals for high-performance and low-power processors in the 1999 International Technology Roadmap 
for Semiconductors [3].  Energy is expressed as a multiple of room-temperature kT, which also is the 
number of nats of information associated with that energy.  If the trend is followed, thermal noise will 
begin to become significant in the 2030s, when transistor energies approach small multiples of kT.  
Shortly after 2035 (if not sooner) this trend will be forced to begin leveling off, since a bit of 
information requires at least 0.69 kT to carry it [38].  However, if reversible operations are used, the 
order-kT bit energies need not be dissipated [20,19], and so the dissipation per reversible bit 
manipulation might continue decreasing along this curve a while longer. 
  



thermalize (lose control of) the information.  We cannot simply wish away the 
information, somehow compressing the system’s number of possible states, because 
physics is reversible (as discussed earlier), and phase space is incompressible (Liouville’s 
theorem).  The true entropy (von Neumann entropy) of a mixed quantum state of an 
unobserved, closed system does not decrease as the system evolves unitarily, though it 
can increase, insofar as we lose track of the system’s detailed evolution. 
 It is interesting to note that current technology is a bit closer to approaching the 
fundamental limits on energy dissipation for information storage, compared to how far 
we would have to go to achieve the limits on information density.  Current trends would 
have us reach the limit of kBT ln 2 (i.e., 1 bit of physical information displaced per bit of 
digital information irreversibly stored) in only about 35 years (see figure 7).38At this time 
(if not sooner), the performance per unit power of ordinary irreversible computing (which 
does an irreversible storage operation with every logic-gate operation) will start to level 
off, at a maximum level of at most 3.5 × 1022 irreversible bit-operations per second in a 
100 W computer that disposes displaced entropy into a room-temperature (300 K) 
thermal reservoir.  This rate is about a million times higher than the maximum rate of bit 
operations in the ~30-million-gate, 1 GHz processors in use today.  Any possible further 
improvements in performance-per-power beyond this point would require reversible 
computing. 

Communication Limits 
Communication is important in computing because it constrains the performance of many 
parallel algorithms.  In his well-known work [39] spawning the field of information 
theory, Claude Shannon derived the maximum information-carrying capacity of a single 
wave-based communications channel (of given frequency-band width) in the presence of 
noise.  Shannon’s limits are widely studied, and are fairly closely approached by the 
coding schemes used in state-of-the-art wave-based communications today. 
 However, when considering the ultimate physical limits relevant to computation, 
we need to go a bit beyond the scope of Shannon’s paradigm.  We want to know not only 
the capacity of a single channel, but also the maximum bandwidth for communication 
using any possible number of channels, given only area and power constraints. 
 Interestingly, the limits from the previous section, on information storage density 
and energy, directly apply to this.  Consider: The difference between information storage 
and information communication is, most fundamentally, only a difference in one’s inertial 
frame of reference.  Communication from point A to point B is ultimately just bit 
transportation, i.e. a form of "storage" but in a state of relative motion.  And likewise, 
storage is just "communication" across zero distance (but through time). 
 So, if one has a limit on information density ρ, and a limit on information 
propagation velocity v, then this immediately gives a limit of ρv on information flux 
density (or just flux for short), that is, bits per unit time per unit area in communications. 
 Of course, we always have a limit on propagation velocity, namely the speed of 
light c, and so each of the information density limits mentioned earlier directly implies a 
limit on flux density (though relativistic corrections are needed for speeds approaching 
c).  One can then derive a maximum information "bandwidth" per unit area (i.e., 
information flux), as a function of per-area power density (energy flux). 



 For example, Smith [16] shows that the maximum entropy flux FS using photons, 

given energy flux FE, is 4/3
E
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4/60c2 � 3.  So, for example, a 10-cm square wireless tablet transmitting 

electromagnetically at a 1 W power level (from one side) could never communicate at a 
bit rate of more than 6.8 × 1020 bits per second, no matter what distribution of frequencies 
or coding scheme is used, even in the complete absence of noice. 

This limit sounds very high at first, but consider that the corresponding bit rate 
per square nanometer is only 68 kbps.  For communication among neighboring devices 
across a cross-section of a computer having densely-packed nano-scale components, one 
would like a much higher bandwidth density, perhaps on the order of 1011 bps/nm2, to 
keep up with the ~100 GHz expected rate of bit-operations in a nanometer-size electronic 
component that is 1/100 the size of today’s ~0.1 µm transistors.  This ~106× higher 
information flux would require a (106)4/3 = 108× higher power density (from Smith’s law), 
that is, on the order of 1 MW/cm2!  The equivalent temperature (that of blackbody 
radiation with this power density) is about 14,000 K.* (Any other spectrum would require 
even higher power levels, since the equilibrium spectrum by definition has the maximum 
entropy.)  This seems too high to be practical (the computer would melt), so it seems that 
we can rule out light as a practical medium for dense interconnects at the nano-scale, at 
least until we find some way to build stable structures at such temperatures.† 
 In contrast, notice that if a bit were encoded in more compact particles (atomic or 
electronic states), rather than in electromagnetic field modes, then, given a plausible 
information density of 1 bit per cubic nanometer, our desired bit-rate of 1011 bps/nm 
could be achieved using a quite reasonable velocity (of atoms or electrons) of only 100 
m/s. 
 Another interesting consideration is the minimum energy dissipation (as opposed 
to energy transfer) required for communications.  As we saw earlier, one can look at a 
communication channel as the same thing as a storage element, but looked at from a 
different relativistic "angle," so to speak.  If the channel’s input bit is in a definite state, 
then to swap it with the desired information takes no energy [40].  The channel does its 
thing (ideally, ballistically transporting the energy being communicated, over a definite 
time span), and the information is then swapped out at the other end— although the 
receiver needs an empty place to store it.  However, if the receiver's storage location is 
already occupied with a bit that's in the way of your new bit, and that you can't 
uncompute, then you have to pay the energetic price to dispose of the old bit.    

Computation Rate Limits 
So far we have focused only on limits on information storage and communication.  But 
what about computation itself?  What minimum price, in terms of raw physical resources, 
must we pay for computational operations? 
 Earlier, we discussed the thermodynamic limit on computational performance of 
irreversible computations as a function of their power dissipation, due to the need for 
                                                        
* Obtained by dividing the power flux by c to convert it to energy density, then solving Smith’s eq. 13 
(energy density of blackbody radiation) for T. 
† Unless a way is found to increase the entropy density of EM fields beyond this bound.  This might be 
done if, for example, EM waves could be confined to channels much smaller than their wavelength. 



removal of unwanted (garbage) information.  However, this limit may not apply to 
reversible computations.  Are there other performance limits that will apply to any type 
of computation, reversible or not? 
 Interestingly, yes: Basic quantum theory can be used to derive a maximum rate at 
which transitions (such as bit-flips) between distinguishable states can take place [41,17].  
One form of this upper bound depends only on the total energy E in the system, and is 
given by 4E/h, where h=2π �  is the unreduced Planck’s constant. 

At first, this seems like an absurdly high bound, since the total energy presumably 
includes the rest-mass-energy of the system, which, if the system contains massive 
particles, is a substantial amount of energy.  For example, Lloyd’s 1-kg "ultimate laptop" 
has a mass-energy of 9×1016 Joules, and so its maximum rate of operation comes out to 
be 5×1050 state-changes per second! 

However, if the system’s whole mass-energy is not actively involved in the 
computation, then presumably it is only that portion of the mass-energy that is involved 
that is relevant in this bound.  This gives a much more reasonable level.  For example, a 
hypothetical single-electron device technology in which electrons operate at 1 eV above 
their ground state could perform state-transitions at a maximum rate of about 1 PHz (1015 
Hz) per device.  Interestingly, as with the speed limit due to energy dissipation, this is 
only about a factor of a million beyond where we are today. 

Conclusion 
 All computer users, including computational scientists & engineers, naturally 
hope that the trend of increasing affordability of computing power will take us as far as 
possible.  Where the limits of computing lie is obviously an important; indeed, some have 
suggested it may even have a bearing on the long-term fate of life in the universe!42  
However, our best available knowledge of physics strongly indicates that some ultimate 
limits do exist, and give us, at least, loose upper bounds on what might be achieved.   

Interestingly, one of the most imminent of the fundamental limits appears to be 
the limit on the energy dissipation of irreversible computation, but this particular limit 
may possibly be circumvented through the use of reversible computing techniques.  
Although reversible computing has made impressive progress, whether this "fix" can 
ultimately work out in a scalable and cost-efficient way remains to this day an open 
question, one that is the subject of active research by myself and others. 

As part of my future work, I am planning to apply methods of computational 
physics to model and simulate various candidate reversible computing systems, taking all 
the relevant physical considerations into account, until either a complete and detailed 
proof-of-concept model of a realistic, cost-efficient, and scalable sub-kBT computing 
system is developed, or it becomes clear how to construct a rigorous and general proof 
that no mechanism having all the desired properties can physically exist. 

In any event, I hope that the present article will help to inspire scientists & 
engineers in many fields to devote increased attention to finding ways to meet the 
incredible challenges facing the future of computing, as it approaches the many limits 
found at the atomic scale.  These limits are now close enough to fall within the career 
horizons of people starting out today: For example, given present rates of improvement, 
computing will hit the kBT thermodynamic brick wall before today’s 30-year-old Ph.D. 
graduates will retire.  Although computing does appear to be nearing various hard 



physical limits, the race to get as far as possible within those limits promises many 
exciting research opportunities in many areas of the physical and computer sciences, as 
we develop these new machines.   

But, even if someday we figure out how to optimally harness all of the raw 
computational power of physics itself, we can be sure that our ultimate "power users," the 
computational scientists & engineers, will respond by enthusiastically tackling new 
problems so challenging that the computers will still seem too slow! 
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