96

Nanocomputers—Theoretical Models
Michael P. Frank <mpf@cise.ufl.edu>
Department of Computer & Information Science & Engineering
University of Florida, Gainesville, Florida, USA

Invited Article (Review Chapter) for the Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers, 2003
0. Table of Contents

1Nanocomputers—Theoretical Models

10.
Table of Contents

21.
Introduction

62.
Fundamental Physics of Computing

83.1.
Concepts of Physical Information Processing

123.
Traditional Models of Computation

175.
New Models of Nanocomputers

175.1.
Reversible Computing

275.2.
Quantum Computing

346.
Generic Realistic Model of Nanocomputers

346.1.
Device Model

376.2.
Technology Scaling Model

406.3.
Interconnection Model.

416.4.
Timing System Model.

416.5.
Processor Architecture Model.

426.6.
Capacity Scaling Model

426.7.
Energy Transfer Model

436.8.
Programming Model

456.9.
Error Handling Model

466.10.
Performance Model

466.11.
Cost Model

476.12.
Some Implications of the Model

497.
Specific Nanocomputing Technology Proposals

497.1.
Taxonomy of Nanocomputing Hardware Technologies

507.2.
Nanoelectronic logic technologies

607.3.
Nanomechanical logic technologies.

607.4.
Optical and optoelectronic technologies.

617.5.
Fluid (chemical, fluidic, biological) technologies.

637.6.
Very long-term considerations

658.
Conclusion & Future Directions

669.
Glossary

9610.
References

1. Introduction
In this article, we survey a variety of aspects of theoretical models of computation, with an emphasis on those modeling issues that are particularly important for the engineering of efficient nano-scale computers.
Most traditional models of computing (such as those treated in Savage’s textbook [
]) ignore a number of important fundamental physical effects that can dramatically impact computational performance at the nanoscale, such as the basic thermodynamic limits on information processing [
], and the possibility of utilizing quantum physical superpositions (essentially, weighted combinations) of logic states [
]. New, alternative models of computing that allow reversible computing [
], while respecting the laws of thermodynamics, may (gradually, over the next ~50 years) achieve a level of performance and cost-efficiency on all types of computational tasks that is literally thousands of times greater than the best that is physically possible using conventional irreversible models [
]. Also, those models that are not only reversible, but that also allow coherent quantum computing, based on self-interference of entangled superpositions of states, furthermore permit expressing algorithms (for at least some special-purpose problems) that require exponentially fewer steps in these models than the best known algorithms in the older models that do not [3].
Because of such discrepancies, the scope and precision of our models of computation must be revised and extended in order to take these new considerations into account, if we wish our models to continue to be an accurate and powerful guide to the engineering design of computer architectures and to the performance of algorithms, even as technology approaches the nanoscale. We describe some ways in which this has already been done, by the author and others, show some example results of this modeling effort (such as the quantitative performance advantages of reversible and quantum computing quoted above), describe a variety of proposed nanocomputing technologies, and identify which technologies have the potential to implement these most powerful models, and we conclude with a discussion of future work that is needed to further develop and flesh out these models to the point where future nanocomputer engineers and programmers will find them maximally useful.
Definition of “nanocomputer.” For purposes of this article, a nanocomputer is simply any computer whose characteristic length scale—the average spacing between the centers of neighboring primitive functional components, such as transistors or other switching elements—falls within the 3-orders-of-magnitude-wide range that is centered on 1 nanometer (that is, ~0.032 to ~32 nanometers). (Anything in the next-larger range might be better called a microcomputer, and anything in the next-smaller range, if that were possible, a picocomputer.)
Under this definition, note that even traditional semiconductor-based computers are expected to qualify as nanocomputers in only about 13 more years—to wit, the semiconductor industry’s goals [
] specify that the pitch between neighboring wires should fall only slightly above this range, specifically at a level of 44 nanometers, by 2016. Furthermore, the semiconductor industry’s stated milestones such as this have historically proven conservative, and indeed, Intel [
], IBM [
], and AMD [
] have already demonstrated ~10-nm gate-length field-effect transistors in the lab which, if aggressively packed together, might allow a pitch below the 30-nm nanoscale mark within 10 years, which historically is the approximate lag time between laboratory demonstrations of transistors and their availability in commercial processors. (Of course, if some alternative, non-transistor-based nanotechnology development proceeds especially rapidly, this scale might be reached even sooner.)
Note that by focusing on the pitch rather than diameter of the primitive elements, we insist that computers based on narrow-diameter components, such as the carbon nanotube [
] or semiconductor nanowire [
] logic gates that have already been demonstrated, would not count as viable nanocomputers unless the average spacing, as well as the size, of these devices across a large and economically manufacturable array is made sufficiently small, which has not yet been accomplished, but which may be in the future.
Theoretical models of computing—Key model components. Now, what do we mean by a theoretical model of computing? In general, a theoretical model of any size computer (whether “nano” or not) can involve a number of different aspects that are relevant to computer engineering, any of which may be more or less abstract (or even left completely unspecified) in any particular model. These modeling areas include:
1. A device model, which specifies the physical and/or information-processing characteristics of the individual, lowest-level information-processing functional elements (devices, which we will sometimes call bit-devices when they are based on binary information encodings, to distinguish them from larger machines) within the computer.
2. A technology scaling model specifies how device characteristics change as the physical dimensions of the devices are scaled to smaller sizes, when this is possible.
3. An interconnection model, which specifies how information is communicated between devices. When wires are considered to be one of the types of devices, the interconnect model can be considered part of the device model. But, wires and other types of permanent physical structures are not the only possible way for devices to communicate; various types of interconnects involving physical entities moving through free space are also conceivable. The precise nature of the interconnection model has greater implications than one might at first expect.

4. A timing model, which specifies how the activities of different devices are to be synchronized with each other. The timing model also has more of an impact than might at first be realized.

5. A processing architecture model or just architecture, which specifies how devices are functionally connected to form a larger unit called a processor, which is complex enough to be programmed to carry out any desired type of computations, or at least, to carry out a specific type of computation on different input information.
6. A (capacity) scaling model, which is a more general sort of architecture (sometimes called an architecture family [
]) that allows the capacity of the processor (in bits of storage, and/or ops-per-cycle of performance) to be scaled up, via some specified regular transformation, to ever-larger sizes. This stands in contrast to non-scalable architectures where the processor is specified to have a fixed, constant number of bits of state, and ops-per-cycle of performance. The most common type of scaling model is a multiprocessor scaling model, which defines larger processors as simply being assemblages of smaller processors that are interconnected together, using some processor-level interconnect model, which might be different from the interconnect model that is used at the device level.
7. An energy transfer model, which specifies how “clean” power is to be supplied, and “dirty” power (waste heat) removed, from all parts of a scaled processor. The energy system can also be viewed from an informational perspective, as supplying known information in a standard state (in the stable power signal) and removing unknown information (entropy, in the waste heat). As such, it is subject to the fundamental limits on information processing discussed below.

8. A programming model, which specifies how the computer can be configured to carry out different types of computations (as opposed to just performing the same computation on different input information). A programming model that happens to be based on traditional types of computer machine-language instructions is called an instruction set architecture, but other, radically different types of programming models also exist, such as those that are used today to program FPGAs (field-programmable gate arrays, which are general-purpose reconfigurable logic circuits) and dataflow-style machines, as well as earlier, more abstract models such as Turing machines and cellular automata. A high-level programming language is a very abstract sort of programming model that is relatively far removed from the architecture of any specific machine, and that is usually translated into a more architecture-specific programming model such as machine language, before execution by the hardware.

9. An error handling model, which sets forth a scheme for dealing with hardware errors, whether they be defects (persistent errors due to malformation or degradation of device structures during manufacturing or operation) or faults (dynamically arising temporary errors, due to e.g., thermal noise, cosmic rays, energy leakage, or quantum tunneling). Techniques such as error correction codes and defect-tolerant architectures can dynamically detect such errors and correct them (in the case of faults) or work around them (in the case of defects). Note that each new error occurrence generates some entropy, which must eventually be removed from the machine by the energy transfer system, if it is not to accumulate to the point of total degradation of the machine’s structure.
10. A performance model, which can be used to determine quantitatively (to some degree of accuracy) how quickly any specific algorithm implemented in the programming model will execute on the specific architecture. Performance can be considered a special case of cost-efficiency, in which cost is considered to be directly proportional to time (which is appropriate in many circumstances).
11. A cost model, which quantifies the cost, according to one or more measures, of manufacturing a computer of given capacity, and/or of executing a specified computation on it. Note that a performance model can actually be considered to be a special case of a cost model in which there is a single cost measure, namely execution time; performance (or “quickness”) is just the reciprocal of this. As we will discuss, it is also useful to consider other physically reasonable cost measures such as energy costs, spacetime-proportional costs, and total dollar cost of both energy and spacetime. Whatever the cost measure, cost-efficiency (or just efficiency) in general is the ratio between the minimum possible cost to perform a computation and the actual cost. Even if the minimum possible cost of a computation is unknown, we know that to maximize the cost-efficiency of a given task, we must minimize its actual cost.
Desiderata for models of computing. What do we want our models of computing to be like? Well, here are some properties that we might desire a computer model to have:

· Ease of programming. The programming model (when specified) should be intuitive and easy for programmers to understand and work with.

· Ease of implementation. It should be possible and straightforward to design and build actual physical implementations of the given architecture.

· Physical realism. The predictions of the cost/performance model should be, at least approximately, physically realizable in feasible implementations. This feature, though it is very important for real-world engineering purposes, is unfortunately neglected by many of the theoretical models that have been studied in some of the more pure-mathematics-oriented branches of computer science. More on this issue below.
· Efficiency. The cost-efficiency achievable by programs running on top of direct physical implementations of the model should be as high as possible; ideally, close to 100% (best possible), but in practice, at least lower-bounded by some constant minimum level of efficiency that holds independently of parameters of the application. More on this below.
· Technology-independence. If possible, the model should be applicable to a wide range of different possible technologies for its physical implementation, rather than being tied to a very specific technology. Later we will give an example of a technology-independent model. However, technology-specific models do also play an important role, for example, for accurately assessing the efficiency characteristics of that particular technology.
Physical realism. A theoretical model of computation (at whatever level of abstraction) that includes at least a programming model, an architecture, and a performance or cost model will be called physically realistic (abbreviated PR) if it does not significantly overstate the performance or (understate the cost) for executing any algorithm on top of physically possible implementations of that architecture. Physical realism is also (somewhat cryptically) termed congruence in some of the parallel computing literature (cf. [83]).
As we will survey below, not all of the theoretical models of computation that have traditionally been studied by computer scientists are actually physically realistic, according to our best-available present-day understanding of physical law; some even overstate performance (or more generally, cost-efficiency) by multiplicative factors that become unboundedly large as one increases the capacity of the machine. These factors can be anywhere from polynomially large in the machine capacity (e.g., for irreversible 3D mesh models, which ignore the laws of thermodynamics) to exponentially large or even larger (e.g., seemingly so for nondeterministic models, and also for unrealistically profligate interconnect models that ignore the speed-of-light limit). This lack of realism may be acceptable from the perspective of studying the pure mathematical structure of various models in the abstract, but, as engineers, we prefer for our models to correspond well to reality. So, we must be careful in our modeling not to overstate what physics can do, or we may mislead ourselves into wasting time designing, building and programming machines that cannot possibly live up to the unrealistic performance expectations that we may have for them if we are fooled and believe some of the traditional models.
Scalability of Efficiency. Similarly, computer modeling will also not well serve us if it significantly understates what physics can do; that is, if the architecture and programming model do not allow expressing algorithms that are as cost-efficient as is physically possible. Of course, no specific mechanism (other than raw physics itself) can be expected to be exactly maximally cost-efficient for all computations, but we argue below that it is possible to devise physically realistic models that understate the best physically possible cost-efficiency of computations by only, at most, a reasonably small (that is, not astronomically large) constant factor, and one that furthermore does not increase as the machine is scaled to larger capacities. We call such models universally maximally scalable (UMS). Models possessing this UMS property (in addition to physical realism) would be the ideal architectural templates for the detailed design and engineering of future general-purpose nanocomputers, since they would pose no barrier to an application algorithm designer’s choosing and programming the most cost-efficient physically-possible algorithm for any given computational task.
As we will survey, out of the various physically realistic traditional models of computation that have been proposed to date, absolutely none so far have qualified as UMS models. We describe some new candidates for UMS models that we have recently proposed, and we mention the possible remaining flaws in these models that may still prevent them from being completely accurate across all regimes of physically-possible computations in the very long term.
2. Fundamental Physics of Computing
Let us begin by briefly reviewing how the capabilities and limitations of computers are impacted by very general considerations within the well-established consensus model of fundamental physics, known as the Standard Model of particle physics.
The Standard Model is not yet complete, in that it does not yet incorporate all aspects of Einstein’s General Theory of Relativity (another well-established model), and so various new models that attempt to merge the two theories are currently in development, such as string theory [
], M-theory [13], and loop quantum gravity [
]. Whichever extension of the Standard Model (if any) turns out to be correct will doubtless have some implications for the ultimate limits of computing; however, any modifications that these extensions might make to the current models are only expected to become relevant at an energy density scale that is so high that we do not expect these modifications to be technologically relevant any time soon (in this century, say). It seems that the Standard Model suffices for characterizing the ultimate limits of all more near-term technologies.
The following two tables summarize the major limiting factors imposed by the laws of physics as we know them, as well the opportunities for increased computational power afforded by those laws. More detailed accounts of these limits can be found in [4,
,
].
	Physical Considerations
	Limits on Computational Capabilities

	1. Principle of locality; speed-of-light limit on velocity of propagation of information through space.
	1a.
Lower bound on communications latency across systems of given diameter. [12,
]

	2. Wave aspect of quantum mechanics; uncertainty principle.
	2a.
Upper bound on information capacity for systems of given diameter and energy. [15,16]

	3. Considerations 1 and 2, taken together.
	3a.
Upper bound on rate of bits communicated per unit area, with given power. [15,4]
3b.
Lower bound for average random access time for a memory of given size and energy density.

	4. Fundamental quantum relationship between frequency and energy.
	4a.
Upper bound on rate of useful bit operations per second in systems containing a given amount of free energy. [
,16]

	5. Reversibility of quantum mechanics; thermodynamic relationships between information and energy.
	5a.
Lower bound on energy wasted per irreversible bit-operation, given external temperature. [
]
5b.
Upper bound on rate of irreversible bit operations performed per Watt of power consumption, given external temperature. [4]

	6. Considerations 3 and 5, taken together.
	6a.
Upper bound on sustainable rate of irreversible bit-operations within an enclosure of given area and external temperature. [
]

	7. Second law of thermodynamics; rate of entropy increase is >0 in all non-equilibrium systems.
	7a.
>0 rate of energy waste per bit stored.

7b.
Upper bound on number of bits stably stored, given rate of heat removal and rate of entropy generation per bit. [
]

	8. Adiabatic theorem of quantum mechanics.
	8a.
Energy waste proportional to speed in reversible bit-operations. [
]

	9. Considerations 6 and 8 taken together.
	9a.
Upper bound on rate of reversible operations given system diameter, device quality, heat flux or power limits, and external temperature. [21]

	10. Gravity, as per Einstein’s theory of General Relativity.
	10a.
Upper bounds on internal energy of computers of given diameter, in turn limiting their speed and capacity. [4]

Table 1. Summary of all known ways in which fundamental physical principles limit information processing. Many older models of computation fail to respect all of these limits, and therefore are physically unrealistic, except in restricted regimes in which these constraints are far away. Constraint #1 already affects communication delays and computer performance today. Constraints #2-9 are still far from being reached today, but they are all expected to become important limiting factors over the course of the next 50 years. Larger-scale analogues to these fundamental considerations are also important today. In contrast, constraint #10 requires extremely high energy densities (near black hole density) in order to become relevant, and therefore is not expected to be a concern any time in the near future (the next 100 years, for example).
	Physical Observations
	Opportunities for Computing

	1. Events can occur in different places at the same time.
	Parallel computation; a machine can perform different operations in different devices simultaneously. [
]

	2. Our universe has three (and only three) usable spatial dimensions.
	The number of bit-locations accessible within a given time delay can scale up as quickly as (at most) the 3rd power of the delay; this fact can help performance of some parallel algorithms, compared to the 2-d or 1-d cases. [17,23]

	3. Some types of physical transformations can occur in a way that generates an amount of entropy approaching zero.
	Such nearly reversible transformations can perform computations with less loss of free energy, and as a result less total cost in many situations, compared to irreversible methods. This is called reversible computing. [4]

	4. Quantum mechanics allows a system to be in a superposition (weighted sum) of many distinct states simultaneously.
	Carefully-controlled systems that use superposition states can take shortcuts to arrive at solutions to some problems in many fewer steps than is known to be possible using other methods. This is called quantum computing. [3]

Table 2. Summary of ways in which physics offers opportunities for more cost-efficient computing than would have been thought possible using earlier, physically realistic (but overly conservative) models of computation that ignored those opportunities. Parallelism is already heavily used at many levels, from logic circuits to wide-area distributed computing, as are architectural configurations that take some advantage of all 3 dimensions of space, though to a limited extent (constraint 6 in table 1 is an important limit on three-dimensional computing today). Reversible and quantum computing, in contrast, are still very much in the research stage today, but they are both expected to become increasingly important for competitive computing as device sizes approach the nanoscale. Reversible computing is important because it directly alleviates the constraints 5 and 6 from table 1 (which are already relevant, in a scaled-up way, today), and quantum computing offers a totally new class of algorithms that will be important in and of themselves for certain problems, regardless of whether quantum computing turns out to be useful for general-purpose algorithms, or whether general-purpose nanocomputing itself even becomes feasible.
3.1. Concepts of Physical Information Processing
In this section, we give a brief overview a number of basic concepts that are needed for a correct physical understanding of information processing. This can also be viewed as an explanation of basic physical concepts themselves in terms of information processing. The research memo [28] develops some of these ideas in more detail. Some of the below identities and definitions may be considered approximate and even a bit speculative, given that we do not yet have a complete computational model of physics, but they can all be argued to be roughly correct, at least to first order.
States. A state or configuration of a system can be understood as a complete description of that system that is valid, in principle, at some point in time. Quantum mechanics, or specifically, Heisenberg’s uncertainty principle, teaches us that not all of the mathematically different states that a physical system may be in are actually operationally distinguishable from each other by any physically possible attempt to discriminate them [
]. Fundamentally, this is because not all pairs of quantum states are totally mutually exclusive with each other. Rather, states can overlap, in a certain mathematically well-defined way, which results in the phenomenon that a system that is prepared in a certain state has a necessarily diffuse sort of presence, so to speak, a presence that extends to partly include other, sufficiently nearby states as well.
State space. The state space of a system is the set of all of its possible states. In quantum theory, a state space has the mathematical structure of a Hilbert space (a complex vector space having an inner product operation).
Dimensionality. The dimensionality of a system’s state space is simply the number of states in a maximum-sized set of states that are all mutually exclusive (mutually orthogonal vectors). For example, the spin orientation of a single spin-½ subatomic particle has 2 distinguishable states, and thus has a state space of dimensionality 2. Two such particles have 4 distinct states, and a 4-dimensional state space.
Amount of information. The total amount of information contained in a system is just the logarithm of the dimensionality of its state space, that is, the logarithm of its maximum number of mutually-distinguishable states [
]. The base of the logarithm is arbitrary and yields a corresponding unit of information. Taking the log base 2 measures the information in units of bits (binary digits). Using the natural logarithm (base e ≈ 2.717…), the corresponding information unit is called the nat. The physical quantities that are traditionally known as Boltzmann’s constant kB and the ideal gas constant R are simply different names for 1 nat of information, but they are usually expressed in different (though still compatible) units, such as Joules per Kelvin, or kilocalories per mole per Kelvin, and are usually also reserved specifically for discussing information that happens to be entropy (see below).
Note that the total amount of information contained in any system is constant over time, so long as its maximum number of states is also. This is the case for any system with constant total energy and volume.
Information. The specific information that is in a system (as opposed to the amount of information) is the particular choice of state, itself. We can say that the actual state of a system is the information in the system.
Entropy. Entropy S was originally just an unnamed, abstract quantity (the ratio between heat and temperature) of unknown physical significance when its usefulness in thermodynamic calculations was first recognized by Rudolph Clausius in 1850. But, entropy is now understood to simply represent that portion of the information in a system that is not redundant (correlated) with the information in other parts, that is, it cannot be derived from the other information. As such, the distinction between which pieces of physical information are effectively entropy, and which are not, depends, to some extent, on the information-processing capabilities of the entity that might be doing the deriving. A specific body of information may appear at first to be haphazard and random, but with sufficient processing, we may eventually notice an underlying order to it.

Right now, the amount of information that is under explicit control within our computers is just a tiny fraction of the total physical information in the world around us, and so we do not notice the effect that information processing capabilities can have on entropy. But, as computation approaches the nanoscale, an increasingly large fraction of the information inherent in the physical material making up our computer circuits will be explicitly manipulated for computational purposes, and as a result, the ultimate computational nature of entropy will start to become more and more apparent. As we will see, it turns out that the amount of entropy that a nanocomputer produces actually depends heavily on whether its design recognizes that all of the information that it deterministically computes is actually not entropy, since it was derived from other information in the machine, and therefore is redundant with it. Current machine designs ignore this fact, and simply discard intermediate results after they are no longer needed, irreversibly committing them to the great entropy dump in the sky. (Literally; the discarded information flows out of the machine and eventually out into space.)

So, to sum up, entropy is defined as simply any and all information whose identity (as opposed to amount) happens to unknown by a given entity of interest, an entity whose interactions with the system we are concerned with describing. (This entity in question can itself be any kind of system, from a human to a logic gate.) The state of knowing can itself be defined in terms of the presence of accessible correlations between the state of the knower and the state of the system in question, but we will not get into that here.
Subsystems. Consider a maximal set of distinguishable states of a system. If this set is partitioned into N equal-sized subsets, then the selection of one subset from the partition can be considered a part of the state of the whole system. It corresponds to a subsystem of the original system. The amount of information in the subsystem is log N. This much of the whole system’s information can be considered to be located in the subsystem. Two subsystems are independent if they partition the state space along independent (orthogonal) directions, so to speak. (This concept can be made more precise but we will not do so here.) A set of mutually independent subsystems is complete if specifying the state of each subsystem is enough to specify the state of the whole system exactly. A minimal-sized subsystem (one that cannot be further broken down into independent subsystems) is sometimes also called a degree of freedom.
Bit-systems. A bit-system or just bit is any degree of freedom that contains only 1 bit of information, that is, a bit is a partition of the state set into two equal sized parts. Note the dual usage of the word bit to refer to both a unit for an amount of information, and to a system containing an amount of information that is equal to that unit. These uses should not be confused. Systems of sizes other than 1 bit can also be defined, for example bytes, words, etc.
Transformations. A transformation is an operation on the state space, mapping each state to the corresponding state resulting from the transformation. It is a fundamental fact of quantum mechanics (and all Hamiltonian mechanical theories, more generally) that the transformations corresponding to the passage of time are reversible (that is, one-to-one, invertible, bijective). The size of a given transformation can be described in terms of the average distance between old states and new states, by some appropriate metric.
Operations. A primitive orthogonalizing operation (or just operation for short) is a transformation that maps at least one state to some new state that is distinguishable from the original state, and that cannot be composed of smaller operations. An operation is on a particular subsystem if it does not change the state of any independent subsystem. An operation on a bit-system is called a bit-operation. (And similarly for other sizes of systems.) Two operations commute if performing them in either order has the same net effect. Operations on independent systems always commute.
Transformation Trajectory. A transformation trajectory is a transformation expressed as a sequence of (primitive orthogonalizing) operations, or pieces of such operations, operating on individual degrees of freedom (e.g., a quantum logic network).
Number of operations. The total number of operations that take place along a given transformation trajectory can be defined. Planck’s constant h (or (≡h/2π) can be viewed as a unit for expressing a number of operations. The unreduced Planck’s constant h represents 2 primitive operations (for example, a complete rotation of a particle spin through an angle of 360°), while the reduced constant (represents a fraction 1/π of a primitive operation, for example, a rotation of a spin through an angle of only 1 radian.
Steps. A complete parallel update step or just step is a transformation of a system that can be described by composing operations on each subsystem in some maximal, complete set of subsystems, such that the total number of operations in bit-ops is equal to the amount of information in bits. In other words, it is a complete overhaul of all of the state information in the system, whereas an operation on the system only potentially changes some part of the state.
Dynamics. The dynamics of a system specifies a transformation trajectory that is followed as the system evolves in time.
Amount of Time. Given a dynamics, the amount of time itself can be defined in terms of the number of steps taken by some fixed reference subsystem, during a given trajectory taken by the system. Note that if the system and the reference subsystem are both taken to be just the whole universe, then time just represents the total “amount of change” in the universe, in terms of number of parallel update steps performed. (Such concepts hearken back to the relativist philosophies of Leibniz and Mach which helped inspire Einstein’s general relativity [
].)
Energy. Now, the energy in a subsystem is the rate at which primitive operations are taking place in that subsystem, according to its dynamics. In other words, energy is activity, it is computing itself. This can be proven from basic quantum theory [18,16,
].

As a simple way to see this, consider any quantum system with any subsystem whose physical Hamiltonian induces any two energy eigenstates of distinct energies; call these states |0(and |2E(arbitrarily. Now, if the subsystem happens to be in the state |0(+|2E(, which has (expected) energy E, then the quantum time evolution given by the system’s Hamiltonian takes it to the orthogonal state |0(−|2E(in time (h/4)/E. Margolus and Levitin [18] show that a system with energy E can never change to an orthogonal state any faster than this, no matter what its initial state. Therefore, we can say that any E-sized chunk of energy is, every h/4E time, “performing” the operation “If I am in this subsystem and its state is |0(+|2E(, make its state |0(−|2E(, otherwise…” This transformation counts as an operation, by our definition, because it does orthogonalize some states. However, this particular operation is somewhat limited in its power, because the subsystem in question subsequently immediately cycles right back to its original state. We call this special case an inverting op (iop); its magnitude in terms of Planck’s constant is (h/4). Margolus and Levitin show that an op that instead takes a system to the next state in a repeating cycle of N states requires more iops worth of time, in fact, 2(N−1)/N times more ops, or [(N−1)/2N] h.
In the limit as the cycle length N approaches infinity (as it does in any complex system), the time per orthogonal transition approaches 2 iops worth, or (h/2), so we define this as the magnitude of a generic “op” as above.

Incidentally, when applying the Margolus-Levitin relation to the example of a simple freely-rotating system, N can be argued to be equal to the system’s total angular momentum quantum number l plus 1, and with a few more steps, it turns out that the relation can be used to independently confirm the usual angular momentum quantization formula (L/()2 = l(l+1), much more easily than by the usual derivation found in quantum physics textbooks.
Heat. Heat is just the energy in those subsystems whose state information is entirely unknown (entropy).

Temperature. The temperature of a subsystem is the average rate at which complete update steps are taking place in that subsystem, i.e., the average rate of operations per bit [27]. Note that energy divided by temperature gives the amount of information in the subsystem. This is, historically, how physical information (in the form of entropy) was first noticed as an important thermodynamic quantity (by Rudolph Clausius, in 1850), even before the fact that it was really just information was understood.
Note that the reciprocal of temperature is just the time required for a complete step that, on average, updates all parts of the state information, once each.
This definition of temperature, in contrast to traditional ones, is general enough that it applies not just to systems in a maximum-entropy equilibrium state (all of whose information is entropy), but more generally to any system, even systems in a completely known state with no entropy, which according to traditional definitions of temperature would always be at absolute zero. However, for any system we can also identify a thermal temperature which is the average temperature of any of its subsystems whose state information is entropy, and then consistently define that the thermal temperature of a system having no entropy is zero. Thermal temperature is, then, just the traditional thermodynamic concept of temperature. But our more general temperature concept is somewhat more flexible.

Note also that energy spontaneously flows from “hot” subsystems to “cold” ones, rather than vice-versa, simply because the fast-changing pieces of energy in the hot system more frequently traverse the trajectories through state space that cross over the boundary between the two systems.

These are enough definitions to support our later discussions in this article. A more complete discussion of the relationships between physics and information processing can be found in [
] (in progress).
Discussions of quantum information and how it extends the classical concepts of information can be found in [3].
3. Traditional Models of Computation
In this section, we systematically survey a wide variety of early models of computing, and identify exactly which of the limits or opportunities listed in the previous section each one fails to account for, which result in the model’s lacking one or the other of the properties of physical realism (PR) or universal maximal scalability (UMS). Furthermore, we consider what types of costs are respected in the model.

In the next section, we will present the newer models which may actually come close to being both PR and UMS for all practical purposes in the foreseeable future.
Here are some contributions to real-world costs that an economically-thorough cost model ought to take into account:

1. Manufacturing cost to build a machine that can perform a given computation. We may expect this to be roughly proportional to its total information capacity. However, if the machine can be reused for more than one computation, then the cost model should account for this properly (cf. item 3a below).

2. Costs that may be considered to scale roughly proportionally to the execution time of programs, but not to the machine’s manufacturing cost, such as, for example, the inconvenience cost to the user of waiting to receive a desired result.

3. Costs that can be expected to scale proportionally to both execution time and manufacturing cost, such as:
a. Hardware rental cost, or essentially manufacturing cost amortized per unit time, given some fixed expected lifetime for the machine.
b. Maintenance and operation costs for the machine per unit time, including cost of energy used by components that are operating at constant power levels.
c. Opportunity cost foregone by not applying the machine’s capacity towards some alternative useful purpose.
4. Total cost of energy utilized for the computation. We list this separately from item 3b because later, we will see that there are significant components of energy that are not necessarily proportional to spacetime usage.
Traditional computational complexity theory (cf. [
]) considers purely time-proportional costs like item 2, simplified to just the total number of discrete time-steps (clock ticks) performed (i.e., assuming a fixed rate of steps per unit time), and dubbed time complexity. It also considers a rough measure of manufacturing cost, in the form of the total number of bits of storage required to perform the computation, and calls this space complexity. However, most work in complexity theory doesn’t combine the two in the natural way suggested by items 2b-2e, which is that real costs are usually proportional to both space and time, or in other words to the spacetime utilized, that is to say, the cost to rent the required amount of hardware for the amount of time needed to perform the computation, and to other costs that can be assumed to scale proportionally to this quantity, such as maintenance cost, opportunity cost, and energy used (typically).

Some cost models in complexity theory count the number of fixed-size computational operations that are performed, rather than the number of parallel steps. This comes closer to spacetime cost, but still does not quite hit the mark, since there are real costs even associated with those bits that are just sitting statically and not being operated on at all. (Hardware rental cost, maintenance cost, opportunity cost.)
Newer models such as VSLI theory (cf. [
]) address these problems somewhat by considering the hardware efficiency of algorithms, which is essentially the reciprocal of their spacetime usage. However, these models still do not usually integrate the cost of energy into the analysis in a way that treats it as somewhat independent from spacetime cost, which it is, as we will see.
Table 3 below summarizes how a variety of existing theoretical models of computation fare with respect to the fundamental limits and opportunities discussed in sec. 2, and the costs discussed above. Discussion follows.
	
	Fundamental Limits Violated
	Opportunities
Leveraged
	Costs
Considered

	Model
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	1
	2
	3
	4
	1
	2
	3
	4

	Turing machine [33]
	
	
	
	
	
	
	
	
	
	
	
	1
	
	
	(
	(
	½
	

	RAM
machine [
]
	
	
	(
(b)
	
	
	
	
	
	
	
	
	∞
	
	
	(
	(
	½
	

	PRAMs, etc.
	
	
	(
(b)
	
	
	
	
	
	
	
	(
	∞
	
	
	(
	(
	½
	

	1-D cellular automata
[36]
	
	
	
	
	
	
	
	
	
	
	(
	1
	
	
	(
	(
	(
	

	2-D cellular automata [36]
	
	
	
	
	
	
	
	
	
	
	(
	2
	
	
	(
	(
	(
	

	3-D cellular automata [36]
	
	
	
	
	
	(
	
	
	
	(
	(
	3
	
	
	(
	(
	(
	

	Reversible

logic
networks [46]
	
	
	(
(b)
	
	
	
	(
	(
	
	
	(
	∞
	(
	
	(
	(
	(
	(

	Quantum logic networks [
]
	
	
	(
(b)
	
	
	
	
	
	
	
	(
	∞
	(
	(
	(
	(
	(
	

	Reversible 3-D mesh [4]
	
	
	
	
	
	
	
	
	
	(
	(
	2-3
	(
	
	(
	(
	(
	(

	Quantum R3M [4]
	
	
	
	
	
	
	
	
	
	(
	(
	2-3
	(
	(
	(
	(
	(
	(

Table 3. We can compare various models of computation as to which fundamental physical limits they violate (see table 1), which opportunities for more efficient computing they leverage (table 2), and which aspects of cost (see list above) they take into account. Opportunity #2 gives the number of dimensions explicitly or implicitly assumed by the model; 3 or more is unrealistic, 2 or less is under-ambitious. Cost measure #3 (spacetime) is denoted “½-way considered” if spacetime cost could be easily measured in the model, but is typically ignored instead. Note that the quantum reversible 3-D mesh model described in sec. 6 below (first introduced in [4]) strictly dominates all earlier models in realism and comprehensiveness, so long as gravity (limit #10) is not a concern, which we can expect to remain true for very long time. (This limit would only become relevant if/when we come to build computer systems of near black-hole density, e.g., by building them out of several suns’ worth of matter, or alternatively by somehow achieving an average device-pitch scale nearly as small as the Planck length scale of fundamental particles. Both of these possibilities seem extremely distant at present, to say the least.)
Turing machines. The Turing machine [
] was the first universal, physically-evocative (as opposed to totally abstract and formal) model of computation. It has a single fixed-size processor (the head), and a memory laid out in one dimension that is accessed in serial fashion (the tape). The Turing machine model does not violate any of the fundamental physical limits on information processing, and therefore it is physically realistic.

However, since a Turing machine has only a single, fixed-size “processor” (the tape head), it does not leverage the possibility of parallelism. Multi-tape and multi-head Turing machines provide limited parallelism, but true parallelism in the model requires that the number of processors must be scaled up in proportion to the information capacity of the machine. Turing machine models usually do not try to do this, but later we will see other models that do.

It is possible to analyze space and time costs in a Turing machine model, but the joint spacetime cost is not usually a concern, since the model has such understated efficiency in any case. Due to its drastic sub-optimality, the Turing machine and related models are primarily only suitable for the following purposes:

· Determining whether a desired class of computations is possible to do at all, even given unlimited resources (its computability).
· Proving that other models of computation are universal, by showing that they are capable of simulating a Turing machine.

· Determining the time required to perform a computation to a very rough degree of accuracy, i.e., to within a polynomial factor (a factor growing as ~nk where n is the size of the input data set and k is any constant). The strong Church’s thesis [
] is the hypothesis that Turing machines are satisfactory for this purpose. However, results in quantum computing suggest strongly that ordinary non-quantum Turing machines may actually overstate the physically-required minimum time to solve some problems by exponentially-large factors (that is, factors growing roughly like en) [3], in which case the strong Church’s thesis would be false.
· Determining the space (measured as number of bits) required to perform a computation within a constant factor.
These concerns are generic ones in computing, and are not tied to nanocomputing specifically, but can be used in that context as well. However, if one wishes a more precise model of costs to perform a desired computation than can be provided by Turing machines, one must turn to other models.
RAM machine. One limitation of the Turing machine was that since the memory tape was laid out serially in only one dimension, merely traversing it to arrive at a desired item consumed a large portion of the machine’s time. For early electronic memories, in contrast, the time required for a signal to traverse the distance through the machine was negligible in comparison to the time taken to perform logic operations. Therefore, it was useful to model memory access as requiring only a single step, regardless of the physical distance to the desired memory location. This fast memory access model is the defining characteristic of the RAM or Random-Access Machine model of computation [31]. The RAM model is occasionally called the von Neumann machine model, after the inventor of architectures having a CPU with a separate random-access memory for storing programs and data. The RAM model is also sometimes extended to a parallel model called the PRAM.
Today, however, individual transistors have become so fast that the speed-of-light travel time across an ordinary-sized machine is becoming a significant limiting factor on the time required to access memory, especially for computations requiring large-scale supercomputers having large numbers of processors. For example, at the 3 GHz processor clock speeds that are now routinely available in COTS (commercial off-the-shelf) microprocessors, light can only travel 10 cm in 1 clock cycle, so the memory accessible within a round-trip latency of 1 cycle is limited to, at most, the amount that will fit within a 5-cm radius sphere centered on the processor. (In practice, at present, the situation is even worse than this, because the time to access today’s commercial memory technologies is much greater than the speed-of-light travel time.) And, when considering a wide-area distributed computation, communication halfway around the Earth (i.e., ~20,000 km) requires at least 200 million clock cycles! Delays like these can be worked around somewhat by using architectural latency hiding techniques in processor architectures and parallel algorithms, but only to a very limited extent [12,
]. Furthermore, these problems are only going to get worse as clock speeds continue to increase. Communication time is no longer insignificant, except for the restricted class of parallel computations that require only very infrequent communication between processors, or for serial computations that require only small amounts of memory. For more general purposes, the RAM-type model is no longer tenable.
Slightly more realistic than the RAM are models that explicitly take communication time into account, to some extent, by describing a network of processing nodes or logic gates that pass information to each other along explicit communication links. However, depending on the topology of the interconnection network, these models may not be physically realistic either. Binary trees, fat trees, hypercubes, and butterfly or omega networks are all examples of interconnection patterns in which the number of locations accessible within n hops grows much faster than n3, and therefore, these networks are impossible to implement with unit-time hops above a certain scale within ordinary 3-dimensional space. The only scalable networks in 3-d space are the locally-connected or mesh type networks, and subgraphs of these [17,12].
Cellular automata. Cellular automaton (CA) models, also originally due to von Neumann [
], improve upon the RAM-type or abstract-network model in that they explicitly recognize the constraints imposed by communication delays through ordinary Euclidean space. CAs are essentially equivalent to mesh-interconnected networks of fixed-capacity processors. The 1-dimensional and 2-dimensional CA variations are entirely physically realistic, and the 2-d CA can be used as a starting point for developing a more detailed theoretical or engineering model of today’s planar circuits, such as, for example, the VLSI (Very Large-Scale Integrated circuit) theory of Leiserson [30].
However, ordinary CAs break down physically when one tries to extend them to 3 dimensions, because the entropy that is inevitably produced by irreversible operations within a 3-d volume cannot escape quickly enough through the 2-d surface. To circumvent this constraint while still making some use of the 3rd dimension requires avoiding entropy production using reversible models, such as we will discuss in section 5.1. These models can be shown to have better cost-efficiency scaling than any physically possible non-reversible models, even when taking the overheads associated with reversibility into account [4].
Finally, all of the above models, in their traditional form, miss the opportunity afforded by quantum mechanics of allowing machine states that are superpositions (weighted combinations) of many possible states, within a single piece of hardware, which apparently opens up drastic shortcuts to the solution of at least certain specialized types of problems. We will discuss quantum models further in section 5.2.
5. New Models of Nanocomputers
Computer technology already is forced to contend with the limits to communication delays imposed by the speed-of-light limit. Over the next 20-50 years, we can expect the limits that thermodynamics and quantum mechanics place on bit energies, sizes, and bit-device speeds to become plainly manifest as well. Other fundamental constraints, such as the one that gravity imposes on machine size (namely, that any sufficiently large 3-d computer with a fixed energy density will collapse under its own gravity to form a black hole) are still very far away (probably many centuries) from being relevant.

So, what we want is to have a model of computation that is physically realistic, at least with respect to the relatively near-term constraints, and that also provides a cost-efficiency that scales as well as possible with increasing computation size, for all classes of computations. We can argue that there is an existence proof that such a model must be possible, for the laws of physics themselves comprise such a model, when looked at from a computational perspective. However, raw physics does not provide a very convenient programming model, so, our task is to develop a higher-level programming model that scales as well as possible, while also providing a relatively easy-to-understand, comprehensible framework for programming.

In sections 5.1 and 5.2 below, we survey a couple of new classes of models which attempt to make progress towards this goal, namely the reversible and quantum models.
5.1. Reversible Computing
The fundamental insight of reversible computing is that there is absolutely nothing about fundamental physics that in any way requires that the free energy that goes into bit manipulations must be discarded after each operation, in the form of waste heat. This is because bits that have been computed are not (yet) entropy, because they are derived from, and thus correlated with, other bits that are present in the machine. Present-day computers constantly discard temporary results that are no longer needed, in order to free up storage space for newer information. This act of wanton erasure causes the old information and energy associated with those bits to be relegated to the degraded status of effectively becoming entropy and heat, respectively. Once this is done, it cannot be undone, since the second law of thermodynamics tells us that entropy can never be destroyed. Information erasure is irreversible [19].
However, we can avoid this act of “trashification” of bits by instead recycling bits that are no longer needed, by taking advantage of their redundancy with other bits present in the machine to restore the unneeded bits to a standard state (say “0” for an empty memory cell), while leaving the bit’s associated energy (or most of it, anyway) in the machine, in the form of free energy which can go on to perform another useful computational operation [50].
The adiabatic principle. Of course, no machine is perfect, so even in a reversible machine, some of the kinetic energy associated with the performance of each operation goes astray. Such events are called adiabatic losses. The detailed accounting of adiabatic losses can be proven from basic quantum theory as the adiabatic theorem [
], which tells us that as a system proceeds along a given trajectory under the influence of slowly-changing externally-applied forces, the total energy dissipation is proportional to the speed with which the external forces change; however, rather than getting into the technical mathematical details of this theorem here, below we discuss some more intuitive ways to understand it.

First, the amount of adiabatic loss is roughly proportional to the number of elementary quantum operations performed, and thus to the energy involved in carrying a transition times the time over which it is performed, divided by a technology-dependent constant that specifies the quantum quality factor of the system, that is, how many quantum operations can be performed on average without an error (decoherence event).
As the speed of carrying out a given transformation is decreased, the kinetic energy associated with the system’s motion along the desired trajectory through configuration space decreases quadratically (in proportion to the square of the speed, since as we all know, kinetic energy is ½mv2), and so the total adiabatic losses over the entire motion decrease in inverse proportion to the time taken for the transformation.
However, when the kinetic energy involved in carrying out transformations decreases to a level that is close to the static bit energies themselves, further decreases in speed do not help, because entropy generation from degradation of the static bits comes to dominate the total dissipation. That is, some of the energy whose job it is to maintain the very structure of the machine, and/or the state of its stored information, also leaks out, in a continual slow departure from the desired configuration (this is called decay), which must be periodically repaired using correction mechanisms if the computation is to continue indefinitely. For example, all of the following phenomena can be considered as simply different examples of decay processes:
· Charge leakage from DRAM (dynamic RAM) cells, requiring periodic refreshing.

· Bit-errors due to thermal noise, cosmic ray impacts, etc., requiring the use of error-correction algorithms.

· Decoherence of quantum bits from various unwanted modes of interaction with a noisy, uncontrolled environment, requiring quantum error correction.

· Gradual diffusion of the atoms of the devices into each other (e.g. from electromigration), leading to eventual failure requiring remanufacture and replacement of all or part of the machine.
All of the above kinds of decay processes incur a cost in terms of free energy (to periodically correct errors, or to repair or replace the machine) that is proportional to the spacetime usage, or space to hold bits, times time occupied, of the computation. This spacetime usage cannot be adequately reduced to time alone, space alone, or even to the number of logical operations alone, since, depending on the computation to be performed, not all bits may be actively manipulated on every time step, and so the spacetime usage may not be simply proportional to the number of operations.
Adiabatic (or kinetic) losses, on the other hand, do effectively count the number of operations performed, but these are quantum operations, whose number is not necessarily directly proportional to the number of classical bit-operations, even when the algorithm being carried out is a classical one. This is because the number of quantum operations involved in carrying out a given classical bit-operation increases in proportion to the speed with which the desired trajectory through state space is followed.
There are two ways to see this. First, the de Broglie wavelength λ of the “particle” wave packet representing the system’s state in configuration space is inversely proportional to its momentum, according to the formula λ = h/p. Momentum is proportional to velocity, so following a given trajectory will involve a larger number of distinct transitions of the system’s wave packet (i.e., translations through about a wavelength) the faster it is done; each of these can be considered a distinct quantum operation.
Second, recall that kinetic energy increases with the square of velocity, whereas the frequency or quickness with which a fixed-length classical trajectory is followed increases only linearly with velocity. Therefore, the interpretation of energy as the rate of quantum operations requires that the number of operations on a given trajectory must increase with the speed at which that trajectory is followed.

With this interpretation, the technology-dependent coefficients (such as frictional coefficients, etc.) that express the energy dissipation per unit quickness for an adiabatic process can be seen as simply giving the decoherence times for those qubits whose transitioning corresponds to kinetic energy. The decoherence of qubits carrying energy causes the dissipation of that energy. The adiabatic principle (which states that the total energy dissipation of an adiabatic process is proportional to its speed) can be derived from the postulate that a fixed fraction of kinetic energy is dissipated each time unit [22]. Adiabatic coefficients are therefore lower-bounded by the decoherence rates that can be achieved for qubits whose transitions carry us from one logical machine state to another.
The adiabatic principle also tells us that whenever logical transitions are carried out by a process that uses multiple quantum operations (in place of a single one), we are doing extra unnecessary work, and thus generating more entropy (and energy dissipation) than necessary. This happens whenever we try to do a process faster than strictly necessary.

As a simple example, consider a hollow cylinder of radius r and mass m, rotating with rim velocity v. Let us consider a rotation of this wheel to carry out a “cycle” in our computer, a complete transition from one logical state to another. A simple calculation shows that the number of quantum orthogonal transitions (angle π/2 rotations of the state vector in Hilbert space) that occur during 1 complete rotation is given by 4L/(, where L = mvr is the wheel’s angular momentum about its axis, and (is Planck’s (reduced) constant, h/2π. Total angular momentum for any system is quantized, and the minimum possible rotation speed occurs when L=(. At this speed, the kinetic energy is just enough to carry out 1 quantum logic operation (an iop, for example, a bit toggle) per quarter-cycle. At this rate, the rotation of the wheel through a quarter-turn is, from a quantum mechanical perspective, a bit flip. The decoherence rate of this angular-position qubit determines the rate at which the wheel’s energy dissipates.
In contrast, if the wheel were spun faster (L were higher), there would be proportionally more distinct rotational positions around 1 complete rotation, and the total energy is quadratically higher, so the average energy per location (or the generalized temperature) is proportional to L. With order L more locations, each carrying order L more energy, a fixed decoherence rate per location yields a quadratically higher total rate of energy dissipation, and thus a linearly higher amount of entropy generation per complete cycle. This is an example of why the dissipation of an adiabatic process is proportional to the speed at which it is carried out.

Simply put, a faster process has quadratically greater kinetic energy and so, given a fixed mean-free-time or decoherence time for that energy, energy dissipates to heat at a quadratically faster rate, for linearly more energy dissipation during the time of the operation.
The minimum energy dissipation of an adiabatic process occurs when the speed of the transition is slow enough that the dissipation of kinetic energy is not much greater than the dissipation of static (potential) energy. If the decoherence rates are comparable for the two types of energy, then the kinetic energy for bit change should be of the same order as the static energy in the bits themselves, as in our wheel example above.

This makes sense, since if energy is computing, we want as much as possible of our available energy to be actively engaged in carrying out transitions at all times. Having a kinetic energy that is much larger than bit energy would mean that there was a lot of extra energy in the system that was not directly occupied in carrying out bit-transitions. In such cases, a more direct and economical design would be preferable. This is what a good optimized adiabatic design attempts to accomplish.

Device implementation technologies. Reversible, adiabatic logical mechanisms can be implemented in a wide variety of physical systems; indeed, nearly every type of bit-device technology that has been proposed (whether electrical, mechanical, or chemical) admits some sort of reversible variant. Virtually all of these technologies can be usefully characterized in terms of the bistable potential-well paradigm introduced by Landauer [19]. In this framework, a bit is encoded by a physical system having two distinct meta-stable states. The relative energies of these states, and the height of a potential barrier between them, is adjustable by interactions with nearby bits. The below figure illustrates this model.

Irreversible erasure of a bit in this model corresponds to lowering a potential-energy barrier (e.g., by turning on a transistor between two circuit nodes) regardless of the state of the bit under consideration (say, the voltage on one of the nodes). Due to the energy difference between biased states, this in general leads to large, non-adiabatic losses (thick red arrows in the diagram), which reversible logic must avoid. Even the lowering of a barrier between two states of equal energy still creates at least 1 bit’s worth of entropy, even when done infinitesimally slowly, if the state of the bit was not already entropy (medium red arrows).

Of course, even in reversible logic systems, we must still contend with the smaller losses due to thermally excited transitions or tunneling of the bit-system’s state over the potential energy barriers (thin red arrows labeled “leak”)

[image: image1.emf]Possible Adiabatic Transitions

Possible Adiabatic Transitions

Direction of Bias Force

Barrier

Height

0

0

0

1

1

1

1

0

N

(Ignoring superposition states.)

leak

leak

“1”

states

“0”

states

leak

leak

Figure 1. Possible adiabatic (green) and non-adiabatic (red) transitions between states of any device technology that provides a generic bistable potential well. Each box indicates a different abstract configuration of the system. Within each box, the x axis is some continuous state variable in the system (such as the position of a mechanical component or a charge packet), and the y axis is potential energy for the given value of the state variable. Small black horizontal lines show the energy level occupied (or the surface of a set of occupied levels). The x position of the occupied state encodes the value of the bit. Device configurations encoding logical values of 0, 1, and an in-between neutral level “N” are shown. Thick arrows between configurations indicate non-adiabatic active transitions, while thin arrows indicate possible leakage pathways (activated thermally or by tunneling). Note the lower three boxes show the potential barrier lowered, while the upper three show it raised. The left-right position of the box in the diagram corresponds roughly to the direction of an external force (e.g., from a neighboring device) that is applied to the system.
Now, a number of different reversible logical and storage mechanisms are possible within this single framework. We can categorize these as follows:
1. Input-Bias, Clocked-Barrier Latching Logic (type I): In this method, the device barriers are initially lowered, and input data to the device apply a bias, pulling the device towards a specific bit value. Optionally in this stage, forces applied by several input bits can be combined together to carry out majority logic. (Or, switch gates can be used to do logic, as in [
].) Next, a timing signal raises the barrier between the two states. This step can also serve to amplify and restore the input signal. After the barrier is raised, the input data can be removed, and the computed stated of the device remains stored. Later, the stored data can be reversibly unlatched, if desired, by the reverse sequence of steps.

Specific physical examples of the type I technique include the adiabatic Quantum Dot Cellular Automaton of Porod et al. [
], the CMOS transmission-gate latch of Younis and Knight [
], the reversible Rod Logic latch of Drexler [
], the reversible superconducting Parametric Quantron logic of Likharev [
], the mechanical Buckled Logic of Merkle [
], and the electronic Helical logic of Merkle and Drexler [38].
2. Input-Barrier, Clocked-Bias Retractile Logic (type II): In this technique, the input data, rather than applying a bias force, conditionally raises or lowers the potential energy barrier. Arbitrary AND/OR logic can be done in this stage, by using series/parallel combinations of several barriers along the path between bit states. Then, a timing signal unconditionally applies the bias force, which either pushes the system to a new state, or not (depending on whether the barrier between states was raised). Since the output state is not inherently latched by this timing signal, the input signal cannot then be removed (if this would lower the barriers) until other “downstream” devices have either latched a copy of the output, or have finished using it. So, these gates cannot by themselves perform sequential logic (e.g., memory, networks with feedback, or pipelined logic), although they can be used in combination with latching gates to do so.
Examples of the type II technique are Hall’s retractile electronic logic [
], the non-latching portions of Younis and Knight’s CMOS SCRL gates [40], and Drexler’s Rod Logic interlocks [
].

3. Input-Barrier, Clocked-Bias Latching Logic (type III): Finally, from the above diagram, one can immediately see that there is a third possibility, one that has not previously been considered. It is more efficient than either of the above, in the sense that it combines AND/OR logic with latching in a single operation. In this scheme, as with the previous one, the input signal sets the barrier height, doing logic in series/parallel networks, and then a timing signal applies an unconditional bias force. But we note that the input signal can now be immediately removed, if in doing so we restore the barriers to a null state that consists of barriers unconditionally raised. Then, when the bias timing signal is removed, the output bit remains latched in to its new state. The bit can be unlatched using the reverse sequence along the same path, or a different one.
This general method for doing reversible logic apparently has not been previously described in the literature, but we have developed a straightforward technique (patent pending) for implementing this model in standard CMOS technology. It is significantly more efficient than previous truly adiabatic logic families, by several different metrics.
The bistable potential-well model is basically one in which we model one subsystem (the output bit) as being subject to a time-varying Hamiltonian (essentially, a matrix representing the forces on the system) that is provided by the device’s interaction with some other subsystems (the input and clock bits). However, one must stay aware that a closer look at the situation would reveal that there is really just a single system that evolves according to an actual underlying Hamiltonian which is time-independent, being itself just an expression of the unchanging laws of physics. So, in general, one cannot ignore the back-reaction of the controlled system (the output bit) on the system that is doing the controlling (the input bit), especially if we want to be accurate about the total energy consumption in the entire system, including the controlling system, which in practice is just some other logic element within the computer. For example, it is easy to design adiabatic gates using transistors that dissipate almost no energy internally, whose transitions are controlled by some large external signal generator. But, it is much harder to integrate the signal generator, and design a complete, self-timed system that is nevertheless almost reversible. For this reason, some authors have unjustly criticized the concept of adiabatic circuits in general, solely on the basis of the poor quality of the particular signal generators that were assumed to be used in the author’s particular analysis. But, the failure of a single short-sighted designer to imagine an efficient resonator does not mean that such a thing is impossible, or that alternative designs that avoid these timing-system inefficiencies are impossible to build.
For example, Bennett [2] illustrated a proof-of-concept mechanical model of a self-contained reversible computer by doing away with directed kinetic energy entirely, and instead letting the system take a random walk, forwards or backwards, along its non-branching path through configuration space. Unfortunately, doing away with kinetic energy entirely isn’t such a good thing, because random walks are very slow; they take expected time that increases quadratically with the distance traveled. (Chemical computing techniques in which communication relies primarily on molecular diffusion in solution also have performance problems, for the same reason.) Thus, we would prefer to stick with designs in which the system does have a substantial net kinetic energy and momentum along the “forwards” direction of its motion through configuration space, while yet dissipating <<kT energy per logic operation performed, due to a high quality factor for the individual logic interactions. We call such trajectories ballistic.
I emphasize that we still know of absolutely no fundamental reasons why ballistic reversible computation cannot be done, and with arbitrarily high quality factors. A series of increasingly-realistic models have been proposed that illustrate steps along the path towards actually doing this. Fredkin [
] described a ballistic “Billiard Ball Model” (BBM) of reversible computation based on collisions between idealized elastic spheres. Fredkin’s original model contained chaotic instabilities, although these can be easily fixed by confining the balls to travel along valleys in configuration space, and by keeping them time-synchronized through a few additional mechanical interactions. A concrete example of an electronic model similar to the BBM that avoids these instability problems entirely is described in [38]. Pure-mechanical equivalents of the same synchronization mechanisms used there are also straightforward to design.
Now, the BBM was primarily just a classical model. Richard Feynman and Norm Margolus made some initial theoretical progress in devising a totally quantum-mechanical model of ballistic reversible computation, Feynman with a serial model [
], and Margolus with a self-synchronized parallel model in [
]. However, Margolus’ model was restricted to allowing parallelism in only 1 dimension, that is, with only a linear chain of active processors at any time. So far, as of this writing, we do not yet have any explicit, fully-detailed, quantum physical model of totally 3-dimensional parallel reversible computing. But, we know that it must be possible, because we can straightforwardly design simple classical-mechanical models that already do the job (essentially, reversible “clockwork”), and that don’t suffer from any instability or timing-system inefficiency problems. Since these models are manifestly physically realizable (obviously buildable, once you have conceived them), and since all real mechanical systems are, at root, quantum-mechanical, a detailed quantum-mechanical fleshing out of these classical-mechanical models, if mapped to the nanoscale, would fit the bill. But, significant work is still needed to actually do this translation.
Finally, in general, we should not assume that the best reversible designs in the long run necessarily must be based on the adiabatic bistable-potential-well type model, which may be unnecessarily restrictive. A more general sort of model of reversible computing consists simply of a dynamic quantum state of the machine’s “moving parts” (which may be just spinning electrons) that evolves autonomously according to its own built-in physical interactions between its various sub-parts. As long as the evolution is highly coherent (almost unitary), and we can accurately keep track of how the quantum state evolves over time, the dissipation will be kept small. The devil is in figuring out the details of how to build a quantum system whose built-in, internal physical interactions and natural evolution will automatically carry out the desired functions of logic, communication, and synchronization, without needing a full irreversible reset of the state upon each operation. But as I stated earlier, we can be confident that this is possible, because we can devise simple mechanical models that already do the job. Our goal is just to translate these models to smaller-sized and higher-frequency physical implementations.
Algorithmic Issues. For now, we take it as given that we will eventually be able to build bit-devices that can operate with a high degree of thermodynamic reversibility (i.e., very small entropy generation per operation), and that the details of ballistic signal propagation and timing synchronization can also be worked out. What, then, can we do with these devices?

One key constraint is that physically reversible devices are necessarily also logically reversible, that is, they perform invertible (one-to-one, bijective) transformations of the (local) logical machine state.
Debunking some misunderstandings. First, the preceding statement (physical reversibility requires logical reversibility) has occasionally been questioned by various authors, due to some misunderstanding either of physics, or of the meaning of the statement, but it is not really open to question! It is absolutely as certain as our most certain knowledge about physical law. The reversibility of physics (which follows from the unitarity of quantum mechanics, or from the mathematical form of all Hamiltonian dynamical systems in general) guarantees that physics is reverse-deterministic, that is, that a given (pure, quantum) state of a closed system can only have been arrived at along a specific, unique trajectory. Given this fact, any time we have a mechanism that unconditionally erases a bit, i.e., maps both of two distinct initial logical states onto a single final logical state, without regard to any other knowledge that may be correlated to that bit’s state, there must be a compensatory splitting of some other adjoining system from one state into two distinct states, to carry off the “erased” information, so that no merging of possible state trajectories happens in the system overall. If the state distinction happens to become lost somewhere, then it is, by definition, entropy. If the erased bit was itself not already entropy before the erasure, then this entropy is furthermore newly generated entropy, and the mechanism is then by definition not physically reversible. In contrast, if the state information remains explicitly present in the logical state that is transformed in the operation, then the mechanism is by definition logically reversible.
If you think that you have found a way to unconditionally erase known logical bits without generating new entropy (without having also disproved quantum mechanics in the process), then check your work again, a lot more carefully! Such a device would be exactly equivalent to the long-debunked perpetual motion machine [
]. I will personally stake my reputation on your having made a mistake somewhere. For example, did you analyze the “erasure” of a logical bit that was uncorrelated with any other bits, and thus was already entropy? No new entropy need be generated in that case. Or, did you just reversibly decrement a long counter until it was zero, but you forgot that an exactly equal amount of timing information about when you finished counting, relative to other subsystems, is still present, and still must be got rid of in order to interact with outside systems? Or, did you rely on an exponential number of high-energy states all “decaying” to a single slightly lower-energy state, while forgetting that the exponentially larger number of higher-energy states and slow decay rate will mean that there is an exactly equal chance to go the other way, and make a transition to occupy the high-energy state instead, excited by thermal noise? These issues are rather subtle, and it is easy to make mistakes when proposing a complicated new mechanism. In contrast, the impossibility proof from basic, uncontroversial axioms of physics is straightforward and easily verified to be correct. If you want to erase logical bits without generating entropy, you will first have to go back and show why most of the basic physics that has been learned in the last hundred and fifty years (such as statistical mechanics and quantum mechanics) must be totally wrong, despite agreeing perfectly with all our myriad experiments!
Algorithmic Overheads. Now, those misconceptions aside, let us take a clear look at the algorithmic issues that result from the need for logical reversibility. (These issues apply equally whether the logic of the particular computation is implemented in hardware, or in software.) Apparently, the requirement of logical reversibility imposes a nontrivial constraint on the types of algorithms we can carry out. Fortunately, it turns out that any desired computation can be emulated by a reversible one [
], although apparently with some algorithmic overheads, that is, with some increases in the number of bits or ops required to carry out a given computation.
First, some history. Rolf Landauer of IBM realized, as early as 1961 [19], that information-“destroying” operations such as bit-erasure, destructive (in-place) AND, and so forth can be replaced by analogous reversible operations that just move the “erased” information somewhere else rather than really erasing it. This idea is now known as a Landauer embedding of an irreversible computation into a reversible one. But, at the time, Landauer thought this approach would pointlessly lead to an accumulation of unwanted information in storage that would still have to be irreversibly erased eventually. In 1963, Yves Lecerf [
], working independently on a related group theory problem, reinvented the Landauer embedding, and furthermore noted that the intermediate results could also be reversibly uncomputed by undoing the original computation. We call this idea Lecerf reversal. In 1973, Charles Bennett independently rediscovered Lecerf reversal [50], along with the observation that desired results could be reversibly copied (known as a Bennett copy) before undoing the computation. Simple as it was, this was the final key insight showing that computation did not necessarily require entropy generation, as it revealed that a given area of working storage could indeed be reversibly reused for multiple computations that produce useful results. All of these ideas were independently rediscovered, in a Boolean logic circuit context, by Ed Fredkin and Tom Toffoli while during their work on Information Mechanics at MIT in the late 1970’s [46].
Unfortunately, although the extra storage taken up by the Landauer embedding can be reused, it does still at least temporarily take up space in the computation and thus contributes to economic spacetime costs. Even this temporary usage was shown not to be technically necessary by Lange, McKenzie, and Tapp [
], who showed how to compute reversibly in general using virtually no extra space, essentially by iterating through all possible machine histories. (The technique is very similar to earlier complexity theory proofs showing that deterministic machines can simulate nondeterministic machines in-place, using the same space [
].) But unfortunately, the Lange-McKenzie-Tapp technique is not at all close to being practical, as it generally requires taking an exponentially longer time to do the computation.
Today, we know of a continuous spectrum of possible tradeoffs between algorithmic space and time overheads for doing reversible computation. In 1989, Bennett described a space of tradeoffs between his original technique and a somewhat more space-efficient one [
], and later work by Williams [
] and by Li, Tromp and Vitányi [
] showed some ways to extrapolate between the Bennett-89 approach and the Lange-McKenzie-Tapp one. However, these latter approaches are apparently not significantly more efficient in terms of overall spacetime cost than the older Bennett-89 one. It is, however, possible to reduce the spacetime cost of the Bennett-89 algorithm by simply increasing its degree of parallelization (activity factor, hardware efficiency) so that less time is spent waiting for various sub-computations. But, this apparently gives only a small improvement also.

At present, we do not know how to reversibly emulate arbitrary computations on reversible machines without, at least, a small polynomial amount of spacetime overhead. It has been conjectured that we cannot do better than this in general, but attempts (such as [
]) at a rigorous proof of this conjecture have so far been inconclusive. So, as far as we know right now, it is conceivable that better algorithms may yet be discovered. Certainly, we know that much more efficient algorithms do exist for many specific computations, sometimes with no overhead at all for reversible operation [4]. But, Bennett’s algorithm and its variations are the best we can do currently for arbitrary computations.

Given the apparent algorithmic inefficiencies of reversible computing at some problems, as well as the limited quality factor of reversible devices even for ideal problems, it does not presently make sense to do all computations in a totally reversible fashion. Instead, the computation should be broken into pieces that are internally done reversibly, but with occasional irreversible logical operations in between them. The size of the reversible pieces should be chosen so as to maximize the overall cost-efficiency, taking into account both the algorithmic overheads and the energy savings, while optimizing the parameters of the emulation algorithms used. Examples of how to do this via analytical and numerical methods are illustrated in [5,21,
]. That work shows that reversible computing remains advantageous for overall cost-efficiency, despite its algorithmic overheads, even for worst-case types of computations, for which we do not know of any better reversible algorithm than Bennett’s.
In cases where the reversible devices have a high quantum quality q, it turns out to make sense to do a substantial amount of reversible computing in between irreversible operations. Since the most efficient use of these reversible computing resources may, in some cases, call for an hand-optimized reversible algorithm, the architecture and programming model should best include directives that directly expose the underlying reversibility of the hardware to the programmer, so that the programmer (as algorithm designer) can perform such optimizations [4]. In other words, the algorithm designer should be able to write code that the architecture guarantees will be run reversibly, with no unnecessary overheads. Some examples of architectures and programming languages that allow for this can be found in [4,
,
].
Can the machine’s potential reversibility be totally hidden from the programmer while still preserving asymptotic efficiency? Apparently not. This is because the best reversible algorithm for a given problem may in general have a very different form than the best irreversible algorithm [4]. So, we cannot count on the compiler to automatically map irreversible code to the best reversible code, at least, given any compiler technology short of a very smart general-purpose artificial intelligence which we could rely on to invent optimal reversible algorithms for us.
How hard is it to program in reversible languages? At first it seems a little bit strange, but I can attest from my own experience that one can very quickly become used to it. It turns out that most traditional programming concepts can be mapped straightforwardly to corresponding reversible language constructs, with little modification. I have little doubt that shortly after reversibility begins to confer significant benefits to the cost-efficiency of general-purpose computation, large numbers of programmers, compiler writers, etc. will rush to acquire the new skills that will be needed to harness this new domain, of computing at the edge of physics.

However, even reversible computing does not yet harness all of the potential computational power offered by physics. For that, we must turn our sights a bit further beyond the reversible paradigm, towards quantum computing.
5.2. Quantum Computing
Generalizing classical computing concepts to match quantum reality. The core fact of quantum mechanics is that not all of the conceivable states of a physical system are actually operationally distinguishable from each other. However, in the past, computer scientists artificially constrained our notion of what a computation fundamentally is, by insisting that a computation be a trajectory made up of primitive operations, each of which takes any given legal state of the machine, and changes it (if at all) to a state that is required to be operationally distinguishable from the original state (at least, with very high probability). For example, a traditional Boolean NOT gate, or logical inverter, is designed to either leave its output node unchanged (if its input remains the same), or to change its output to a new state that is clearly distinct from what it was previously.

But really, this distinguishability restriction on operations was an extra restriction that was, in a sense, arbitrarily imposed by early computer designers, because this type of operation is not the only type that exists in quantum mechanics. For example, when a subatomic particle’s spin is rotated 180° around its x axis, if the spin vector was originally pointing up (+z), it will afterwards be pointing down (-z), and this state is completely distinct from the up state. But, if the spin was originally pointing at an angle halfway between the x and z axes, then this operation will rotate it to an angle that is only 90° away from its original angle (namely, halfway between the x and −z axes). This spin state is not reliably distinguishable from the original. Although it is at right angles to the original state in 3D space, its state vector is not orthogonal to the original state in the Hilbert space of possible quantum state vectors. Orthogonality in Hilbert space is the technical quantum-mechanical requirement for distinguishability of states. Thus, the operation “rotate a spin by 180° around a given axis” does not change all states by orthogonalizing amounts, only some of them.
What if we allow a computation to be composed of operations that do not necessarily change all legal states by an orthogonalizing amount? Then the new state after the operation, although possibly different from the original state, will not necessarily be reliably observationally distinguishable from it. However, if we don’t try to observe the state, but instead just let it continue to be processed by subsequent operations in the machine, then this lack of distinguishability is not necessarily a concern. It can simply be the situation that is intended. In essence, by loosening our requirement that every state of the computation be distinguishable from the previous one, we open up the possibility of performing new types of operations, and thus traversing new kinds of trajectories through state space, ones that were not previously considered to be legal computations.
Does this new possibility confer additional computational power on the model? We cannot prove that it does, but it is currently strongly believed to. Why? Because specific, well-defined algorithms have been found that use these new types of trajectories to perform certain kinds of computational tasks using exponentially fewer operations than with the best classical algorithms that we know of [3]. In other words, opening up this larger space of operations reveals drastic “short cuts” through state space; that is, transformation trajectories that get us to where we want to go using exponentially fewer steps than the shortest classical paths that we know of.

The two most important examples of these apparent exponential short-cuts that have been found so far are the following: (1) Shor’s quantum factoring algorithm [
], and (2) Simulations of quantum systems [
].
Shor’s factoring algorithm can factor n-digit numbers using a number of quantum operations that increases only quadratically with the number of digits n, whereas the best known classical algorithms require time that increases exponentially in the number of digits. The primary application of Shor’s algorithm would be to break the public-key cryptosystems such as RSA [
] that are popularly used today for encryption and authentication of data for e-commerce and other purposes over the internet. For example, someone armed with a goodly-sized quantum computer and eavesdropping on your internet connection could steal your account information whenever you do home banking or credit-card purchases over a supposedly secure https: or SSL (Secure Socket Layer) connection that uses RSA for security. In other words, that little padlock icon in your web browser gives you no protection against a quantum computer!

However, perhaps a more widely useful application for quantum computers is to simulate quantum physics. This was the original motivation for quantum computers that was proposed by Feynman [
]. We now know that the statistical behavior of any quantum-mechanical system can be accurately simulated in polynomial time on a quantum computer [62], even though quantum systems in general seem to require exponential time to simulate accurately on classical (non-quantum) computers.
Another quantum algorithm that is useful, but that provides a less-than-exponential speedup, is Grover’s quantum “database search” algorithm, that can locate a specified item, out of n items, in Θ(n1/2) lookup steps. [
]
However, Grover’s algorithm is, unfortunately, misnamed, since it is not really useful at all for real database searches, in the usual sense of the term “database”, meaning an explicit table of arbitrary data. First, such a table, in general, requires just as much space to store in a quantum system as in a classical one (see “Myth #1” below). Also, real commercial databases always include the capability to index the table by the most commonly-used types of search keys, in which case a lookup, even on a classical computer, already requires only Θ(1) lookup step. More precisely, the time required scales like Θ(n1/3) or Θ(n1/2), if the speed-of-light travel time to access the desired search item in 3D space or on a 2D surface is taken into account. But this is still less than in Grover’s algorithm.

Also, even if the database is not indexed by the desired type of search key, if the data is stored in a processing-in-memory architecture, in which each area of storage of some constant size has an associated processor, then lookup can be done in parallel, achieving the same light-limited Θ(n1/3) time. Or at least, Θ(n1/2) time, if the machine must be laid out in 2 dimensions, rather than 3. Anyway, in random-data-lookup applications where the speed-of-light travel time to the data is the limiting factor, Grover’s algorithm can not help us.
However, Grover’s algorithm is still useful, not for database search, but rather for a different kind of application called unstructured search of computed (not tabulated) search spaces. This is because a search space can be much larger than the physical size of the machine if the “data values” (really, function values) are computed as a function of the data’s index, rather than being explicitly stored. In cases where no more efficient algorithm is known for “inverting” the function (that is, finding an index that maps to a given value), Grover’s algorithm can still be used to obtain a speedup, although not one that is so large as is traditionally claimed. A simple classical parallel search can still outperform the serial Grover’s algorithm in terms of time alone; for example, if Θ(n3/4) processors simultaneously each search a different Θ(n1/4)-size piece of the search space, the search can be completed in Θ(n1/4) time classically in 3D space. However, given Grover’s algorithm, we can use a smaller number Θ(n3/5) of processors, each searching Θ(n2/5) items in Θ(n1/5) time. But note that the speedup is now only Θ(n1/4)/Θ(n1/5) = Θ(n1/20)! However, the benefit in terms of spacetime cost can be still as great as Θ(n1/2), since a single quantum processor searching for Θ(n1/2) time consumes only Θ(n1/2) spacetime, whereas the best classical unstructured search through n items requires Θ(n) spacetime.
Dispelling some myths. In addition to the misconceptions arising from the inappropriate association of Grover’s algorithm with database search, there are a few other popular myths about quantum computers that, although widely repeated, are entirely false, and we would like to dispense with them here and now.

Myth #1: “Quantum computers with a given number of bits can store exponentially more information than classical computers having the same number of bits.”

This is patently false, because the maximum amount of information that can be stored in any physical system is just the logarithm of its number of distinguishable states. Although an n-bit quantum computer can be put into an infinite number of different quantum states, only 2n of these states can be reliably differentiated from each other by any physical means whatsoever, no matter how cleverly you try to design your measurement apparatus. In other words, the presence of all those extra, “in-between” superposition states can have zero causal impact on the total amount of information you can reliably extract from the system. This basic feature (or “bug” if you prefer) of all physical systems was demonstrated convincingly by Heisenberg long ago. [24]
Myth #2: “Quantum computers can perform operations at an exponentially faster rate than classical computers.”

This is also false, because the Margolus-Levitin bound on processing speed [18] applies to quantum computers as well as classical ones. Operations (if defined as transformations that orthogonally transform some states) can only be performed, at best, at the rate 4E/h, or 2E/h for non-trivial ops, for a system of average energy E above its ground state. Small pieces of operations (small transformations that do not orthogonally transform any states) may be done more often [
], but these pieces arguably also perform correspondingly less computational work than do complete operations.
Why? Note that a small piece of a (primitive orthogonalizing) operation (which transforms every state into a new state that is almost completely indistinguishable from the original) can be omitted entirely from a computation, and the end result of the computation will necessarily be almost completely indistinguishable from the case where that small “operation piece” was included. (This is because the property of the near-indistinguishability of the two states must be preserved by any subsequent operations on the system—otherwise, the states would not be indistinguishable! Mathematically, this is ensured by the linearity of quantum evolution.) So, it is fair to count the computational work performed by a transformation by counting the number of complete operations, as we have defined them (transformations that at least orthogonalize some states). Whether or not a given operation orthogonalizes the actual computational state that is presented to it as its input in a specific situation is another question altogether. It need not do so in order for the operation to be considered useful. For example, an ordinary “AND” gate, upon receiving new inputs, is considered to be doing useful work even when its output does not change. Namely, it is doing the work of determining that its output should not change.
 Similarly, a quantum operation that does not orthogonalize its actual initial state, but that might orthogonalize others, is, at least, doing the work of determining that that specific input is not one of the ones that was supposed to have been orthogonalized.
Therefore, the Margolus-Levitin bound does indeed give a valid limit on the rate of useful operations that can be performed in any computer (classical or quantum).

The correct interpretation of why a quantum computer provides exponentially faster algorithms for some problems (such as factoring, and simulating quantum physics) is not that the quantum computer is carrying out operations at an exponentially more frequent rate, but rather that the new types of operations that can be performed by the quantum computer make use of the fact that there actually exist exponentially shorter paths (requiring exponentially fewer total operations to traverse) leading from the input state to the desired final state than was previously recognized.

As an analogy: Suppose you have a computer with integer registers, but the only arithmetic operation provided is “decrement/increment”, which subtracts 1 from one register, while adding 1 to another register. With this operation, you could still add two registers together, by repeatedly performing this operation on the two registers, until the first one equals zero. But this would generally take exponential time in the length of the registers. Now, suppose we introduce a new operation, which is the standard direct bitwise ripple-carry add of one register into the other. Then, the add only takes time proportional to the length of the registers. Thus we have gained an “exponential speedup” for the add operation, but not by doing increment/decrement operations exponentially more frequently, but rather by choosing a type of operation that allows us to do an exponentially smaller number of steps in order to get to the result that we want.
The key insight of quantum computing was that nature provides for us a type of operation (namely, operations that might incompletely orthogonalize some input states) that was not previously recognized in any of our early computing models, and that, moreover, adding this kind of operation allows some problems to be solved using exponentially fewer total operations than was previously realized. Therefore, omitting the capability of performing quantum operations from our future computer designs is, in a sense, just as foolish as omitting the capability for bitwise addition (as opposed to just decrement/increment) from the design of our arithmetic units!
One caveat is that, at present, only a few kinds of problems (such as those mentioned above) have been found so far for which quantum operations provide a drastic speedup. However, since a low decoherence rate will eventually be needed anyway, in order to allow for high-speed reversible operations that avoid excessive dissipation, it makes sense for us to aim towards a full quantum computing technology in the long run. Also, quantum computing is still only in its infancy, and many useful new quantum algorithms may yet be discovered.

Myth #3: “Quantum computers are known to be able to solve NP-complete problems in polynomial time.”
If this were true, it would be wonderful, because all problems whose solutions can be checked in polynomial time (this is the definition of the NP problems) could then also be solved in polynomial time using a quantum computer. Among other applications, this would revolutionize the way we do mathematics, because very complex proofs of difficult mathematical theorems could be found very quickly by computer, that is, in time only polynomial in the length of the proof. Unfortunately, no one has shown a way to use quantum computers to solve NP-hard problems efficiently, and furthermore, a result due to Bennett et al. [
] provides some mild theoretical evidence suggesting that it is not possible. The factoring problem and other problems that apparently do have exponential shortcuts from using quantum computing have never been proven to be NP-complete, so they do not constitute examples of NP-complete problems that can be efficiently solved on a quantum computer. However, more research on this question is needed.
Myth #4: “Quantum computers have been proven to be far more powerful than classical computers.”
First, we know that a quantum computer can be perfectly simulated by a classical computer, though most likely this requires exponential slowdown. So, any problem solvable on a quantum computer can be eventually solved on a classical computer, given unbounded resources. So, quantum computers are not any more powerful in terms of the kinds of problems that they can solve at all in principle, rather, at best, they are just exponentially more efficient at solving some problems. But, even the exponential efficiency advantage has never really been proven. For all we know for sure today, there could still exist a (not yet discovered) polynomial-time classical algorithm for simulating all quantum computers, in which case every efficient quantum algorithm could be translated to a similarly efficient classical one. Other than in various artificial oracle scenarios, we still have no rock-solid proof that quantum computers confer any extra computational power, although most researchers expect that they do. Moreover, for practical purposes today, they would effectively confer that exponential extra power, because of the existing problems for which the best quantum algorithm we know is far more efficient than the best classical algorithm we know. But, this situation could change someday, if equally efficient classical algorithms were eventually to be discovered, which has not (yet) been proven to be impossible.
Myth #5: “Quantum computers require exponential space to simulate on a classical computer.”

This myth is often quoted as the “reason” why simulating a quantum computer on a classical one must also take exponential time. But the myth is simply not true; it has been recognized since at least 1992 [
] that a polynomial-space simulation of quantum computers on classical ones is easy. The technique used is pretty obvious to anyone who is familiar with Feynman’s path-integral formulation of quantum mechanics, which has been around much longer. It tells us that the amplitude of a given final basis state can be computed via a sum over trajectories (here, sequences of basis states) that terminate at that final state. A given sequence requires only polynomial space to store, and we can just iterate serially through all possible sequences, accumulating the final state’s net amplitude. This is all that is needed to compute the statistical behavior of the quantum system (e.g. quantum computer) being simulated.
Myth #6: “Large-scale quantum computers are fundamentally impossible to build, due to the phenomenon of decoherence.”
Our best models to date tell us that this is not so. We only require a quantum device technology that has a quality factor q (discussed below) that is above a certain finite threshold (currently estimated to be around 103-104) [
] that allows known robust, fault-tolerant quantum error-correction algorithms to be applied, thereby allowing the scale of the achievable computations to be scaled up arbitrarily, just as classical error correction techniques allow classical computations to be scaled up arbitrarily, despite the small but not-perfectly-zero error rates in current-day bit-devices. A high quality factor like this will be required anyway, if we wish to ever perform computation at rates well beyond those planned in the present semiconductor roadmap, which would imply computational temperatures that would quickly melt the computer’s structure, if the computational degrees of freedom were not extraordinarily well-isolated from interactions with structural ones. So, quantum computing is, in a sense, no harder than any technology that aims at capabilities well beyond the present semiconductor roadmap. Of course, many important engineering details remain to be worked out.
However, for a densely-packed, 3D parallel quantum computer to be able handle a noticeable rate of decoherence using fault-tolerant error correction techniques may require hardware implementation of the error correction algorithms, internally to the processor’s architecture, rather than just in software. Because of this, a quantum computer requires a somewhat different and more elaborate hardware architecture, as compared with a simple reversible computer, which would not need to maintain superposition states, and so could make do with simple classical approaches to error correction, such as encoding computational bits redundantly in numerous physical bits, whose values can be “replenished” to stay locked with their nominal value by more trivial mechanisms, e.g., by connecting a voltage-coded circuit node statically to a reference power supply, as is done in ordinary static CMOS logic circuits today.
Implementation technologies. Many potential implementation technologies for quantum computers have been proposed and are being experimented on. These include nuclear spin systems [
], electron spin systems [
], superconducting current states of various sorts [
], and even mechanical vibrational systems [
]. To date, all of these approaches rely on an externally-supplied signal for control and timing of operations. (As Lloyd says, “Almost anything becomes a quantum computer if you shine the right kind of light on it.”) But really, there seems to be no fundamental reason why the generator of the programmed control signal could not eventually be integrated with the actual devices, in a more tightly-coupled fashion. For scalability to large arrays of self-timed processors, synchronization becomes a concern, but can presumably be handled in much the same ways as we discussed for the case of reversible processors earlier.
Architectures and programming models. A self-contained quantum computer architecture looks very similar to a classical reversible architecture, but with some added instructions that can perform quantum operations that might not orthogonalize the input state. In principle, it suffices to include a single quantum instruction operating on a 1-bit register, while keeping all other instructions simply coherent classical reversible [
], but a larger variety of quantum operations would probably also be useful. A self-contained, stored-program quantum architecture should probably have built-in support for fault-tolerant error correction algorithms, to avoid the overheads of implementing these in software. However, it is important to note that the entire architecture need not be coherent at all times, only the parts that are directly storing and manipulating the quantum data of interest. It may be beneficial to design each processor as a classical reversible processor (kept reversible and mildly coherent for speed and energy efficiency) paired with a relatively much smaller quantum sub-processor whose state is kept highly coherent through the use of quantum error correction. The quantum component might be kept at a relatively low temperature to help avoid decoherence, since its speed-ups come from the use of superpositions in quantum algorithms, not from a fast operation rate (high computational temperature). Meanwhile, the classical part of the processor can perform in software, at relatively much higher frequencies, the meta-computation needed to determine which quantum operation should be performed next on the quantum sub-processor.
However, if a much wider range of useful quantum algorithms is eventually discovered, we may eventually find ourselves wishing to do quantum operations more pervasively throughout a wider range of applications, and also at higher frequencies, in which case the quantum functions might be integrated more thoroughly into the primary reversible processor. Without the availability of a classical processor running at higher speed, more of the low-level quantum algorithms such as error correction would need to be done “in hardware”, incorporated directly into the design, arrangement, and interactions of the individual quantum devices. The technique of using decoherence-free subspaces [
] provides one example of how to cope with errors directly in the hardware design. Other methods may eventually be discovered.
Now, given our recognition of the need to incorporate the possibility of reversibility and quantum computing into our nanocomputer models, while respecting fundamental physical constraints as well, what will the resulting nanocomputer models look like? Let’s take a look.
6. Generic Realistic Model of Nanocomputers
In this section, we give a detailed example of what we consider to be a reasonably simple, realistic and efficient model of computing which remains valid at the nanoscale. It is realistic in that it respects all of the important fundamental constraints on information processing except for gravity, which, unlike the other constraints, is not expected to become relevant yet within the coming half-century of technological development. The model is efficient in that it is not expected to be asymptotically less cost-efficient (by more than a constant factor) than any other model that respects all of the same fundamental physical constraints. To achieve this, it must recognize the possibility of reversible and quantum computing.
The focus of this particular model is on enabling the analysis of the complete cost-efficiency optimization of parallel computer systems, when simultaneously taking into account thermodynamic constraints, communications delays, and the algorithmic overheads of reversible computing.
6.1. Device Model

A machine instance can be subdivided into logical devices. The total number of devices in the machine can be scaled up with the memory requirement of the given application.
Each device has a logical state, which is an encoded, desired classical or quantum state (possibly entangled with the state of other devices) for purposes of carrying out a classical or quantum computation. The logical state is encoded by a coding physical state, which is the portion of the device’s physical state that encodes (possibly redundantly) the desired logical state. The device will probably also have a non-coding physical state, which is the rest of the device’s physical state, which is not used for encoding computational information. The non-coding state can be further subdivided into a structural state, which is the part of the state that is required to remain constant in order for the device to work properly (if it is changed, the device becomes defective), and the thermal state, which is the unknown part of the device’s physical state that is free to change because it is independent of the logical and structural state, and so is not required to remain constant in order to maintain proper operation.
The device mechanism can be characterized by the following important parameters. In any given technology, the values of each of these parameters is assumed to be designed or required to fall within some limited range, for all devices in the machine.

· Amount of logical information, Ilog , i.e., information in the logical subsystem.
· Amount of coding information, Icod, i.e., information in the coding subsystem (in which the logical subsystem is represented).

· Amount of thermal information, Itherm, i.e., information in the thermal subsystem, given the device’s allowed range of thermal temperatures.
· Computational temperature Tcod of the coding state. This is the rate at which minimal desired changes to the entire coding state (steps) take place; i.e., transitions which change all parts of the coding state in a desired way. Its reciprocal tcod = 1/Tcod is the time for a step of updating the coding state to take place.
· Decoherence temperature Tdec is the rate at which undesired coding-state steps take place due to unwanted, parasitic interactions between the coding state, and the thermal/structural state of the device or its environment. Its reciprocal tdec = 1/Tdec is the decoherence time, the characteristic time for coding state information to be randomized.
Of course, it is desirable to select the coding subsystem in a way that minimizes the decoherence rate; one way to do this is to choose a subsystem whose state space is a decoherence-free subspace [75], or one that is based on pointer states, which are those states that are unaffected by the dominant modes of interaction with the environment [
]. The stable, “classical” states that we encounter in everyday life are examples of pointer states. Of course, even in nominal pointer states, some residual rate of unwanted interactions with the environment always still occurs; that is, entropy always increases, however slowly.
· Thermal temperature Ttherm is the rate at which the entire thermal state of the device transforms. This is what we normally think of as the ordinary thermodynamic operating temperature of the device.

· Decay temperature Tstruc is the rate at which decay of the device’s structural state information takes place. It depends on the thermal temperature and on how well the structural subsystem’s design isolates its state from that of the thermal degrees of freedom in the device. Its reciprocal tstruc is the expected time for the device structure to break down.
· Device pitch (p. For simplicity, we can assume, if we wish, that the pitch is the same in orthogonal directions, so the device occupies a cube-shaped volume Vd = (p3. (This assumption can be made without loss of generality, since devices of other shapes can always be approximated by a conglomeration of smaller cubes. However, allowing alternative device shapes may give a simpler model overall in some cases.)
We are also assuming here that the region of space occupied by distinct devices is, at least, non-overlapping, as opposed to (for example) different devices just corresponding to different degrees of freedom (e.g., photonic vs. electronic vs. vibrational modes) within the same region. Again, this is not really a restriction, since such overlapping phenomena could be declared to be just internal implementation details of a single device whose operation comprises all of them simultaneously. However, we can loosen this no-overlap restriction if we wish. But if we do so, care should be taken not to thereby violate any of the fundamental physical limits on entropy density, etc.
· Information flux density IAt (rate of information per unit area) through the sides of the device. This includes all physical information such as thermal entropy (flux SAt) or redundant physical coding information (flux IAt,cod) of logical bits (flux IAt,log). Note that since the motion of information across the device boundary constitutes a complete update step for the location of that information, we know that IAt(p2 ≤ IT where I is the information of a given type within the device, and T is the temperature (rate of updating) of the location information for that type of information.

Additionally, one of course also needs to define the specifics of the internal functionality of the device. Namely, what intentional transformation does the device perform on the incoming and internal coding information, to update the device’s internal coding information and produce outgoing coding information? To support reversible and quantum computing, at least some devices must reversibly transform the coding information, and at least some of these devices must perform non-orthogonalizing transformations of some input states.
The device definition may also provide a means to (irreversibly) transfer the content of some or all of its coding information directly to the thermal subsystem, causing that information to become entropy.

For example, a node in static or dynamic CMOS circuit effectively does this whenever we dump its old voltage state information by connecting it to a new fixed-voltage power supply. However, a MOSFET transistor’s built-in dynamics can also be used to transform coding states adiabatically, thereby avoiding transformation of all of the coding information to entropy.

Most generally, the device’s operation is defined by some reversible, unitary transformation of its entire state (coding, thermal, and structural), or, if the transform is not completely known, a statistical mixture of such. The actual transformation that occurs is, ultimately, predetermined solely by the laws of quantum mechanics and the state of the device and its immediate surroundings. So, device design, fundamentally, is just an exercise of “programming” the “machine” that is our universe, by configuring a piece of it into a specific initial state (the device structure) whose built-in evolution over time automatically carries out a manipulation of coding information in such a way that it corresponds to a desired classical or quantum operation on the encoded logical information.
As we will see, this notion of a device is general enough that not only logic devices, but also interconnects, timing sources, and power supply/cooling systems can also be defined in terms of it.
6.2. Technology Scaling Model

The technology scaling model tells us how functional characteristics of devices change as the underlying technology improves. Just from basic physical knowledge, we already know some things about the technological characteristics of our device model:

First, Ilog ≤ Icod. That is, the amount of logical information represented cannot be greater than the amount of physical information used to do so. We can thus define the redundancy factor Nr ≡ Icod/Ilog ≥ 1.

Next, note that for devices that are occupied by information of interest (that is, actively maintaining a desired logical state), the rate Sdt of standby entropy generation is at least IcodTdec., as coding information decays. The coding state of devices that are not occupied (not currently allocated for holding information) can be allowed to sit at equilibrium with their thermal environment, so their rate of standby entropy generation can be zero. (Or more precisely, some extremely low rate determined by the rate of structural decay Tstruc.)
Next, if we assume that changing a logical bit is going to in general require changing all Nr of the physical bits used to redundantly encode it, we can immediately derive that logical bits, as well as physical bits, change at most at the rate Tcod [
]. If the computational temperature were only room temperature (300 K), then, expressed in terms of ops (h/2) per bit (kB ln 2), this temperature would allow a maximum rate of only one bit-op per 0.115 ps, that is, a bit-device operating frequency of at most 10 THz.
Note that this operating frequency is only about a factor of 3,000 times faster than the actual ~3 GHz working clock speeds in the fastest microprocessors that are currently commercially available, and furthermore it is only about a factor of 10 faster than the fastest present-day NMOS switches (which already have minimum transition times of ~1 ps [6]) are theoretically capable of. By 2016, minimum transition times are planned to be almost as small as 0.1 ps, according to the semiconductor industry’s roadmap [6]. So, in other words, taking device speeds significantly beyond the end of the present semiconductor roadmap will require temperatures in the computational degrees of freedom that are significantly above room temperature. This does not conflict with having structural temperatures that are relatively close to room temperature (to prevent the computer from melting), insofar as the computational degrees of freedom can be well-isolated from interactions with the thermal and structural ones. But such isolation is desired anyway, in order to reduce decoherence rates for quantum computations, and entropy generation rates for reversible classical computations.
Looking at the situation another way, given that increasing operating frequency significantly beyond the end of the semiconductor roadmap would require computational temperatures at significant multiples of room temperature, and given that solid structures melt at only moderate multiples of room temperature, the computational degrees of freedom must become increasingly well-isolated from interactions with the rest of the system. This high-quality isolation, in turn, in principle enables reversible and quantum computation techniques to be applied. In other words, going well beyond the semiconductor roadmap requires entering the regime where these alternative techniques should become viable.
Let us look more carefully now at entropy generation rates. Since a step’s worth of desired computation is carried out each tcod = 1/Tcod time, whereas a step of unwanted state modifications occurs each tdec = 1/Tdec time, a key measure of the quality of the device technology is given by q = tdec / tcod = Tcod/Tdec, the ratio between decoherence time and state-update time, or in other words between state update rate and rate of state decay. Since the unwanted decay of a bit effectively transforms that bit into entropy, the entropy generated per desired logical bit-operation must be at least Nr/q ≥ 1/q bits, even for logically reversible operations. Note that our q is, effectively, just another equivalent definition for the quality ratio Q (the fraction of energy transferred that is dissipated by a process) that is already commonly used in electronics. We use lowercase here to indicate our alternative definition in terms of quantum decoherence rates.
Now, for specific types of devices, we can derive even more stringent lower bounds on entropy generation in terms of q. For example, in the memo [77], we show that for field-effect based switches such as MOSFETs, the entropy generated must be at least ~q−0.9, with the optimal redundancy factor Nr to achieve this minimum growing logarithmically, being ~1.12 lg q. However, it is reassuring that in that more specific device model, entropy generation can still go down almost as quickly as 1/q. It may be the case that all reversible device models will have similar scaling. The key assumption made in that analysis is just that the amount of energy transfer required to change the height of a potential energy barrier between two states is of the same magnitude as the effected amount of change in height of the barrier. If this is true in all classes of reversible logic devices, and not just in field-effect-based devices, then the results of that memo hold more generally.

[image: image2]
Figure 2. Minimum entropy generation per bit-op in field-effect devices, as a function of quality factor q, and redundancy Nr of physical encoding of logical information. When q ≤ e2, the function is monotonically non-decreasing in Nr, but for larger q, it has a local minimum which first appears at Nr = 2 nats per bit. The black line curving horizontally across the figure traces this local minimum from its first appearance as q increases. This local minimum becomes the absolute minimum when (1/q) ≤ 0.0862651… (numerically calculated), when the black line dips below the surface that we have visualized above by sweeping the left edge of the figure (where Nr = ln 2 nats/bit, its minimum) through the x direction. (The white line is there only to help visualize how far above or below that surface the black line lies at a given q.) The other black line, along the left edge of the figure, marks the approximate range of q values for which Nr = ln 2 nats/bit is indeed the optimal choice. Note that as q increases, ever-lower entropy generation per bit-op becomes possible, but only by increasing the redundancy of the encoding (which raises energy barriers and improves the achievable on/off power transfer ratios).
However, in contrast to the reversible case, irreversible erasure of a bit of logical information by direct means (e.g., grounding a voltage node) in general requires discarding all Nr of the redundant bits of physical information that are associated with that bit, and thus generating Nr bits of physical entropy which must be removed from the machine. At best, at least 1 bit of physical entropy must be generated for each logical bit that is irreversibly erased (see discussion in sec. 5.1 above). Thus, when the device quality factor q is large (as must become the case when computational rates far exceed room temperature), the reversible mode of operation is strongly favored.

[image: image3]
Figure 3. Scaling of optimal redundancy factor and maximum entropy reduction with decreasing relative decoherence rate. In the graph, the horizontal axis sweeps across different q factors (decreasing values of 1/q), and we show the corresponding optimal choice of Nr (found via a numerical optimization) and the natural logarithm of the maximum entropy reduction factor (factor of entropy reduction below the reference 1 kB = 1 nat) that may be obtained using this choice. The thin, straight trendlines show that for large q (small 1/q), the optimal Nb (for minimizing ΔS) scales as roughly 1.1248(ln q), while the minimum ΔS itself scales as about q−0.9039.
6.3. Interconnection Model.

For simplicity, we can adopt an interconnection model in which interconnects are just another type of device, or are considered to be a part of the logic devices, and so are subject to the same types of characterization parameters as in our general device model above. The machine need not be perfectly homogeneous in terms of its device contents, so interconnects could have different parameter settings than other types of devices. Indeed, they could be physically very different types of structures. However, it is critical that the interconnection model, however it is described, should at least accurately reflect the actual delay for a signal to traverse the interconnect. To save space we will not develop the interconnection model in detail here.
6.4. Timing System Model.

Again, for simplicity, we can assume that timing synchronization functions are just carried out in special devices designated for this purpose, or are integrated into the logical devices. Timing synchronization (correction of errors in timing information) can be carried out in an entirely local fashion. This is illustrated by the extensive literature on clockless (self-timed, or asynchronous) logic circuits. Reversible circuits cannot be allowed to operate in a completely asynchronous mode, in which substantial-size timing errors are constantly appearing and being corrected, since each synchronization operation would be irreversible and thus lossy, but they can be maintained in a closely synchronized state via local interactions only. Margolus showed explicitly how to do this in a simple 1-D quantum model in [48]. But, it is also clear that locally-synchronized reversible operation can be generalized to 3 dimensions, just by considering simple mechanical models in which arrays of high-quality mechanical oscillators (e.g., springs or wheels) are mechanically coupled to their neighbors, e.g., via rigid interconnecting rods (like between the wheels on an old steam locomotive). An interesting research problem is to develop analogous local-synchronization mechanisms that are entirely electronic rather than mechanical, or, if this is impossible, prove it.
6.5. Processor Architecture Model.
For purposes of analyzing fundamental tradeoffs, this need not be particularly restrictive. A processor should contain some memory, with a low standby rate of entropy generation for bits that are occupied but are not being actively manipulated, and zero standby rate of entropy generation in unallocated, powered-down bits (after they equilibrate with their environment). The processor should contain some logic that can actively process information in some way that can be programmed universally (any desired program can be written, given sufficiently many processors). It should be able to perform fully logically reversible operations which are carried out via reversible transformations of the coding state. Some examples of reversible architectures can be found in [
,
,59,60,4]. For convenience, the architecture should also permit irreversible operations which treat the information in the coding state as entropy, and transfer it to a non-coding subsystem that is basically just a heat flow carrying entropy out of the machine. (There is no point in keeping unwanted information in a coded state, and wasting error correction resources on it.) However, the reversible operations provided by the architecture should also allow an alternative, of uncomputing the undesired information, so as to return the coding state to a standard state that can be reused for other computations, without needing to ever treat the coding information as if it were entropy. The architecture should be able to be programmed to efficiently carry out any reversible algorithm.
Ideally, the architecture should also support performing non-orthogonalizing quantum operations (that is, operations that create quantum superpositions of logical basis states), so that, in combination with classical coherent reversible operations, arbitrary quantum computations can be programmed. If quantum computation is to be supported, simply using classical pointer basis states in the device is no longer sufficient for representing the logical state, and full quantum superpositions of logical basis states (spanning some relatively decoherence-free subspace) should be permitted.

The key criteria are that the architecture should be both physically realistic and universally maximally scalable. These goals, together with ease of programmability, imply that it should look something like we describe above.
6.6. Capacity Scaling Model

An ordinary multiprocessor model can be adopted, scaling up total machine capacity (both memory and performance) by just increasing the number of processors. However, we must be careful to be realistic in specifying the interconnection network between the processors. It has been shown that no physically realizable interconnection model can perform significantly better than a 3-D mesh model, in which all interconnections are local, i.e., between processors that are physically close to each other [17]. Moreover, although the planar width of the whole machine can be unlimited, the effective thickness or depth of the machine along the third dimension is inevitably limited by heat removal constraints [4]. However, insofar as reversible operation can be used to reduce the total entropy generated per useful logical operation, it can also increase the effective thickness of the machine, that is, the rate of useful processing per unit of planar area [20]. This, in turn, can improve the performance of parallel computations per unit machine cost, since a thicker machine configuration with a given number of processors has a lower average distance between processors, which reduces communication delays in parallel algorithms [4,58].
6.7. Energy Transfer Model

The flow of energy through the model should, ideally, be explicitly represented in the model, to ensure that thermodynamic constraints such as conservation of energy are not somewhere implicitly violated. A piece of energy E that is changing state at average rate (temperature) T contains I=E/T amount of information, by our definitions of energy and temperature. Likewise, for I amount of information to be transitioning at rate T requires that energy E=IT be invested in holding that information. Entropy S is just information whose content happens to be unknown, so ejecting it into an external atmosphere where it will transition at room temperature, or ~300 K, always requires that an accompanying S·(300 K) energy (heat) also be ejected into the atmosphere. (Or, if the cosmic microwave background is used as a waste heat reservoir, an ambient temperature of 2.73 K applies instead.) The same relation between energy, information and temperature of course applies throughout the system: Whenever an amount of information I is added to any subsystem that is maintained at a specific, uniform temperature T, an amount E=IT of energy must also be added to that subsystem.
Thus, the continual removal of unwanted entropy from all parts of the machine by an outward flow of energy (heat) requires that this lost energy be replenished by an inward-flowing energy supply going to all parts of the machine, complementing the outward heat flow. This inward-flowing supply also has a generalized temperature Tsup, and carries information, which must be known information in a standard state, or at least contain less entropy than the outward flow (otherwise we could not impress any newly generated entropy onto the energy flow).

The total rate of energy flow to the machine’s innards and back might be greater than the minimum rate needed for the entropy internally generated to be emitted, if the heat is being moved actively, e.g. by a directed flow of some coolant material. This may be required to keep the thermal temperature of internal components low enough to maintain their structure. If the coolant is flowing at such a speed that the effective temperature of its motion is greater than the desired internal structural temperature, then we must isolate this flow from direct thermal contact with the structure, in order to avoid its raising the structural temperature rather than lowering it. Nevertheless, a well-isolated coolant flow can still be used to remove heat, if the unwanted heat is sent to join the coolant stream by a directed motion.
Note that the extra, directed energy flow in an active cooling system (its moving matter and kinetic energy) can be recycled (unlike the heat), and directed back into the machine (after being cooled externally) to carry out additional rounds of heat removal. So, all the energy contained in the inward coolant flow does not necessarily represent a permanent loss of free energy.
To minimize the total rate of free-energy loss needed to achieve a given internal processing rate, we should minimize the rate at which entropy is produced internally, the inefficiencies (extra entropy generation) introduced by the cooling system, and the temperature of the external thermal reservoir (for example, by placing the computer in primary thermal contact directly with outer space, if possible).
One way to approach the energy transfer model treats the energy flow pathways as just yet another type of information-processing device, subject to the same type of characterization as we discussed earlier in section 6.1. The only difference is that there need be no coding information present or error correction taking place in a device whose only purpose is to carry waste entropy out of the machine to be externally dissipated.
6.8. Programming Model

For purposes of this discussion, we do not particularly care about the details of the specific programming model, so long as it meets the following goals:

.

· Power. Harnesses the full power of the underlying hardware (i.e., does not impose any asymptotic inefficiencies). In the long run, this implies further that it supports doing the following types of operations, if/when desired and requested by the programmer:
· Parallel operations.

· Reversible classical operations. (Implemented with as little entropy generation as the underlying device quality permits in the given technology.)
· Quantum coherent operations. (With as little decoherence as the device quality permits.)
· Flexibility. The efficiency of the machine will be further improved if it provides several alternative programming models, so that whichever one that is most efficient for a particular application can be used. For example, each processor might provide both a CPU running a fairly conventional style of ISA (although augmented by reversible and quantum instructions) which efficiently maps the most common operations (such as integer and floating-point calculations) to device hardware, as well a section of reconfigurable logic (also offering reversible and quantum operation), so that specialized, custom application kernels can be programmed at a level that is closer to the hardware than if we could only express them using traditional software methods.

· Usability. The programming model should be as straightforward and intuitive to use by the programmer (and/or compiler writer) as can be arranged, while remaining subject to the above criteria, which are more important for overall efficiency in the long run. At present, programmer productivity is arguably more immediately important than program execution efficiency for many kinds of applications (for example, in coding business logic for e-commerce applications), but in the long run, we can expect this situation to reverse itself, as fundamental physical limits are more closely approached, and it becomes more difficult to extract better performance from hardware improvements alone. When this happens, the efficiency of our programming models will become much more critical.
Also, there may be a period where our choice of programming models is constrained somewhat by the type of hardware that we can build cost-effectively. For example, processors might be forced to be extremely fine-grained, if it is initially infeasible to build very complex (coarse-grained) structures at the nanoscale. The papers on Nanofabrics [
] and the Cell Matrix [
] describe examples of fine-grained parallel models based on very simple processing elements. In the case of [80], the processing elements are ones that can be built by making heavy use of certain chemical self-assembly techniques that are deemed more feasible by the authors than other fabrication methods.
However, my own opinion is that the need for such fine-grained architectures, if there ever is one, will only be a short-term phenomenon, needed at most only until manufacturing capabilities improve further. In the longer run, we will want direct hardware support (i.e., closer to the physics) for very common operations such as arithmetic, and so eventually our nano-architectures will also contain prefabricated coarse-grained elements similar to the integer and floating-point ALUs (arithmetic-logic units) which are common today, which will be naturally programmed using instruction sets that are, in large measure, similar to those of today’s processors.

To see why, consider this: The cost-efficiency of a very fine-grained architecture, such as the Cell Matrix, on any application is reduced by at most a factor of 2 if we take half of the area that is devoted to these fine-grained reconfigurable cells, and use it to build fixed 128-bit ALUs (say) directly in hardware instead, even in the worst case where those ALUs are never used. But, those general applications that can use the ALUs (which is probably most of them) will run hundreds of times more cost-efficiently if the ALUs are directly available in hardware, than if they have to be emulated by a much larger assemblage of simple reconfigurable cells.
However, including some amount of reconfigurable circuitry is probably also desirable, since there are some specialized applications that will probably run more cost-efficiently on top of that circuitry than in a traditional instruction set.

The most basic law of computer architecture, Amdahl’s Law (in its generalized form [
] which applies to all engineering fields, and to any measure of cost-efficiency), can be used to show that so long as the costs spent on both reconfigurable circuitry and traditional hardwired ALUs are comparable in a given design, and both are useful for a large number of applications, there will be little cost-performance benefit to be gained from eliminating either one of them entirely. Furthermore, it seems likely that the business advantages of having a single processor design that can be marketed for use for either kind of application (ALU-oriented vs. more special-purpose) will probably outweigh the small constant-factor cost-efficiency advantage that might be gained on one class of application by killing the cost-efficiency of the other class.
Since arithmetic-intensive computing drives most of the market for computers, and will probably continue to do so, I personally think it most likely that we will follow a evolutionary (not revolutionary) manufacturing pathway that continues to make smaller and smaller ALUs, which continue to be programmed with fairly traditional (CISC/RISC/DSP) instruction-set styles, and that gradually evolves towards the point where these ALUs are composed of truly nanoscale devices. The alternative scenario promoted by these authors, that the majority of computing will suddenly change over to using some radically different alternative architecture which lacks efficient low-level hardware support for such application-critical operations as “add,” doesn’t seem very plausible.
Now, of course, above the instruction-set level, higher-level programming models (languages) may take a variety of forms. For example, the paper [
] discusses issues in the design of high-level parallel models that map efficiently to hardware.

Some discussion of reversible programming languages can be found in [4,
,
], and some examples of quantum programming languages are [
,
,
,
,
,
].
6.9. Error Handling Model
Typically, the physical coding state will be chosen in such a way that any errors that appear in the coding state can be detected and corrected, before enough of them accumulate to cause the logical state information to be lost.

Ordinary static CMOS logic provides a simple example of this. The coding state is the analog voltage on a circuit node. A fairly wide range of possible voltages (thus, a relatively large amount of coding state information) are taken to effectively represent a given logical value (0 or 1). The ideal coding state is some power-supply reference voltage, GND or Vdd. If, through leakage, a node voltage should drift away from the ideal level, in a static CMOS circuit, the level will be immediately replenished through a connection with the appropriate power supply. A simple static CMOS storage cell, for example, may include two inverter logic gates that continuously sense and correct each other’s state. This can be viewed as a simple hardware-level form of error correction.

In dynamic digital circuits, such as a standard DRAM chip, a similar process of error detection and correction of logic signals takes place, although periodically (during refresh cycles) rather than continuously.

Of course, many other coding schemes other than voltage-level coding are possible. Electron spin states [71], current direction states [72], AC current phase states [
], electron position states [39], and atomic position states are just some of the examples. Whatever the coding scheme used, a similar concept applies, of redundantly representing each logical bit with many physical bits, so that errors in physical bits can be detected and corrected before enough of them change to change the logical bit. This idea applies equally well to quantum computing [
].
If the architecture does support quantum computing and is self-contained, then, for efficiency, fault-tolerant quantum error correction algorithms [69] should probably eventually be implemented at the architectural level in the long term, rather than just (as currently) in software.
Note that to correct an error is by definition to remove the “syndrome” information that characterizes the error. Insofar as we don’t know precisely how the error was caused, and thus how or whether it might be correlated with any other accessible information, this syndrome information is effectively entropy, and so we can do nothing sensible with it except expel it from the machine. (In particular, unlike intentionally-computed information, it cannot be uncomputed.) Unless the error rate is negligibly small, the resources required for removal of this error information must be explicitly included in any realistic model of computing that takes energy costs or heat-flux constraints into account.
6.10. Performance Model

Given the care we have taken to recognize fundamental physical constraints in our model components above, a correct performance model will fall out of the automatically, as the architectural details are filled in. As we compose a large machine out of individual devices characterized as described, our device model forces us to pay attention to how energy and information flow through the machine. An algorithm, specified by an initial coding state of all of the devices, runs at a rate that is determined by the device dynamics, while respecting the time required for signals to propagate along interconnects throughout the machine, and for the generated entropy to flow out along cooling pathways.
6.11. Cost Model

As we described earlier, a good cost model should include both spacetime-proportional costs (which include manufacturing cost, amortized over device lifetime), and energy-proportional costs. The energy costs can easily be dominant, if the machine is to be operated for a long lifetime, or in an environment where energy is hard to come by and therefore expensive (or, complementarily, where heat is hard to get rid of).
As a pragmatic example, suppose a battery in a 30-W laptop lasts 5 hours, thus supplying 0.15 kW-hrs of energy. Assuming the recharge process can be done very efficiently, the raw cost of energy for a recharge, at typical current U.S. electric utility rates, is therefore less than one cent (US$0.01). However, the inconvenience to a business traveler of having to charge and carry extra batteries in order to make it through a long international flight could well be worth tens of dollars, or more, to him or her. Also, having a particularly hot laptop sitting on one’s lap can be a significant discomfort that users may be willing to pay a significant amount of money to reduce. The effective cost of energy can thus be many orders of magnitude higher than usual in these scenarios.
As additional examples, think of the cost to supply fresh fuel for energy to soldiers in the field, or to wireless transponders that may mounted on autonomous sensors, or on goods during warehousing and shipping, for electronic inventory and tracking systems. Or, think of the cost to supply extra energy to an interstellar probe in deep space. Moreover, space vehicles also can have difficulty getting rid of waste heat, due to the absence of convective or conductive modes of heat transport.
These examples serve to illustrate the general point that circumstances in particular application scenarios can inflate the effective cost of energy by a large factor, perhaps hundreds or thousands of times over what it would be normally.
Even at normal wall-outlet electricity rates, a 200-W high-performance multiprocessor desktop workstation that remained in continuous service would use up ~US$1,700 worth of electricity over 10 years, which may be comparable to the cost of the machine itself. (However, for as long as Moore’s Law continues, the computer would probably be replaced about every 3 years anyway, due to obsolescence.)

Also, the cost of energy could increase further if and when the rate of fossil fuel extraction peaks before energy demand does, if more cost-effective energy technologies do not become available sooner than this. However, such variations in the cost of energy may not affect the tradeoff between manufacturing cost and energy cost much, because manufacturing costs are, probably, ultimately also dominated by the cost of energy, either directly or indirectly through the manufacturing tool supply chain. Also, offsetting the fossil-fuel situation, nanotechnology itself may eventually provide us new and much cheaper energy technologies, in which case the cost of energy might never be significantly higher than it is at present.
However, even if the cost of energy always remains low, or even goes much lower than at present, the discomfort to a human user of holding or wearing a computer that is dissipating much more than ~100 W will always remain an important concern, for as long as there remain biological humans who want to carry their computers around with them, and who comprise a significant part of the market for computing.
6.12. Some Implications of the Model

In some previous work that did a complete system-level analysis based on a highly similar model to the one just described [21], we demonstrated (based on some straightforward technology scaling assumptions) that the cost-efficiency advantages of reversible computing, compared to irreversible computing, for general-purpose applications in a 100 W, US$1,000 machine could rise to a factor of ~1,000 by the middle of this century, even if no more efficient algorithms for general-purpose reversible computing are found than those (specifically, [54]) that are already known. In the best case, for special-purpose applications, or if ideal general purpose reversiblization algorithms are discovered, the cost-efficiency benefits from reversibility could rise to a level ~100,000× beyond irreversible technology.

[image: image4.emf]1.00E+22

1.00E+23

1.00E+24

1.00E+25

1.00E+26

1.00E+27

1.00E+28

1.00E+29

1.00E+30

1.00E+31

1.00E+32

1.00E+33

2000 2010 2020 2030 2040 2050 2060

irr

rev

ideal

Figure 4. Base-10 logarithm of cost-efficiency, in effective logic operations per dollar, for irreversible (lower line), general reversible (middle line), and best-case reversible (upper line) computations, as a function of year, for a $1,000 / 100W “desktop” computing scenario, using a model similar to the one described in this article, and assuming that a high q value for devices can be maintained. Reprinted from ref. [5] with permission of the Nano Science and Technology Institute.
However, that particular analysis assumed that a very high q value of ~1012 could be achieved at that time, and further, that it could be maintained as manufacturing costs per-device continued to decrease. If this does not happen, then the gains from reversibility will not be so great. Unfortunately, the exponentially increasing rate at which electrons tunnel out of structures as distances shrink [101] makes it seems that very high qs—corresponding to very strongly confined electron states—will be very hard to achieve in any technology at the deep nanoscale (< ~1 nm device pitch). The resulting fast decay rate of any meta-stable electronic states is a problem even for irreversible technologies. It essentially means that the performance density (ops per second per unit area) and even memory density (bits per unit area) of deep-nanoscale electronic computers would inevitably be strongly limited by high leakage power dissipation of individual devices.

Generally, electron tunneling becomes significant compared to desired electron motions wherever inter-device distances become on the order of the Fermi wavelength of electrons in the conductive material in question, which ranges from on the order of ~0.5 nm for highly conductive metals, to on the order of ~20 nm for semiconductors.
But, because of the substantial energy savings to be gained, it may, in fact, turn out to be better for overall performance not to make device pitch quite so small as may become physically possible to manufacture, and instead, keep devices spread far enough apart from each other so that tunneling currents remain negligible. Even with this restriction, average inter-device interconnect lengths in complex circuits can still become far shorter than they are at present, especially if circuit buildout begins to use the 3rd dimension significantly, which is in turn enabled by the exponential reduction in tunnel-current power that is made possible by keeping device pitch relatively large, and by the resulting large savings in total power that can be obtained by using reversible computing, if high-quality, self-contained coupled logic/oscillator systems can be built.
7. Specific Nanocomputing Technology Proposals

So far, most of our nanocomputing discussions above have been fairly general and technology-independent. In this section, we proceed to review and summarize a variety of more specific nanocomputer technologies (that is, potential physical implementations of nanocomputer models and architectures) that have been proposed to date.
7.1. Taxonomy of Nanocomputing Hardware Technologies

In the below list, we attempt to subdivide and categorize a sampling from the already vast spectrum of radically differing technologies that have been proposed to date for the physical implementation of future nanocomputers. Further discussion of some of these categories follows in subsequent subsections.
· Solid-State

· Pure electronic (only electrons moving)

· Using inorganic (non-Carbon-based) materials

· Using semiconducting materials
· Scaled field-effect transistors

· Alternative device geometries

· Double-gate, FinFET etc.

· Semiconductor nano-wires

· Single electron transistors

· Coulomb blockade effect devices
· Resonant tunneling diodes/transistors

· Quantum dot based
· Quantum dot cellular automata

· Spintronics (using electron spins)

· Using conducting materials

· Helical logic (Merkle & Drexler)
· Using superconducting materials
· Josephson-junction circuits

· Organic (carbon-based) molecular electronics

· Carbon nanotube electronics (can be conducting, semiconducting, or superconducting)

· Surface-based organic-molecular electronics
· Mechanical (whole atoms moving)
· Rod logic (Drexler)
· Buckled logic (Merkle)
· Brownian clockwork (Bennett)
· Electro-mechanical

· MEMS/NEMS technologies
· Electrostatic relays, dry-switched

· MEMS-resonator-powered adiabatics

· Configuration-based molecular electronics

· All-optical (only photons moving)
· Opto-electronic (photons and electrons)
· Fluid-State

· Molecular chemical approaches (in vitro)

· Biomolecular chemical computing

· DNA computing

· DNA tile self-assembly

· Biocomputing (in vivo)

· Genetic regulatory network computing

· Fluidic (fluid flows confined by solid barriers)

· High-level fluidity (solid-state devices suspended in fluid)

· Hall’s Utility Fog

· Amorphous computing over ad-hoc networks of mobile devices

· Gas-state

· Gas-phase chemical computing

· Plasma state (speculative)

· Smith-Lloyd quantum-field computer
· Black-hole state (speculative)

· Beckenstein-bound black hole computer
7.2. Nanoelectronic logic technologies

By far, the most well-researched category of nanocomputer technologies at this time are the solid-state, purely-electronic technologies. Pure electronic computing technologies are ones those in which the entities whose motions are involved in carrying out a computation are electrons only, not atoms or photons (aside from the virtual photons that implement the quantum-electrodynamic interactions between the charge carriers).

At around the 10 nm scale, the ordinary bulk materials models currently used in electronics, and the standard field-effect based semiconductor device operation mechanisms that rely on those models, begin to break down. At this technological mesoscale, surface effects and quantization effects become important, or even dominant. Some of the new effects that need to be considered include:

· Quantization of the number of atoms in a given structure. This is a problem for the low-density implanted dopants used today in semiconductor devices, as the statistical nature of the present dopant implantation processes means that there is a high variance in the dopant concentration in a sufficiently small structure, which leads to unpredictable variation in MOSFET threshold voltages, and possibly a low device yield. In principle, this problem can be dealt with if nanomanufacturing techniques allow the number and location of dopant atoms in a given structure to be chosen precisely, or by using alternative dopant-free device designs.
· Quantization of charge (number of electrons). This is realized today in a number of single-electron devices that have been demonstrated in the lab. It is also the basis for the Coulomb blockade phenomenon, which is the basis for some proposed device mechanisms.
· Quantum tunneling of electrons through any very narrow, very low potential energy barriers. This is already a concern today that is preventing significant further thinning of MOSFET gate oxides, and ultimately this may be the key factor limiting shrinkage of overall device pitch. The problem is that electrons will tend to migrate easily between adjacent nanostructures, unless the potential energy barriers preventing this tunneling are extremely large, which may be difficult to arrange. This presents a problem for dense information storage using electrons. The densest possible forms of stable storage may therefore turn out to consist of states (position or spin states) of entire atoms or nuclei, rather than electrons.

· Quantization of electron energies when confined to small spaces. I.e., energy “bands” can no longer be treated as if they were continuous. Similarly, electron momentum does not vary continuously along any specific direction in which the electron is highly confined.
· If the quantum quality factor of devices is low, so that there is a large interaction between the coding state and the surrounding thermal state, then thermal noise also becomes significant, since the redundancy of the coding information is necessarily reduced in small devices. Due to the lack of redundancy, the expected time for a coding state to change to an error state due to thermal interactions corresponds to a relatively small number of computational steps of the device, so there is less opportunity for computational error correction techniques to apply.
These small-scale effects can be considered to be obstacles, but, we should also recognize that knowing how these effects work may also enable the development of entirely new operating principles upon which logic mechanisms can be based.
In the taxonomy in section 7.1, we broke down the solid-state electronic technologies according to the conductivity properties of the material used for electron transfer (semiconductor, conductor, superconductor). But, an alternative way to categorize them would be according to the primary physical principle that is harnessed in order to perform logical operations. We can do this as follows:

· Coulombic (electrostatic) attraction/repulsion effects:

· Field effect devices:
· Scaled bulk field-effect transistors

· Carbon nanotube FETs

· FETs made of crossed semiconductor nano-wires

· Charge quantization / Coulomb blockade effect

· Single-electron transistors

· Helical logic

· Energy quantization / Resonant tunneling effects

· Resonant tunneling diodes

· Resonant tunneling transistors

· Quantum wells / wires / dots

· Quantum dot cellular automata

· Atomic-configuration-dependent electronic properties

· MEMS/NEMS electromagnetic switches/relays

· Configuration-dependent conductivity of carbon nanotubes

· Configuration-based molecular switches
· Superconductivity effects

· Josephson effect
· Electron spin effects (in spintronics)

· Spin-based transistors

· Single-electron-spin based quantum computing

Nanoscale field-effect transistors. The field effect used in today’s MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) is essentially just a result of the Coulombic attraction or repulsion between the static electric charge that is present on a gate electrode, and the charge carriers in a nearby semiconducting pathway (the channel). Depending on the applied gate voltage and the channel semiconductor characteristics, the concentration of mobile charge carriers in the channel may be either enhanced far above, or depleted far below the default level that it would have if the gate were not present. Also, the type of the dominant charge carriers that are present in the channel (electrons versus holes) may even be inverted. The carrier concentration (and type) in turn affects the density of current flow through the channel when there is a voltage difference between the two ends (“source” and “drain”) of the channel wire, giving the transistor a larger or smaller effective resistance.
For fundamental reasons, the effective resistance of a minimum-size turned-on field-effect transistor, in any given technology, is roughly (within, say, a factor of 10, depending on the details of the device geometry) of the same magnitude as the quantum unit of resistance h/e2 ≈ 25.8 kΩ, which is the built-in resistance of a single ideal quantum channel. But, the effective resistance of a turned-off field-effect device can be much larger. For relatively large devices (above the nanoscale) in which electron tunneling across the channel is not significant, the off-resistance is limited only by the decrease in concentration that can be attained for whichever type of current carriers is available within the source and drain electrodes. By the equipartition theorem of statistical mechanics, the reduction in the channel concentration of these carriers scales with exp(−E/kT), where E gives the potential energy gained by a charge carrier that is in the channel, and kT is the thermal energy per nat at thermal temperature T. To increase the potential energy for a single charge carrier to be in the channel by an amount E, at least a corresponding amount E of electrostatic energy needs to be moved onto the gate electrode, even in the best case where the gate electrode was somehow occupying the same space as the channel (while somehow being prevented from exchanging charge with it). Actually, in real devices, the gate electrode will usually be only located next to (or at best, wrapped around) the channel, in which case some, but not all, of the energy of its electrostatic field will be contained inside the channel itself. Together with other nonidealities, this leads to an actual scaling of current with the exponential of only some fraction 1/(1+α) of the ratio between gate voltage and thermal energy. Empirically measured values of α today are around 1.0, i.e., only about half of the gate’s electrostatic energy is visible inside the channel [
]. The results described in section 6.12 assume that further device or materials improvements can reduce α to be close to 0, so that field-effect devices are thus operated in a regime where their on/off ratios are close to eE/kT. (If not, then those results need to be revised accordingly.)
 The basic principles of operation of field-effect devices have been shown to remain valid at least in the near-nanoscale (1-32 nm) regime. As early as 2001, Intel corporation reported field-effect operation of MOSFETs in the lab having channel lengths as small as ~20 nm [
], and IBM just announced a working 6-nm channel-length MOSFET (called XFET) at the Dec. 2002 International Electron Devices Meeting [
]. Furthermore, academic groups such as Lieber’s at Harvard [
] have successfully demonstrated field-effect transistors and logic gates using chemically synthesized (rather than lithographically etched) inorganic semiconducting wires having similar diameters and channel lengths. Also, carbon molecular nanotubes in certain configurations can act as semiconductors, and have been demonstrated to be usable as channels of field-effect transistors [
]. Finally, some theoretical studies have indicated that even a one-atom-wide “wire” of silicon atoms adsorbed on a crystal surface, with exactly-periodic interspersed dopant atoms, can behave as a material having a semiconductor band structure [
], and thus serve as a transistor channel.
However, for scaling of channel length below about the 10 nm range, tunneling of charge carriers through the channel barrier may begin to become a limiting concern in semiconductors. This is because at that scale, the Fermi wavelength of the conduction-band electrons (that is, the de Broglie wavelength of those electrons traveling at the Fermi velocity, the characteristic velocity of the mobile electrons at the surface of the “Fermi sea” of conduction band states) begins to become significant.
In contrast, metals usually have relatively low Fermi wavelengths, under 1 nanometer, because they have a high level of degeneracy, meaning that their low-energy states are packed full, so these low-momentum states are unavailable for charge transport, and so all of their activated (mobile) electrons must travel relatively fast (at the Fermi velocity). For example, among pure elemental metals, Cesium has one of the lowest Fermi energies, 1.59 eV, while Beryllium has one of the highest, 14.3 eV. Taking these as kinetic energies of free electrons with mass me, the Fermi velocities vF are 748 km/s for Ce and 2,240 km/s for Be. The Fermi wavelength λF = h/mevF scales as the inverse square root of the Fermi energy, and comes out 0.97 nm for Ce and 0.32 nm for Be.
However, in semiconductors, the Fermi wavelength is typically much larger than this, because the activated electrons can occupy even the lowest-energy of the conduction band states, since those states are not normally occupied. Typical kinetic energies of mobile electrons in semiconductors can thus be as low as on the order of the thermal energy kT, which is 0.026 eV at room temperature, corresponding to an electron velocity of only 95 km/s. The corresponding de Broglie wavelength for electrons moving in vacuum at room temperature speeds would be 7.6 nm. Furthermore, in practice, Fermi wavelengths in semiconductors turn out to be even several times larger than this, typically in the range 20-60 nm, due in part to the reduced effective mass of the electron, as a result of its interactions with the surrounding crystal lattice structure.
Due to these relatively large wavelengths, mobile electrons in semiconductors will tend to spread out over regions of about the same size, unless confined by sufficiently high energy barriers. A turned-off transistor gate can provide such a barrier against electrons moving through the channel region. However, the effective confinement length of an energy barrier against electron tunneling is only on the order of the corresponding wavelength h(2mE)−1/2, where m is the effective electron mass in the barrier region and E is the height of the barrier. The below chart graphs this relation, for electrons of effective mass me (in vacuum) or 0.2 me (in some semiconductors). Notice that as the height of the energy barrier shrinks towards small multiples of the room-temperature thermal energy, the minimum width of the barrier increases, towards sizes on the order of 5-10 nm. The trend towards shorter channel lengths thus directly conflicts with the trend towards decreasing voltages in MOSFETs. For this reason, it seems that aggressively voltage-scaled field-effect devices are not likely to ever get much below ~10 nm in channel length.
[image: image6.emf]Redundancy N

r

of coding

information, nats/bit

Logarithm of relative

decoherence rate,

ln 1/q = ln T

dec

/T

cod

Minimum

entropy ΔS

op

generated

per operation,

nats/bit-op

[image: image7.emf]0

5

10

15

20

25

0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1

Nopt

-ln Smin

~Nopt

~-lnSmin

Relative decoherencerate (inverse quality factor), 1/q= T

dec

/T

cod

= t

cod

/ t

dec

Optimal

redundancy factor

N

r

, in nats/bit

Exponent of factor

reduction of entropy

generated per bit-op,

ln(1 nat/ΔS

op

)

[image: image5.emf]Electron Tunneling

0

5

10

15

20

25

30

0.01 0.1 1 10

Energy Barrier Height, eV

Approx. Minimum Useful Barrier Width, nm

Eff. mass = real mass

Eff. mass = 0.2 real mass

Figure 5. Approximate lower limit of the width of an energy barrier of given height needed to prevent electron tunneling across the barrier from becoming significant, for both free electrons (lower curve) and electrons in a fairly typical semiconductor in which the effective electron mass is only m ≈ 0.2 me (upper curve). The minimum width is estimated as being roughly equal to the de Broglie wavelength λ = h(2mE)−1/2 of electrons having kinetic energy equal to the barrier height. A more accurate calculation (specifically, based on equation 6-54 on p. 207 of [
]) would multiply this figure by ln(1/p)/4π to give the width of a barrier that has probability p<<1 of being tunneled through by an electron having an initial kinetic energy E less than the barrier height. Our graph here then corresponds to the case where the tunneling probability p = 3.5×10−6, and where E represents the barrier height relative to the Fermi energy of the region on either side of the barrier. The dotted red line indicates the room-temperature (300 K) value of kT = 26 mV; the energy barrier must be at least about this high anyway, in order to prevent thermally-activated leakage from dominating.
What about using higher barrier heights? From Figure 5, we can see that barriers narrower than even 1 nm may still prevent tunneling, so long as the barrier has a height of several electron volts. Actual energy barriers of such heights, due to high molecular electron affinities, are exactly what prevent many everyday materials, such as plastics, from being good conductors, despite the sub-nm distances between adjoining molecules in these molecular solids. However, using such high voltages in the gates of nanoscale field-effect devices may backfire, by causing high gate-to-channel tunneling. The paper [
] looks carefully at all of these tunneling considerations, and concludes that irreversible CMOS technology cannot scale effectively to less than ~10 nm, given realistic power constraints. Alternative field-effect structures such as nanotubes [98] and nanowires [97], despite their very narrow line widths, remain subject to identical kinds of source-to-drain and gate-to-channel tunneling considerations, and so cannot really be expected to fare much better, in terms of the scaling of their overall device pitch.
How might we do significantly better than this? Arguably, this will require (eventually) abandoning the field-effect operating principle entirely. Field-effect devices are based on a controllable potential energy barrier, whose height is adjusted simply by moving a corresponding amount of static electrical energy onto or off of a nearby gate electrode. But, the problem is that this mobile gate charge is subject to parasitic tunneling into the very system, the transistor channel, that it is supposed to be controlling. Decreasing the gate voltage reduces this tunneling, but also increases leakage across the channel. Keeping the gate relatively far away from the channel is another way to reduce gate-to-channel tunneling, but it also reduces the gate’s effect on the channel, due to decreased gate-channel capacitance, and thus indirectly increases leakage. The use of high-κ (dielectric constant) materials such as silicon nitride between the gate and channel can help keep to keep the capacitance high and the gate leakage low, but only to a limited extent. An extreme example would be if ultra-pure water could be used as a gate dielectric, since its dielectric constant is ~80 times vacuum, or 20 times higher than the usual SiO2 glass, while its resistivity is still >1014 Ω·nm. However, even this would not permit gate voltage swings greater than about 1.23V, since at that level, even pure water conducts, via electrolysis. And, even a 1.23V barrier in the channel would still not allow channel lengths less than roughly 2-3 nm (depending on the particular semiconductor’s effective electron mass) without significant tunneling occurring between the source and drain electrodes.
But if we widen our perspective a bit, we can note that there are other ways to control a potential-energy barrier between two electron-position states, besides just the field effect, which, at root, is only a simple application of ordinary Coulombic repulsion, together with the carrier-depletion phenomenon in semiconductors. For example, one could mechanically widen or narrow the separation between two conductive regions—this is the principle used in old electromechanical relays. Or, a piece of conductive material could be inserted and removed from the space between the source and drain—ordinary toggle switches work this way. One can easily imagine performing the same general types of electromechanical interactions at the molecular level, and thereby perhaps obtaining device sizes closer to 1 nm. Vacuum gaps between conductors constitute fairly high energy barriers, due to the multi-eV electron affinities (work functions) of most conductive materials, and therefore such gaps can be made significantly smaller than semiconductor channel lengths, while still avoiding the electron tunneling problem.

So, ironically, electromechanical devices, which today we think of as being terribly antiquated, might, in the nano-molecular realm, turn out to scale to higher device densities than can our vaunted field-effect devices of today. However, whether this potentially higher device density may be enough to compensate for the relatively sluggish inertia of entire atoms, compared to electrons, when switching a gate, is still dubious. Nevertheless, one fortunate coincidence is that the relative slowness of the mechanical motions seems to be exactly what is needed anyway for efficient adiabatic operation in the electronics, which is necessary to maintain high performance in the face of heat flow constraints.
So, my tentative (and ironic) nomination for the “most likely contender” to be the dominant nanocomputing technology a few decades hence is: nanoscale electrostatic relays using a dry-switching discipline. “Dry-switching” is an old term from electromechanical relay technology, meaning “don’t open (resp. close) a switch when there’s a significant current through (resp. voltage across) it.” Historically, this was done to prevent corrosion of the relay contacts due to air-sparking. But, this is also exactly the key rule for adiabatic operation of any switch-based circuitry. The thought of using electromechanical relays sounds slow at first, until you consider that, at the nanoscale, their characteristic speeds will be on the order of the rates at which chemical reactions occur between neighboring molecules—since both processes will consist of the essentially same kinds of operations, namely molecule-sized objects bumping up against each other, and interacting both electrostatically via conformational changes, and via actual exchange of electrons. The molecule-size gate, moved into place by an impinging electrostatic signal, can be thought of as the “catalyst” whose presence enables a source-drain electron-exchange “reaction.” In other words, this technology could be thought of as a sort of “controlled chemistry,” in which the “chemical” interactions happen at predetermined places at predetermined times, and information flows not randomly, via a slow diffusive random walk through solution, but instead at near-lightspeed along hard-wired electrically-conductive paths to specific destinations where it is needed. This NEMS (nano-electro-mechanical systems) vision of computing doesn’t yet specifically include quantum computing capabilities, but it might be modified to do so by including some spintronic device elements [
].
In the below, we briefly discuss some of the other alternative switching principles that have been considered. See also [
] for an excellent review of most of these.
Coulomb-blockade effect single-electron transistors. These devices are based on the quantum principle of charge quantization. They typically consist of a conductive island (although semiconductors may also be used) surrounded by insulator, and accessed via some fairly narrow (typically ≤5-10 nm) tunnel junctions. The Coulomb blockade effect is the observation that the presence of a single extra electron on these small, low-capacitance structures may have a significant effect on their voltage, which, if greater than thermal voltage, thereby suppresses additional electrons from simultaneously occupying the structure. The Coulomb blockade effect may be significant even in cases where the number of electron energy levels is not itself noticeably quantized. In these devices, a voltage applied to a nearby gate allows choosing the number of electrons (in excess of the neutral state) that occupy the island, to a precision of just a single electron out of the millions of conduction electrons that may be present in, say, a 20 nm cube of material. The Coulomb blockade effect has also been demonstrated on a molecular and even atomic [
] scale, at which even room-temperature manifestation of the effect is permitted.
Quantum wells/wires/dots. These are typically made of semiconductor materials. They are based on confinement of electron position in 1, 2, or 3 dimensions, respectively. Increased confinement of electron position in a particular direction has the effect of increasing the separation between the quantized momentum states that are oriented along that direction. When all 3 components of electron momentum are thus highly quantized, its total energy is also; this leads to the quantum dot, which has discrete energy levels. In quantum dots, the total number of activated conduction electrons may be as small as 1! Based on a thorough understanding of the quantum behavior of electrons, some researchers have developed alternative, non-transistorlike quantum-dot logics. A notable example is the paradigm of Quantum Dot Cellular Automata (QDCA) introduced by the group at Notre Dame [
]. The name QCA is also sometimes used for these structures, but I dislike that abbreviation, because it can be confused with Quantum Cellular Automata, which is a more general and technology-independent class of abstract models of computation, whereas the QDCA, on the other hand, comprise just one very specific choice of device and circuit architecture, based on quantum dots, of the many possible physical implementations of the more general QCA concept.

Also worth mentioning are the quantum computing technologies that are based on externally controlling the interactions of single-electron spins between neighboring quantum dots [71].
Resonant tunneling diodes/transistors. These structures are usually based on quantum wells or wires, and therefore may still have 2 or 1 (resp.) effectively “classical” degrees of freedom. In these structures, a narrow-bandgap (conductive) island is sandwiched between two wide-bandgap (insulating) layers separating the island from neighboring source and drain terminals. When the quantized momentum state directed across the device is aligned in energy with the (occupied) conduction band of the source terminal, electrons tunnel from the source onto the island, and then to unoccupied above-band states in the drain terminal. But, a small bias applied to the device can cause the quantized momentum state in the island to no longer be aligned in energy with the source terminal’s conduction band, in which case tunneling across that barrier is suppressed, and less current flows. Since multiple harmonics of the lowest-momentum state also appear in the spectrum of the device, these devices typically have a periodic dependence of current on bias voltage.

Resonant tunneling transistors (RTTs) are just like RTDs, except that there is an additional gate terminal near the island that provides an additional means for adjusting the energy levels in the island.

Electromechanical devices. Several kinds of nano-scale devices have been proposed which use mechanical changes (movements of atoms or assemblages of atoms) to control electrons, or vice-versa. The molecular switches of [
] fall in this category, as would NEMS (nanoelectromechanical systems) switches and relays based on nano-scale solid-state structures. Electromechanical structures offer somewhat of a design advantage in that the mechanism of their operation is relatively easy to visualize, due to the explicit change in their structural configuration.

But, the primary disadvantage of electromechanical operation is that atoms are many thousands of times as massive as electrons, and therefore accelerate many thousands of times more gradually in response to a given force. As a result, the characteristic frequencies for oscillation of mechanical components tend to be many thousands of times less than those of electrical ones.
However, this disadvantage might conceivably be offset if it turns out that we can design NEMS devices that have much higher quality factors than we manage to obtain using electronics alone. This is suggested by the very high Q’s (in the billions) for a perfect diamond crystal vibrating in vacuum, and by the practical Q’s in the tens of thousands that are achievable today for MEMS mechanical resonators (essentially, springs) in vacuum. In contrast, the Q’s that have been obtained in simple microelectronic circuits such as LC oscillators tend to be much lower, usually in the tens or at most hundreds. We (or more precisely, I) do not (yet) know any fundamental reasons why a high-Q all-electronic nano-scale oscillator cannot be built, but it is not yet clear how to do so.
In the meantime, hybrid electromechanical approaches might take up some of the slack. Resistive elements such as transistors naturally have high Q when they are operated at relatively slow speeds (i.e., adiabatically). If these are coupled to high-Q electromechanical oscillators, a high overall Q might be obtained for the complete self-contained system, thereby enabling <<kT energy dissipation per bit-operation. For example, if a mechanical oscillator with Q=10,000 is coupled to an adiabatic electronic FET which has a similarly high Q at the low frequency of the oscillator, so that the overall Q of the system is still 10,000, and if tunneling currents are kept negligible, then if we use a redundancy factor in the logic encoding of ~11.5 nats/bit (i.e., on the order of 0.3 eV switching energy per minimum-sized transistor gate at room temperature), then one could theoretically achieve an on/off ratio of order e11.5 ≈ 100,000, and a best-case minimum entropy generation per bit-op on the order of e−7 nat ≈ 0.001 kB (refer to Figure 3). This could be advantageous in that it would permit a ~700× higher total rate of computation per watt of power consumption (and per unit area, given heat-flux constraints) than in any physically possible fully-irreversible technology (even if all-electronic), in which the entropy generated per bit-op must be at least ~0.7kB.
Another potential advantage of electromechanical operation is that mechanically actuated switches for electricity may be able to change electron currents by relatively large factors while using a relatively small amount of energy transfer. This is because a mechanical change may significantly widen a tunneling barrier for electrons, which has an exponential effect on electron tunneling rates. Therefore, it is not clear that an electromechanical system must be subject to the same kind of lower bound on entropy generation for given quality index as we discussed in sec. 6.12. Thus, an electromechanical system with a Q of 10,000 might be able to achieve an even lower rate of entropy generation than we described in the previous paragraph, perhaps of the order of 1/10,000th of a bit of entropy generated per bit-op.
An interesting corollary to this electromechanical line of thought is this: If the operating frequency of the logic is going to be set at the relatively low frequency of nano-mechanical oscillators anyway, in order to achieve low power consumption, then is there any remaining benefit to having the actual logic be carried out by electrons? Why not just do the logic, as well as the oscillation, mechanically? This leads back to the idea of using all-mechanical logic at the nanoscale, an idea that was first promoted by Drexler [45]. We will discuss this possibility further in sec. 7.3.
However, there is still one clear advantage to be gained by using electrons for logic signals, and that is simply that the propagation speed of electronic signals can easily be made close to the speed of light, while mechanical signals are limited to about the speed of sound in the given material, which is much lower. Thus, communication delays over relatively long distances would be expected to be much lower in electromechanical nanocomputers, than in all-mechanical ones. This is an important consideration for the performance of communication-dominated parallel algorithms.
Superconductive devices. Complex integrated circuits using high-speed (~100 GHz) digital logic based on superconductive wires and Josephson junctions have already existed for many years [
], although they are unpopular commercially due to the requirement to maintain deep cryogenic (liquid helium) temperatures. Another problem for these technologies is that their speed cannot be further increased by a very large factor unless much higher-temperature superconducting material can be effectively integrated. This is because flipping bits at a rate of 100 GHz already implies an effective coding-state temperature of at least 3.5 K; thus increasing speed by another factor of 100, to 10 THz, would require room-temperature superconductors, which have not yet been discovered.
Superconductive devices therefore might never have an opportunity to become competitive for general-purpose computing, since traditional semiconductor devices are expected to reach ~100 GHz frequencies in only about another 15 years.

Also, it appears that it may be difficult to scale superconducting technology to the nano-scale, because ordinary superconductivity is based on Cooper pairs of electrons, which have a relatively large spacing (order 1 micron) in the usual superconducting materials [
]. However, this may turn out not really be a problem, since even carbon nanotubes have already been found to superconduct under the right conditions [
].
Even if superconductive technologies turn out not to achieve extremely high densities, they may still be useful at relatively low densities, for those particular applications that happen to require the special-purpose features of quantum computing. Superconductor-based devices for quantum computing are currently being aggressively explored [72], and this may turn out to be a viable technology for creating large scale integrated quantum computer circuits. But if the technology is not also simultaneously dense, low-power, and high-frequency, then it will likely be relegated to a “quantum coprocessor,” while the main CPU of the computer (used for more general-purpose applications) remains non-superconducting.
Spintronic devices. Spintronics [102] is based on the encoding of information into the spin orientation states of electrons, rather than the usual approach of using energy (voltage) states. Spin information typically persists for nanoseconds in conduction electrons, compared with the typical ~10 fs lifetime for decay of momentum information (except in superconductors). Spintronics requires various technologies for spin control, propagation of spins along wires, selection of electrons based on their spin, and detection of electrons. Some examples of spintronic devices are the Datta-Das [
] and Johnson [
] spin-based transistors. Electron spins are also a potential medium for quantum computation, as is illustrated by the spin-based quantum dot quantum computers being explored by [71]. Nuclear spins have already been used for quantum computing experiments for some time [70]. It is currently still unclear whether spintronic nanoelectronic technologies might eventually outperform nanoelectronics based on other properties.
7.3. Nanomechanical logic technologies.

Way back in the late 1980’s and early 1990’s, Drexler and Merkle proposed a number of all-mechanical technologies for doing logic at the nanoscale [45,41,43]. There is an argument why technologies like these might actually be viable in the long run, despite the slow speed of mechanical (atomic) signals. That is, if all-mechanical nanotechnologies turn out (for some reason) to be able to be engineered with much higher Qs than electronic or electromechanical nanotechnologies can be, then the all-mechanical technologies would be able to operate with greater parallel performance per unit power consumed, or per unit surface area available for cooling. Presently, it is not yet clear whether this is the case. One approach called “buckled logic” [43] was specifically designed by Merkle to have very high Q, because it completely eliminates sliding interfaces, rotary bearings, stiction-prone contacts, moving charges, etc., and instead consists of an electrically neutral one-piece mesh of rods that simply flexes internally in a pattern of vibrational motions that is designed to be isomorphic to a desired (reversible) computation. If the computational vibrational modes can all be well-insulated from other, non-computational ones, then in principle, the Qs obtainable by such structures, suspended in vacuum, might even approach that of pure crystal vibrations, that is, on the order of billions. This may enable a level of entropy generation per bit-op that is so low (maybe billionths of a nat per bit-op) that a vastly higher overall rate of bit-ops might be packed into a given volume than by using any of the feasible alternatives. However, until many more of the engineering details of these interesting alternatives have been worked out, the all-mechanical approach remains, for now, as speculative as the others.
7.4. Optical and optoelectronic technologies.

For purposes of high-performance, general-purpose parallel nanocomputing, all purely-optical (photonic) logic and storage technologies are apparently doomed to failure, for the simple reason that photons, being massless, at reasonable temperatures have wavelengths that are a thousand times too large, that is, on the order of 1 micron, rather than 1 nanometer. Therefore, the information density achievable with normal-temperature (infrared, optical) photons in 3D space is roughly 1,0003 or a billion times lower than what could be achieved using electronic or atomic states, which can be confined to spaces on the order of 1 nm3. Light with comparable 1 nm wavelengths has a generalized temperature on the order of 1,000× room temperature, or hundreds of thousands of Kelvins! These 1-nm photons would have to be extremely stringently-confined, while remaining somehow isolated from interaction with the computer’s material structure, in order to keep the computer from immediately exploding into vapor, unless a solid structure could somehow still be maintained despite these temperatures by (for example) applying extremely high pressures.
The only exception to this problem might be if mutually entangled photons can be used, as these behave like a single, more massive object, and thus have a lower effective wavelength at a given temperature. This wavelength reduction effect has recently been directly observed experimentally [
]. However, we presently have no idea how to produce a conglomeration of 1,000 mutually entangled photons, let alone store it in a box, or perform useful logic with it.
Even if this problem were solved, photons by themselves cannot perform universal computation, since under normal conditions they are noninteracting, and thus only linearly superpose with each other (they cannot, for example, carry out nonlinear operations such as logical AND). However, photons may interact with each other indirectly through an intermediary of a material, as in the nonlinear photonic materials currently used in fiber optics [
]. Also, extremely high-energy photons (MeV scale or larger, i.e. picometer wavelength or smaller) may interact nonlinearly even in vacuum, without any intermediary material, due to exchange of virtual electrons [15], but the temperatures at which this happens seem so high as to be completely unreasonable.
To deal with the problem of low information density and photon non-interaction, hybrid optoelectronic technologies have been proposed, in which electron states are used to store information and do logic, while photons are used only for communication purposes. However, even in this case, we have the problem that the bit flux that is achievable with photons at reasonable temperatures is still apparently far lower than with electrons or atoms [
]. Therefore, it seems that light is not suitable for communication between densely-packed nanoscale devices at bit rates commensurate with the operating speeds of those devices. This is again due to the limit on the information density of cool, non-entangled light. Communicating with (unentangled) photons therefore only makes sense for communications that are needed only relatively rarely, or between larger-scale or widely-separated components, for example, between the processors in a loosely-coupled distributed multiprocessor.
7.5. Fluid (chemical, fluidic, biological) technologies.

Chemical computing. Not all proposed nanotechnologies rely primarily on solid-state materials. Computing can also be done in molecular liquids, via chemical interactions. Much work has been done on chemical computing, especially using DNA molecules as the information-carrying component, since it is naturally designed by evolution for the purpose of information storage. Universal computing in DNA appears to be possible; for example, see [
]. Unfortunately, it seems that chemical techniques in a uniform vat of solution can never really be viable for large-scale, general-purpose parallel nanocomputing, for the simple reason that the interconnects are much too slow − information is propagated in 3D space only by molecular diffusion, which is inherently slow, since it is based on a random walk of relatively slow, massive entities (molecules). Information transmission is thus many orders of magnitude slower than could be achieved in, say, a solid-state nanoelectronic technology in which signals travel straight down predetermined pathways at near the speed of light. Chemical methods also tend to be difficult to control and prone to errors, due to the generally large numbers of possible unwanted side-reactions.
Fluidics. However, the situation may be improved slightly in fluidic systems, in which the chemicals in question are actively moved around through micro-channels. Desired materials may be moved in a consistent speed and direction, and brought together and combined at just the desired time. This more direct method gives a much finer degree of control and improves the interconnect problem a bit, although transmission speeds are still limited by fluid viscosity in the channel.

One can also dispense with the chemical interactions, and just use pressure signals in fluidic pipes to transmit information. Pressure-controlled values can serve as switches. This technique is highly analogous to ordinary voltage-state, transistor-based electronics, with pressure in place of voltage, and fluid flow in place of electric current. Fluidic control and computation systems are actually used today in some military applications, for example, those that can’t use electronics because of its vulnerability to the EMP (electromagnetic pulse) that would result from a nearby nuclear blast.

However, insofar as all fluid-based techniques require the motion of entire atoms or molecules for the transmission of information, one does not anticipate that any of these techniques will ever offer higher computational densities than the solid-state all-mechanical technologies, in which state changes are much more well-controlled, or than the electromechanical or pure-electronic technologies in which signals travel at much faster speeds.

Biological computing. Computing based on chemical interactions is, at best, likely to only be useful in contexts where a chemical type of I/O interface to the computer is needed anyway, such as inside a living cell, and where the performance requirements are not extremely high. Indeed, a biological organism itself can be viewed as a complex fluidic chemical computer. In fact, it is one that can be programmed. For example, Tom Knight’s group at M.I.T. is currently experimenting with re-engineering the genetic regulatory networks of simple bacteria to carry out desired logic operations [
].
Notice, however, that even in biology, the need for quick transmission and very fast, complex processing of information in fact fostered the evolution of a nervous system that was based on transmission of signals that were partly electrical, and not purely chemical, in nature. And today, our existing electronic computers are far faster than any biological system at carrying out complex yet very precisely-controlled algorithms. For less precisely-controlled algorithms that nevertheless seem to perform well at a wide variety of tasks (vision, natural language processing, etc.), the brain is still superior, even quantitatively in terms of its raw information processing rate. But, by the time we have nanocomputers, the raw information-processing capacity of even a $1,000 desktop computer is expected to exceed the estimated raw information-processing capacity of the human brain [
].
One attempt at a generous overestimate of the raw information-processing capacity of the brain is as follows. There are at most ~100 billion neurons, with at most ~10,000 synapses/neuron on average, each of which can transmit at most ~1,000 pulses per second. If each pulse can be viewed as a useful computational “operation,” this gives a rough maximum of ~1018 operations per second.

Conservatively, today’s largest microprocessors have on the order of ~100 million transistors (Intel’s Itanium 2 processor actually has 220 million) and operate at on the order of ~1 GHz (although 3 GHz processors now can be bought off-the-shelf, in early 2003). Such densities and clock speeds permit ~1015 transistor switching operations to be performed every second. This is only a 1,000× slower raw rate than the human brain, assuming that the transistor “ops” are roughly comparable to synaptic pulses, in terms of the amount of computational work that is performed as a result. The historical Moore’s Law trend has raw performance nearly doubling about every 1.5-2 years, so we would expect a factor of 1,000 speedup to only take us around 15-20 years.

So, the nanocomputer that will be sitting on your desk in the year 2020 or so (just a little ways beyond the end of today’s roadmap for traditional semiconductor technology) may well have as much raw computational power as the human brain. Of course, it is another matter entirely whether software people will have figured out by then how to effectively harness this power to provide (for example) an automated office assistant that is anywhere close to being as generally useful as a good human assistant, although this seems rather doubtful, given our present relative lack of understanding of the organization and function of the brain, and of human cognition in general.
7.6. Very long-term considerations
What are the ultimate limits of computing? As we have seen, to maximize rates of computation, both high computational temperatures, and very precise control and isolation of the computation from the environment are simultaneously required. However, as computational temperatures increase, it becomes increasingly difficult to isolate these fast-changing, thus “hot” computational degrees of freedom from the relatively cool degrees of freedom inherent in ordinary matter having stable structure (e.g., solids, molecules, atoms, nuclei). At some point, it may be best not to try to keep these structures stable anymore, but rather, to let them dissolve away into fluids, and just harness their internal fluid transitions as an intentional part of the computation. In other words, it may eventually be necessary to take some of the energy that is normally tied up in the binding energy of particles, and thus is not doing useful computational work (other than continually computing that a given structure should remain in its current state), and release that energy to actively perform more useful computations.
Smith [15] and later Lloyd [16] explored this hypothetical concept of a plasma-state computer, and quantitatively analyzed the limits on its performance and memory capacity, which are determined by fundamental considerations from quantum field theory. As expected, performance is dependent on temperature. If material having the mass density of water is converted entirely to energy with no change in volume, it forms a plasma of fundamental particles (mostly photons) with a temperature on the order of 109 kelvins, hotter than the highest temperatures reached at the core of an exploding thermonuclear (hydrogen fusion) bomb.
How can such a violent, high-temperature state possibly be configured in such a way as to perform a desired computation? Of course, this is totally impractical at present. However, in principle, if one prepares a system of particles in a known initial quantum state, and thoroughly isolates the system from external interactions, then the unitary quantum evolution of the system is, at least, deterministic, and can be considered to be carrying out a quantum computation of sorts. In theory, this fact applies to hot plasmas, as well as to the relatively cool computers we have today.

However, even if the required exquisite precision of state preparation and isolation can someday be achieved, the question of how and whether any desired program can be actually “compiled” into a corresponding initial state of a plasma has not yet even begun to be explored. For the remainder of this section, we will pretend that all these issues have been solved, but alternatively, it may well be the case that we are never able to organize stable computation, without relying on an underlying infrastructure made of normal solid (or at least atomic) matter.
Lloyd [16] points out that at normal mass-energy densities (such as that of water), a plasma computer would be highly communication-limited, that is, heavily limited by the speed-of-light limit, rather than by the speed of processing. But in principle, the communication delays could be reduced by compressing the computer’s material beyond normal densities. As the energy density increases, the entropy density increases also, though more slowly (specifically, as energy density to the ¾ power), and so energy per unit entropy is increased, that is, the temperature goes up.
The logical (if extreme) conclusion of this process, for a given-size body of matter, is reached when the ratio of the system’s mass-energy to its diameter exceeds the critical value c2/4G, at which point the system comprises a black hole, disappearing into an event horizon, and the effects of any further compression cannot be observed. For a 1-kg-mass computer, the critical size is extremely small, about 10−27 m, or roughly a trillionth of the diameter of an atomic nucleus. (Needless to say, this degree of compression would be very difficult to achieve.)
Due to gravitational time dilation (red-shifting), although the compressed matter would be very hot in its own frame of reference, it appears somewhat cooler than this to the outside world. In other words, the system’s output bandwidth is decreased by gravitational effects. This is because, simply stated, the outgoing information tends to be pulled back by gravity.

Classically, in general relativity, the temperature of a black hole as measured from outside would by definition always be zero (no information can leave the hole), but, as shown in the now-famous work by Stephen Hawking [
], the temperature of a black hole is actually not zero when quantum uncertainty is taken into account. Effectively, particles can tunnel out of black holes (“Hawking radiation”), and the smaller the black hole, the quicker becomes this rate of tunneling. So, smaller black holes have higher output temperatures, and thus effectively make faster “computers,” at least from an I/O bandwidth point of view. A 1-kg-mass black hole would have a temperature of about 1023 K, and a presumed minimum-mass (Planck mass) black hole would have a temperature of ~1032 K.
This last temperature, the Planck temperature, may be a fundamental maximum temperature. It corresponds to a maximum rate of operation of ~1043 parallel update steps per second, or 1 step per Planck time. This may be considered the fastest possible “clock speed” or maximum rate of operation for serial computation. It is interesting to note that if processor frequencies continue doubling every 2 years, as per the historical trend, then this ultimate quantum-gravitational limit on clock frequency would be reached in only about 200 more years. At this point, the only possible improvements in performance would be through increased parallelism. Moreover, the parallel machine would have to be very loosely coupled, since Planck-mass black holes could not be packed together very densely without merging into a larger black hole, whose temperature, and output communication bandwidth, would be proportionately lower. The problem is that a black hole outputs information in only a single quantum channel, with bandwidth proportional to its temperature [
]. However, its internal rate of operations can be considered to still be given by its total mass-energy. It is interesting to note that within a black hole computer, the interconnection problem becomes a non-issue, since the time to communicate across the hole is comparable to the time to flip a bit [16].
Of course, all of these considerations remain extremely speculative, because we do not yet have a complete theory of quantum gravity that might be able to tell us exactly what happens inside a black hole, in particular, near the presumably Planck-length sized “singularity” at its center. Conceivably, at the center is a busy froth of very hot fundamental particles, perhaps near the Planck temperature, which occasionally tunnel (although greatly gravitationally red-shifted) out beyond the horizon. But we do not know for certain.
Regardless of the precise situation with black holes, another speculative long-term consideration is the potential computational capacity of the entire universe, in bits and in ops. Lloyd has estimated upper bounds on these quantities, over the history of the universe so far [27]. Other papers by Dyson [
], and more recently by Krauss and Starkman [
], attempt to characterize the total amount of future computation that an intelligent civilization such as ours might eventually harness towards desired purposes. Significantly, it is still a matter for debate whether the total number of future ops that we may be able to perform over all future time is finite or infinite. Krauss and Starkman present arguments that it is finite, but they do not seem to take all possible considerations into account. For example, it may be the case that, by engineering reversible computational systems having ever-higher quality factors as time goes on, an infinite number of operations might be performed even if only a finite total supply of energy can be gathered; a possibility which they do not consider. Memory capacity is not necessarily limited either, since as the universe expands and cools, our energy stores might be allowed to expand and cool along with it, thereby increasing without bound the amount of information that may be represented within them. In any event, whether the total number of future ops that we may perform is infinite or not, it is undoubtedly very large, which bodes well for the future of computing.
8. Conclusion & Future Directions
To conclude, we already have an arguably valid, if still rather rough idea of what the most cost-effective general-purpose future nanocomputer architectures over the coming century should look like. Most concretely, high-performance nanocomputers will generally be flattened slabs of densely-packed computing “material” (of limited thickness), consisting of 3-D locally-connected meshes of processors that include local memory and both traditional hardwired arithmetic-logic units and reconfigurable logic blocks, built from nano-scale, probably solid-state, electronic or electromechanical devices. The device technology and architecture must also support both mostly-reversible classical operation and fault-tolerant quantum algorithms, if it aspires to be universally maximally scalable.
Devices must be well-insulated from their environment, that is, designed to have a very high quantum quality factor (i.e., low relative decoherence rate) which allows their internal coding state to transition reversibly and coherently at a fast rate (thus, a high effective temperature) relative to the rate of undesired interactions between the coding state and the (probably cooler) thermal state of the machine’s physical structure. Even when an application does not need to use quantum superposition states, well-isolated, high-Q reversible operation remains particularly critical for general-purpose parallel computation, in order to maximize the effective computation rate and number of active processors per unit area enclosed, and thereby to minimize the communication delays in communication-limited parallel algorithms.
In these parallel architectures, the processors will be kept synchronized with each other via local interactions. Meanwhile, free energy will be supplied, and waste heat removed, by active flows of energy and/or coolant material which pass perpendicularly through the computing slab, and which are recirculated back through the machine to be reused, after their entropy and the accompanying waste heat are deposited in some external reservoir.

The above vision, although it places a number of constraints on what nanocomputing will look like, still provides a lot of flexibility for device physicists to do creative engineering design and optimization of the specific device mechanisms to be used for logic, memory, interconnect, timing, energy transfer, and cooling, and it leaves a lot of room for computer engineers and computer scientists to come up with more efficient new processor organizations and programming models that recognize the need to support reversible and quantum, as well as parallel, modes of operation, and that respect fundamental physical constraints.
Finally, if we are successful in converging on a nanocomputing technology that indeed approaches the quantum limits discussed in section 2, and if our civilization’s demand for computational power continues to increase beyond that point, then we can expect that the fraction of the available material (mass-energy) that is devoted towards nanocomputing will increase as well. If our civilization continues to thrive and grow, then eventually, in the extremely long term (perhaps hundreds or thousands of years hence), we may find ourselves wanting to build nanocomputers that are so massive (using many planets’ or stars’ worth of raw material) that their self-gravitation becomes a significant concern. This will bring a new fundamental physical concern into play, namely general relativity, which this article has not yet thoroughly considered. At that distant future time, the form of our computer models may need to change yet again, as we figure out how best to maximize cost-efficiency of computing in the face of this new, gravitational constraint. But in the meantime, until that happens, the simpler type of nanocomputer model that we discussed in sec. 6 is expected to last us for a very long time. The primary goal for the current generation of nanocomputer engineers is, then, to flesh out and optimize the technological and architectural details of the general class of models that we have outlined above, guided by our rapidly improving understanding of the basic principles of nanoscale science and technology, as documented throughout this encyclopedia.
9.
Glossary

Å — Standard abbreviation for Ångstrom.
adiabatic — A process is adiabatic to the extent that it can take place with arbitrarily little generation of entropy. Originally in thermodynamics, “adiabatic” literally meant “without flow of heat,” and applied to any physical process in where there was no (or negligibly little) heat flow. However, today in applied physics, “adiabatic” means “asymptotically isentropic,” that is, approaching zero total entropy generation, in the limit of performing the process more slowly, and/or with diminished parasitic interactions with its environment. The old and new definitions are not equivalent.
adiabatic losses — Energy that is dissipated to heat due to the imperfections present in a nominally adiabatic process, as opposed to energy that is necessarily dissipated due to logical irreversibility.
adiabatic principle — The total adiabatic losses of a given process scale down in proportion to quickness as the process is carried out more slowly.
adiabatic theorem — A theorem of basic quantum theory that says that so long as the forces on a system (expressed in its Hamiltonian) are changed sufficiently slowly, and some additional technical conditions on the spectrum of energy eigenstates are met, a system that is initially in a pure state will remain in an almost pure state, that is, with a total generation of entropy that is inversely proportional to the quickness of the transition. The theorem is very general; adiabatic processes are therefore nearly ubiquitously available, that is in almost any reasonable nano-device technology.
adjoint — A term from matrix algebra. The adjoint of a matrix is its conjugate transpose.
algorithm — A precise description of a particular type of computation, abstracted away from the specific inputs, and often also abstracted away from the machine architecture and the details of the programming model.
amplitude — Complex number giving the value of a quantum wavefunction at a given state. It can be broken into phase and magnitude components. The squared magnitude of the amplitude corresponds to the probability density at the given state.
amu — Unified Atomic Mass unit, equal to 1.6605402(10−24 g. About the mass of a proton or neutron. Originally defined as 1/12 the mass of a Carbon-12 atom. In computational units, equal to 450 zettapops per second.
Ångstrom — A unit of length equal to 10−10 meters, or 0.1 nm. One Ångstrom is the approximate radius of a hydrogen atom.
angular momentum — In computational terms, this is the ratio between the number of quantum operations required to rotate an object by a given angle around a point, and the magnitude of the angle. It is quantized, so that a rotation by 180° or π radians always involves an integer number of π-ops (ops of magnitude size h/2), and a rotation by 1 radian involves an integer number of r-ops (ops of magnitude ().
architecture — An activity, namely, the functional and structural design of any complex artifact, such as a skyscraper or a computer. Within the field of computer architecture, a specific architecture refers to a particular computer design, which may include any levels of design from the logic circuits up through the interconnection networks of a multiprocessor computer.
architecture family — A class of architectures of unbounded capacity (a specific architecture may have only constant capacity). That is, a recipe for creating architectures of any desired capacity. I also frequently use the phrase capacity scaling model rather than architecture family, since it is more descriptive.
ASCII — American Standard Code for Information Exchange; a widely-used standard for representing Latin alphabet characters, numbers, and simple punctuation marks using 8-bit numbers.
ballistic — An adiabatic process that also has a non-zero net “forward” momentum along the desired trajectory through configuration space. This is as opposed to adiabatic processes that have zero net momentum, and progress only via a random walk (Brownian motion).
bandgap — In condensed matter theory, the bandgap in a semiconducting or insulating material is the magnitude of separation in energy level between the top of the valence band and the bottom of the conduction band. Insulators have a large bandgap; semiconductors a relatively small one. In metals the bandgap is negative (meaning the bands overlap).
bandwidth — In computer science, a rate of information transfer, e.g. in bits per second. This meaning is closely related to the original, literal meaning, which was the width (in Hertz) of a frequency band used for wave-based communications. In communications theory, a single classical wave-based communication channel with a given frequency bandwidth can be shown to have a proportional maximum rate of information transfer.
basis — A term from linear algebra. A complete set of (often orthogonal, but at least linearly independent) vectors, sufficient to define a given vector space. In quantum theory, a complete set of distinguishable states forms a basis.
basis state — Any single state that is aligned along one of the axes of a given basis.
Bennett’s algorithm — A reversiblization algorithm discovered by Bennett. The 1973 version of the algorithm (which takes linear time but polynomial space) is a special case of a more general version of the algorithm described in 1989.
Bennett copy — To rescue desired information from being uncomputed during Lecerf reversal by reversibly copying it before performing the reversal.
binary number — A number represented in base-2 notation, using a series of bit-systems.
binary tree — An interconnection network structure in which each node is connected to 1 “parent” node and 2 “child” nodes. Binary trees are not physically realistic with unit-time hops.
bistable — Having two stable states.
bit — Shorthand for binary digit, this is the log-base-2 unit of information or entropy. (The abbreviation bit for this concept was coined by John Tukey in 1946.) An amount of information can be counted by a number of bits. In addition, the word bit can also be used to mean a bit-system; in this usage, a bit denotes not only a measure of amount of information, but also a specific piece of information.
bit-device — Any device that is designed for storing and/or processing a single logical bit, or a small constant-size collection of logical bits, at any given time. For example, a transistor or a logic gate could be considered to be a bit-device, but an n-bit adder is larger than that. (We sometimes use the term bit-device when we wish to be clear that we are referring to individual logic devices, rather than to more complex “devices” such as CPUs or laptop computers.)
bit-operation — An operation that manipulates only 1, or at most a small constant number of (physical or logical) bits.
bit-system — A system or subsystem containing exactly 1 bit of physical information. That is, a specific instance of a type of system or subsystem having exactly two distinguishable states (see qubit) or with a particular pair of distinguishable states for the subsystem, i.e., a particular partition of a set of distinguishable states for the entire system into two equal sized parts.
bitwise ripple-carry add — In computer arithmetic, a hardware or software algorithm for adding two binary numbers using the base-2 equivalent of the traditional grade-school algorithm, with a carry from each place to the next.
black-box — Name applied to a device, function, process, or transformation when one is allowed to use the entity to produce outputs from inputs, but is not allowed to “open the box,” to directly determine anything about its internal structure.
black hole — An object whose escape velocity (due to its gravity) exceeds the speed of light.
Boltzmann’s constant — See nat.
butterfly network — An interconnection network similar to a sort of unfolded hypercube. Butterfly networks are not physically-realistic (see PR) given unit-time hops.
byte — Usually, 8 bits. Sufficient to denote 1 Latin character, number, or punctuation symbol in the ASCII character set.
CA (cellular automaton) — The cellular automaton is a model of computation, first envisioned by von Neumann [36], consisting of a regular mesh of finite-capacity processing elements operating in parallel. Two-dimensional cellular automata have the maximum scalability among fully irreversible models of computing. Three-dimensional reversible cellular automata are conjectured to be a universally maximally scalable model of computation, up to the gravitational limit.
c — See speed of light.
calorie — Unit of energy originally defined as the heat required to increase the temperature of 1 g of water by 1 degree Kelvin. Equal to 4.1868 J.
CAM (cellular automata machine) — A type of parallel computer architecture in which the programming model is based upon the cellular automaton model of computation. A number of CAMs were designed and built in the information mechanics group at MIT in the 1980’s and 1990’s. (See Cellular Automata Machines: A New Environment for Modeling by T. Toffoli and N. Margolus, MIT Press, 1987.)
capacity — The computational capacity or just capacity of a computer is measured by two parameters: (1) How many bits of logical information can it store? (2) How many bit-operations per second can it perform?
carbon nanotube — Sometimes called buckytubes (for Buckminster Fuller), these are nanometer-scale (in diameter) hollow tubes made out of pure carbon, consisting essentially of a graphene (graphite-like) sheet rolled into a cylinder. They have a higher strength-to-weight ratio than steel, conduct electricity better than copper, and have a high thermal conductivity, making them a promising component for future nanomechanical and nanoelectronic applications.
cellular automaton, cellular automata — See CA.
channel — The region of a transistor through which current flows (between source and drain) when the transistor is turned on.
characteristic length scale — For any engineered system, its characteristic length scale is defined the average distance between neighboring instances of the smallest custom-designed functional components of the system. (For example, the average distance between neighboring transistors in a densely packed electronic circuit.) The characteristic length scale of a traditional semiconductor-based computer is determined by the minimum wire pitch (distance between center lines of neighboring wires) in integrated circuits, which in early 2003 is roughly 0.2 microns.

Church’s thesis — Also known as the Church-Turing thesis. This physical postulate claims that any reasonable (physically realizable) model of computation yields the same set of computable functions as does recursive function theory (Church’s original model of computing) or (equivalently) the Turing machine model. See also the strong Church’s thesis and the tight Church’s thesis.
circuit node — In lumped models of electronic circuits, a node is a region of the circuit that is modeled as being at a uniform voltage level.
classical computing — Computing in which the only coding states used are pointer states.
classical information — Information that is sufficient to pick out a single basis state from a given basis, but that does not itself specify the basis.
CMOS — Complementary Metal-Oxide-Semiconductor, the dominant process/device technology for digital electronic computing today, involving PFET and NFET field-effect transistors, which complement each other (the PFETs conduct the high-voltage signals, and the NFETs conduct the low-voltage ones).
coding state — Also coding physical state. This is the state of the coding subsystem of a given system, that is, the physical information that represents (perhaps very redundantly) the logical information that is intended to be encoded.
coherent — Term for a quantum system that can remain in a superposition of pointer states for long periods, which requires a very low decoherence rate. Because of the low decoherence rate, a coherent system undergoing a definite evolution produces no entropy and evolves adiabatically, even ballistically. (In contrast, non-coherent adiabatic evolution occurs when the evolution is restricted to a trajectory consisting of only pointer states; superpositions of these must be avoided in order to achieve adiabatic operation if the system is decoherent.)
combinational logic — Digital logic in which outputs are produced by a combination of Boolean operators applied to inputs, as soon as inputs are available, as fast as possible. Less general than sequential logic, because intermediate results cannot feed back into the inputs to be reused, and data cannot be stored.
communication — The movement of information from one physical system to another.
commute — Mathematical term. Two operators commute with each other if performing them in either order always gives the same result. Measurements in quantum theory are represented by observables, that is Hermitian operators, which leave the eigenstates unchanged, except for scaling by the measured value. Two observables commute if one can measure them in either order, and always obtain the same result. If this is not the case, then we can say that one measurement has disturbed the value that would have been obtained for the other, and vice-versa. This fact is the origin of Heisenberg’s uncertainty principle.
complete (parallel) update step — See step.
complex number — When the theory of the real numbers is extended by closing it under exponentiation, the result is a unique theory in which numbers correspond to real vectors (called complex numbers) in a 2-D vector space over the reals, and the vectors corresponding to reals themselves all lie along a given axis. The other orthogonal axis is called the imaginary axis. The imaginary unit vector i is defined as i = (−1)1/2. In complex vector spaces, complex numbers themselves are considered as being just scalar coefficients of vectors, rather than as vectors themselves.
complexity — In computational complexity theory, a major branch of theoretical computer science, “complexity” is simply a fancy name for cost by some measure. There are other definitions of complexity, such as the algorithmic or Kolmogorov complexity of objects, often defined as the length of the shortest program that can generate the given object. However, we do not make use of these concepts in this article.
compute — To compute some information is to transform some existing information that in a known, standard state (e.g., empty memory cells), in a deterministic or partially randomized fashion, based on some existing information, in such a way that the “new” information is at least somewhat correlated with the preexisting information, so that from a context that includes the old information, the new information is not entirely entropy. See also uncompute.
computable — A function is considered computable if it can be computed in principle given unlimited resources.
computation — The act of computing. When we refer to computation in general, it is synonymous with computing, but when we reify it (talk about it as a thing, as in “a computation”), we are referring to a particular episode or session of information processing.
computational temperature — Also coding temperature. The temperature (update rate) of the coding state in a machine.
computing — Information processing. The manipulation and/or transformation of information.
computer — Any entity that processes (manipulates, transforms) information.

conductance — The ratio between the voltage between two nodes and the current flowing between them. A single quantum channel has a fundamental quantum unit of conductance, 2e2/h, where e is the electron charge and h is Planck’s constant.
conduction band — In condensed matter theory, the conduction band is the range of energies available to electrons that are free to move throughout the material.
conductor — An electrical conductor is a material in which the valence and conduction bands overlap, so that a significant fraction of electrons in the material occupy unbound states with wavefunctions that spread throughout the material. The electrons in the highest-energy of these states can very easily move to other states to conduct charge. However, they have a minimum velocity called the Fermi velocity.
conjugate — The conjugate of a complex number is found by inverting the sign of its imaginary part. The conjugate of a matrix is found by conjugating each element.
cost — Amount of resources consumed. To the extent that multiple types of resources can be interconverted to each other (e.g., by trade, or by indifference in decision-making behavior), cost for all types of resources can be expressed in common units (e.g., some currency, or utility scale). This should be done when possible, because it greatly simplifies analysis.
cost measure — A way of quantifying cost of a process based on one or more simpler characteristics of the process (e.g., time or spacetime used).
cost-efficiency — The cost-efficiency of any way of performing a task is the ratio between the minimum possible cost of resources that could have been consumed to perform that task using the best (least costly) alternative method, and the cost of resources consumed by the method actually used. It is inversely proportional to actual cost.
COTS — Commercial Off-The-Shelf; a currently commercially available, non-custom component.
Coulomb blockade effect — The phenomenon, due to charge quantization, whereby the voltage on a sufficiently low-capacitance node can change dramatically from the addition or removal of just a single electron. This effect can be utilized to obtain nonlinear, transistorlike characteristics in nanoscale electronic devices.
Coulombic attraction/repulson — The electrostatic force, via which like charges repel and unlike charges attract, first carefully characterized by Coulomb.
CPU — Central Processing Unit. The processor of a computer, as opposed to its peripheral devices, enclosure, etc. Today’s popular CPUs (such as Intel’s Pentium 4) reside on single semiconductor chips. However, the future trend is towards having increasing numbers of parallel CPUs residing a single chip.
current — In electronics, the current is a rate of flow of charge; it is measured in units of charge per unit of time. The SI unit of current is the Ampere.
database — In the real world, a database means an explicit table listing arbitrary data (perhaps in a constrained format), or a collection of such tables. With this standard definition, quantum “database search” is misnamed; it is not actually beneficial for searching such databases. (See §5.2.)
de Broglie wavelength — In quantum mechanics, a fundamental particle (or entangled collection of fundamental particles) having total momentum p is described by a quantum wavefunction over position states having an associated wavelength λ = h/p, with the wave vector oriented in the same direction of the momentum vector. The wavelength λ is called the de Broglie wavelength of the particle.
decay temperature — The rate of decay of structural information.
decoherence — A quantum system decoheres (increasing the entropy of its density matrix) when it undergoes either an unknown unitary transformation, or a known interaction with an environment whose state is itself unknown. Maximum decoherence occurs when the state has become a Boltzmann maximum-entropy state (uniform distribution). Continuous decoherence can be factored into a superposition of discrete quantum decoherence events, each of which changes the sign or value of an individual qubit.
decoherence-free subspace — Some quantum systems that as a whole are highly decoherent may include natural subsystems (perhaps internally redundant ones) that are highly coherent, due to cancellation or interference effects that naturally suppress the subsystem’s interactions with the environment. Quantum error correction is the algorithmic construction and maintenance of a decoherence-free subspace, achieved through explicit coding schemes.
decoherent — Having a high decoherence rate.
decoherence rate — A measure of the rate at which the off-diagonal elements of the density matrix approach zero, meaning that the quantum state is approaching a plain statistical mixture of pointer states. Can be characterized in terms of number of discrete quantum decoherence events per unit time.
decoherence temperature — The temperature (step rate) of decoherence interactions. Same thing as (one measure of) decoherence rate. The reciprocal of decoherence time.
density matrix — A representation of mixed states, generated by right-multiplying the state vector by its adjoint.
device — In general, this means any physical mechanism; however, in the context of computer architecture, it usually refers to the lowest-level functional components of the design, such as (in electrical circuits) transistors, capacitors, resistors, and diodes, although sometimes even interconnecting wires are also explicitly considered as devices (since they do have physical characteristics that affect their functionality). In this document, I will use the phase bit-device instead of just device when I wish to emphasize the primitive components of digital systems.
device pitch — The pitch between devices. See device, pitch.
dimensionality — A term from linear algebra. The maximum number of mutually orthogonal vectors in a given vector space.
distinguishable states — Two quantum states are considered to be entirely distinguishable from each other if and only if their state vectors are orthogonal (perpendicular to each other).
dopants — Impurities (sparse atoms) that are added to a semiconductor to adjust its equilibrium concentration of mobile charge carriers, and their dominant type (electrons vs. holes).
dynamics — The dynamics of a system specifies a transformation trajectory that applies to the system over time.
effective mass — In condensed matter theory, it is found that an electron of given velocity has a longer wavelength than the de Broglie wavelength of a free electron with the same velocity. This phenomenon is concisely handled by ascribing an effective mass to the electron in matter that is smaller than the actual rest mass of the particle.
eigenstate — A state of a quantum system that remains unchanged by a given measurement, interaction or time evolution. An eigenvector of the measurement observable, interaction Hamiltonian, or the unitary time-evolution matrix.
eigenvalue — A term from linear algebra. An eigenvalue of an eigenvector of a particular linear transformation is the scalar value that the vector gets multiplied by under that specific transformation. The eigenvalue of a measurement observable is the numerical value of the measured quantity.
eigenvector — A term from linear algebra. An eigenvector of a particular linear transformation is any vector that remains unchanged by the transformation apart from multiplication by a scalar (the corresponding eigenvalue).
electromigration — When the motion of a current through a solid material causes gradual rearrangement of the atoms of the material. A problem in today’s microcircuitry. If a wire happens to be narrower than intended at some point, electromigration can accelerate the wire’s degradation until it breaks. Note: adiabatic operation can help prevent this.
emulate — simulate exactly (with complete digital precision)
energy — Energy (of all kinds) can be interpreted, at a fundamental level, as just the performing of physical computation at a certain rate in terms of quantum bit-operations per second, according to the formula E = ¼hR, where h is Planck’s (unreduced) constant and R is the rate of complete bit-operations [18,16]. For most forms of energy, we do not notice the computation that is associated with it, because that computation is only performing such familiar, everyday sorts of information processing as shifting a physical object through space (kinetic energy) or exchanging force particles between two objects (binding energy, a.k.a. potential energy). Also, depending on the state, much of the energy may have a null effect. Only a miniscule part of the energy in most computers is actually directed towards performing information transformations that are of interest for carrying out the logic of the application. As technology advances, we learn to harness an increasing fraction of systems’ energy content for computational purposes. The first law of thermodynamics expresses the observation that total energy is conserved (i.e., that the total physical computation taking place within a closed system proceeds at a constant rate), which we know from Noether’s theorem is equivalent to the postulate that the laws of physics (as embodied in the global Hamiltonian) are unchanging in time.
energy eigenstate — An eigenstates of the energy observable.
energy transfer model — In a model of computation, the model of the flow of energy and information (including entropy) through the machine.
entangle — Two quantum systems are entangled if their joint state cannot be expressed as the tensor product (essentially, a concatenation) of simple pure or mixed states of the two systems considered separately. This is really nothing more than a straightforward generalization to quantum systems of the simple classical idea of a correlation. E.g., if I flip a coin and then, without looking at it or turning it over, chop it in half, then I may know nothing about the state of either half by itself, but I do know that the two halves will show the same face when I look at them.
entropy — Information that is unknown to some particular entity. (Unknown in the sense that the amount of information in the system can be known, but the specific content of the information is not.)
equilibrium — A given system is considered to be at equilibrium if all of its physical information is entropy, that is, if it has maximum entropy given the constraints implicit in the system’s definition. Due to the 2nd law of thermodynamics, the equilibrium state (a mixed state) is the only truly stable state; all other states are at best meta-stable.
error correction — Through decay/decoherence interactions, the logical or coding state of an information-processing system may gradually accumulate unwanted departures away from the desired state. The information in these unwanted variations represents a form of entropy. Error correction is the removal of this entropy and recovery of the original, desired logical and coding state. Being an entropy removal process, it is just a special case of refrigeration. Error correction can be implemented physically (e.g. by connecting a circuit node to a high-capacitance power supply reference node with a stable voltage), or algorithmically, by using redundant error correction codes and explicitly detecting and correcting bit-errors one by one. Error correction techniques exist for quantum superposition states, as well as for classical state spaces.
Euclidean space — A space in which the metric is flat, and classical flat-plane geometry like Euclid’s remains valid. Measurements show that the physical spacetime that we live in is very nearly Euclidean.
far nanoscale — The range of pitch values between 0.032 and 1 nm. Contrast near nanoscale.
fat tree — Another interconnection network stricture similar to a binary tree, except that each node is connected to several parent nodes for additional communication bandwidth and redundancy. Fat trees are not physically realistic with unit-time hops.
Fermi level — The average energy of electrons at the “surface” of the Fermi sea.
Fermi velocity — The average velocity of electrons having sufficient energy to be at the Fermi level.
Fermi wavelength — The de Broglie wavelength of electrons moving at the Fermi velocity, that is, having enough kinetic energy to put them at the Fermi level (the surface of the Fermi sea of electrons).
Fermi sea — Electrons, being Fermions, obey the Pauli exclusion principle (no two can occupy the same state at the same time), and therefore, given a set of available states, electrons will “fill up” the available states, from lowest to highest energy. This is called the “Fermi sea.” The surface of the Fermi sea may be called the “Fermi surface,” it is at the Fermi level of energy. All the action (transitions of electrons and holes to new states) happens near the Fermi surface, because the deeper electrons have no available states nearby to transition to.
FET — Field-effect transistor; a transistor (voltage controlled current switch) whose operation is based on the field effect.
field effect — An effect seen in semiconductors where an applied electrostatic field significantly changes the mobile charge-carrier concentration in a material, as a result of moving the Fermi level farther towards or into the valence band or the conduction band.
flux — In general, for our purposes, a rate of transfer of some conserved substance or material per unit area of some surface it is passing through. Sometimes called flux density or flux rate. In nanocomputer systems engineering, we consider key quantities such as information flux (bandwidth density), entropy flux, energy flux, and heat flux. The former two are fundamentally limited as a function of the latter two.
FPGA (field-programmable gate array) — A type of processor consisting of a regular array of low-level functional units or logic gates, which is programmed by configuring the function and interconnection of the individual elements. Commonly used today in embedded applications; major commercial manufacturers in 2003 include Xilinx and Altera. Many future general-purpose processors will likely include an FPGA-like module that can be reconfigured for efficient special-purpose processing.
free energy — For our purposes, the free energy in a system is its total energy minus the spent energy, that is the amount of energy ST that would be needed to move all of the system’s entropy S to the lowest-temperature available thermal reservoir, at temperature T. Compare to Gibbs free energy and Helmholtz free energy.
frequency — The quickness of a process that continually repeats itself. In other words, periods or cycles per time unit. Typical unit: the Hertz (inverse second).
G — Newton’s gravitational constant, 6.67259(10−11 N·m2/kg2. Still used in Einstein’s General Relativity, the modern theory of gravity.
g — Abbreviation for gram (the mass unit).
gate — There are two meanings used in this document. The gate of a transistor is the circuit node that controls its conductance. A logic gate is a bit-device that carries out a specified Boolean logic operation. A logic gate today consists of several transistors and may contain several transistor gates.
general-purpose processor — A processor that can be programmed to carry out any algorithm (up to the limit set by its storage capacity).
General Theory of Relativity — Also just General Relativity (GR), Einstein’s theory of gravity, based on the principle that gravity is equivalent to an accelerated reference frame. GR predicts a number of surprising phenomena, such as curved spacetime, black holes, and gravity waves, all of which have been (at least indirectly) confirmed by experiment. Eventually GR needs to be unified with the Standard Model. GR provides the only fundamental physical limit to computer scaling that is not already incorporated into the model described in this article.
Gibbs free energy — The Helmholtz free energy, plus the energy of interaction with a surrounding medium at pressure p given by pV where V is the volume of the system. See free energy for an even more comprehensive concept that includes all energies that are not clearly spent energy.
gram — SI mass unit originally defined as the mass of 1 cubic centimeter of water at a certain standard temperature and pressure.
ground state — The lowest-energy state of a given system of variable energy. That is, the energy eigenstate having the lowest (most negative) possible energy eigenvalue.
Grover’s algorithm — A quantum algorithm originally characterized as a database search algorithm that is (more usefully) really an algorithm for the unstructured search problem.
Hamiltonian — This is a term from classical mechanics that remains valid in quantum mechanics. The Hamiltonian is a function that gives a system’s energy as a function of its state variables. The Hamiltonian incorporates all of the interactions between the subsystems of a given system. All of the dynamical laws of mechanics can be expressed in terms of the system’s Hamiltonian. In quantum mechanics, this remains true; the dynamics is given by Schrödinger’s equation. The Hamiltonian is an observable, an Hermitian transformation of state vectors. In quantum field theory, the Hamiltonian can be expressed as a sum of local interactions, which makes it consistent with special relativity.
hardware efficiency — The reciprocal of the spacetime cost of a computation. A figure of merit used in VLSI theory that is appropriate for some nanocomputer system optimizations, in limited contexts. However, in general, it is incomplete, because it ignores energy costs, as well as costs that are proportional to time alone (such as inconvenience to the user).
heat — Heat is simply that part of a system’s total energy that resides in subsystems whose physical information is entirely unknown (entropy).
Heisenberg’s Uncertainty Principle — The most general form of this principle is that two quantum states that are not orthogonal to each other are not operationally distinguishable, by any physically possible means whatsoever. It manifests itself frequently in statements that two observables that don’t commute with each other (e.g., position and momentum of a particle) cannot both be precisely measured for the same system.
Helical logic — A reversible logic scheme proposed by Merkle and Drexler in which a rotating electromagnetic field adiabatically shuttles charge packets around a network of wires in which they steer each other via Coulombic interaction.
Helmholtz free energy — The free energy (see our definition) of a system, minus that portion that is not considered to be internal energy. To the extent that internal energy is less well-defined than is total energy (for instance, how much of the rest mass-energy does it include?), Helmholtz free energy is less well-defined than is our free energy.
Hermitian operator — An operator on quantum states that is equal to its adjoint (conjugate transpose). Hermitian operators have real-valued eigenvalues. In quantum mechanics, Hermitian operators represent both measurements of observable characteristics, and interactions (Hamiltonians) between systems (which makes sense, since a measurement is just a type of interaction).
Hilbert space — This is a term from linear algebra. A Hilbert space is simply a complex vector space that supports an inner product (dot product) operation between vectors. In quantum mechanics, the set of possible quantum states of a system is described mathematically as a Hilbert space. Not all states in the Hilbert space are operationally distinguishable from each other. Two states are distinguishable if and only if their state vectors are orthogonal.
hole — The absence of an electron in a state below the Fermi surface. (Think of it as a bubble in the Fermi sea.)
hop — The propagation of information from one node in an interconnection network to another node to which it is directly connected.
https — HyperText Transfer Protocol, Secure: a protocol for secure communication of web pages and form data based on the Transport Layer Security protocol, which may use RSA internally (thus being vulnerable to cracking by a quantum computer).
hypercube — An d-dimensional interconnection network formed by connecting corresponding nodes of a (d−1)-dimensional hypercube. Hypercubes are not physically realistic with unit-time hops.
ideal gas constant — See nat.
information — That which distinguishes one thing from another, in particular, differerent (distinguishable) states of a physical system. We say that a system in a particular state contains the information specifying its state. An amount of information can be quantified in terms of the number of (equally-probable) distinct states that it suffices to distinguish. The natural convention is that the information corresponds to the logarithm of the number of distinguishable states; this measure has the advantage of being additive whenever multiple independent systems are considered together as one system. Any real number r>1, when used as the base of the logarithm, yields a corresponding unit of information. The unit of information corresponding to the choice r=2 is called the bit, whereas the unit corresponding to r=e (the base of the natural logarithms) is called the nat. (Boltzmann’s constant kB and the ideal gas constant R turn out to be simply alternative names for 1 nat.)
instruction set architecture (ISA) — A traditional type of programming model in which serial computations are expressed by a sequence of low-level instructions which tell the computer to do a simple arithmetic or logical operation (such as adding two numbers), or to transfer control to a different point in the instruction sequence. Other, very different types of programming models are also possible, such as models used in FPGAs (field-programmable gate arrays) and Cellular Automata Machines (CAMs).
insulator — An insulator is a material in which the bandgap between the valence band and the conduction band is so large that there is negligible charge-carrier concentration and therefore negligible conductivity. (Compare semiconductor.)
integrated circuit — A complex circuit manufactured as a single solid-state component.
interference — In any wave-based process, waves interfere when they add linearly in superposition; this interference can be either constructive with two waves have the same sign, or destructive when they have opposite sign. Since everything is a wave in quantum mechanics, two different trajectories in a quantum computer can interfere destructively if they arrive at a given state out of phase with each other. Such interference between trajectories is necessary to get added power from quantum algorithms.
interconnect — A pathway for communication.
internal energy — Energy in a system other than the kinetic energy of its overall motion and energies of interaction with other external systems. Sometimes in the traditional thermodynamics definitions of this concept, rest mass-energy is also omitted from the definition, although this is an arbitrary and artificial step, since internal potential energy (which is usually included in internal energy) is technically (in relativity) an indistinguishable concept from rest mass-energy, which necessarily includes the binding energies (which are internal potential energies) of, e.g., atoms, protons and neutrons.
internal ops — Operations that are concerned with updating the internal state of an object, as opposed to propagating the object through space translationally or rotationally. The rate of internal ops is the rest mass-energy or internal energy of an object. The total number of internal steps taken, relative to that of a comoving reference object (clock), is the proper time experienced by the system.
invertible — A mathematical term. A function is invertible if its inverse relation is also a function, that is, if the original function is one-to-one.
iop – Short for “inverting op”, a unit of computational work equal to one-half of a pop.
irreversible computing — The traditional computing paradigm, in which every computational operation erases some amount of known information, and therefore necessarily generates a corresponding amount of new physical entropy.
isentropic — Literally, “at the same entropy.” A process is isentropic if it takes place with no new generation of physical entropy.
J — Abbreviation for Joule (the energy unit).
Josephson effect, Josephson junction — A superconducting current can even pass through a sufficiently narrow tunnel barrier (Josephson junction) without resistance, up to some critical current at which the junction abruptly switches off (Josephson effect). This phenomenon is the basis for some superconducting logic technologies, such as the fairly successful RSFQ (Rapid Single-Flux Quantum) technology developed by Konstantin Likharev’s group at SUNY.
Joule — A unit of energy defined as 1 N·m. In computational units, a Joule is equal to a potential computing rate of 6.036(1033 primitive operations (pops) per second.
k — In Roman font, k, an abbreviation for kilo-. In Italic font k, often used to represent Boltzmann’s constant.
kT — Called the thermal energy, this product of Boltzmann’s constant k and the thermal temperature T is the average energy (or rate of operations) per nat’s worth of state information in a thermal system. However, it also applies just as well to non-thermal systems at generalized temperature T.
Kelvin — SI unit of absolute temperature, defined originally as 1/100th the absolute temperature difference between the freezing and boiling points of water at atmospheric pressure. In computational units, 1 Kelvin is equal to an average rate of state change of 28.9 billion steps (pops per bit) per second, that is, an update frequency of 28.9 GHz.
kilo- — SI unit prefix meaning 1,000.
kinetic energy — Energy associated with the overall motion of a system as a whole.
known — A given piece of information is known by a given entity (which can be any kind of entity, a human, organization, computer, or logic gate) to the extent that it is correlated with other information that is accessible by that entity, in a such a way that the entity can make use of this correlation in a well-defined way.
Landauer embedding — The technique of embedding a desired logically irreversible computation into a logically reversible computation by simply keeping a copy of all information that would otherwise be thrown away.
latch — To store a copy of an input signal so that it remains available when the signal is removed. Conceptually, the information is “latched into place,” like a mechanical part can be.
latency — In computer architecture, the amount of time that passes while waiting for something.
latency hiding — A computer architecture trick of “hiding” delays to high-latency operations (e.g., communicating with memory or distant processors) by finding other useful work to do in the meantime. Unfortunately, there are limits to the extent to which the technique can improve the overall cost-efficiency of a computation.
LC oscillator — A simple electrical circuit in which an inductance (L) is connected to a capacitance (C). In this circuit, energy oscillates between the magnetic field of the inductor and the electric field of the capacitor. Unfortunately, the Q’s obtainable in nanoelectronic inductors are quite limited.
lithography — Literally, “stone writing,” this refers generically to any technique for forming a patterned structure on a solid surface. Photolithography is a photochemical technique for etching specific patterns using projected light, it is the most widely used technique today. However, it is limited by the wavelengths of easily manipulated light. Other emerging lithography techniques such as electron-beam lithography, deep reactive ion etching (DRIE), and direct-imprint lithography are helping extend minimum feature sizes to the nanometer realm.
logical basis — The particular basis of a qubit’s state space, chosen by convention, in which the two orthogonal basis vectors are taken represent a pure logic 0 and 1 respectively. If the qubit system contains natural pointer states, these may conveniently selected as the basis (especially if the system is not highly coherent). Sometimes, it may be more convenient to use an alternative description of quantum architectures in which the logical basis is considered to change over time.
logical bit — Also coded bit, computational bit. This is a bit that the logical or coding state of a bit-device is intended to represent. Note: Every logical bit that we can actually manipulate is also a physical bit!
Lecerf reversal — To reversibly clear temporary storage used up by a reversible computation by running the steps of the computation in reverse. Used in Bennett’s algorithm and in retractile cascade circuits.
logically reversibile — A computational process is logically reversible if every logic operation performs an invertible transformation of the logical state.
logical state — The part of a bit-device’s state that corresponds to the intended digital information to be stored. May be determined redundantly by a large amount of physical coding-state information.
logic gate — A bit-device that operates on logical bits of interest in a computation.
logic operation — A transformation that takes a logical state to a distinguishable logical state. May be implemented by a collection (in series or in parallel) of operations carried out on coding state information.
loop quantum gravity — The leading competitor to string theory as a potential path toward the unification of the Standard Model and General Relativity. Interestingly, in loop quantum gravity, spatial area and volume are quantized, and the exact maximum number of quantum states (and thus the exact maximum information content) of any region of space can be counted, and matches the limit found earlier by Bekenstein [119]. In this limit, the maximum information capacity within a given surface is given by the surface area in Planck units. This suggests that a limiting model of computing in the high-density regime may be only two-dimensional. But it is still too early to tell.
m — Abbreviation for meter (the length unit).

machine language — The language in which algorithms are expressed when they can be directly processed by a given machine. The instruction set architecture of a conventional machine specifies the rules of its machine language.
magnitude — The complex number c has magnitude m ≥ 0 if and only if c = m·eiθ for some real number θ. An equivalent definition: If c = a + bi for real numbers a,b, then m = (a2 + b2)1/2.
majority logic — A type of logic operation in which the value of an output bit is set to the majority value of an odd number of input bits.
mass — Relativistic mass is total energy, converted to mass units (by dividing by c2). See also rest mass.
MEMS — Microelectromechanical systems. Denotes a lithography-based technology for fabrication of mechanical or electromechanical structures and systems on surfaces. MEMS technologies are available today.
mesh — An interconnection network based on local (bounded-length) connections between nodes located in a space having (if realistic) 3 or fewer dimensions.
mesoscale — Literally, “middle scale,” an intermediate scale between the nanoscale and the microscale at which surface effects and quantum effects begin to become important, but do not yet entirely dominate the physics of materials and devices.
meta-stable — A state is called meta-stable if it has a relatively slow rate of decay towards an equilibrium (maximum-entropy) state.
meter — Unit of length originally defined as 1 millionth of the distance from the Earth’s equator to its north pole.
metric — A function that gives the distance, according to some method of measurement, between any two given points.
microcomputer — For our purposes, a computer whose characteristic length scale is anywhere between 10−4.5 and 10−7.5 meters, i.e., between 32 and 0.032 μm; i.e., closer to 1 micron than to 1 millimeter or 1 nanometer on a logarithmic scale.
micrometer — A unit of length equal to 10−6 meters. Typical length of a bacterial cell.
micron — Shorthand name for micrometer.
mixed state — A statistical mixture of (pure) quantum states, which may be represented by a density matrix, which can always be diagonalized, or transformed to an alternative basis in which it consists of a mixture of orthogonal states. Therefore a mixed state can be understood as nothing more than a classical statistical mixture of pure quantum states.
mole — Quantity of molecules (or other objects) such that the collection’s mass in grams is equal to the individual object’s mass in atomic mass units (amu). Number of amus per gram. Equal to Avagadro’s number, 6.0221367(1023.
momentum — In computational terms, the physical momentum p is the total rate of operations concerned with translating a system spatially in a given direction. Such a transformation is orthogonal to any internal transformations, whose rate is given by the system’s rest mass, so the total rate of operations E for a system of rest mass m0 with momentum p is given by the Pythagorean theorem as E2 = m02 + p2, the correct relativisitic formula.
MOSFET — Metal-Oxide-Semiconductor Field-Effect Transistor. A field-effect transistor structure constructed by sandwiching a layer of insulating material (usually silicon dioxide or another oxide) in between a metallic (or actually, often polysilicon) gate electrode and a semiconducting substrate.
M-theory — A generalization and unification of several leading string theories in which d-dimensional membranes, rather than 1-dimensional strings, are the fundamental entities. Like the individual string theories themselves, M-theory has made no confirmed predictions, and therefore remains fairly speculative. Even if true, I do not expect it to radically change our understanding of the physical limits of computing.
μm — Standard abbreviation for micrometer.
N — Abbreviation for Newton (the force unit).
nano- — SI unit prefix, denoting multiplication of the unit by 10−9. Abbreviated n.
nanocomputer — A computer whose characteristic length scale is between 10−7.5 and 10−10.5 meters, i.e., between ~32 and ~0.32 nm, i.e., closer to 1 nanometer than to 1 micron or 1 picometer on a logarithmic scale.
nanocomputing — Computing using nanocomputers.
nanometer — A unit of length equal to 10−9 meters, or 10 Ångstroms. A typical length for a small molecule, such as an amino acid. About 5 carbon-carbon bond lengths. About the radius of the smallest carbon nanotubes.
nanoscale — Although definitions vary, for purposes of this article, we define nanoscale as meaning a characteristic length scale that falls anywhere in the three-order-of-magnitude range between ~30 nm and ~0.03 nm. I.e., the logarithm of the characteristic length scale is closer to 1 nm than to either 1 μm or 1 pm.

nanowire — A wire (made of conductive or semiconductive material) that has a nanoscale diameter.
nat — The natural-log unit of information or entropy. Also known as Boltzmann’s constant kB or the ideal gas constant R.
near nanoscale — The range of pitch values between 1 and 32 nanometers. Contrast far nanoscale.
NEMS — Nanoelectromechanical systems. Basically, just MEMS technology scaled down to the nanoscale. More generically, NEMS could be used to refer to any nanoscale technology for building integrated electromechanical systems.
Newton — A unit of force equal to 1 kg·m/s2.
NFET — A field-effect transistor in which the dominant charge carriers are negative (electrons).
nm — Standard abbreviation for nanometer.
NMR — Nuclear magnetic resonance, a technology used in chemical NMR spectrometers and modern medical MRI (Magnetic Resonance Imaging) scanning machines. In the mid-90’s, NMR technology was used to implement simple spin-based quantum computing (massively redundantly encoded) using nuclear spins of selected atoms of a molecular compound in solution.
non-coding physical state — The part of the physical state of a computing system or device that is uncorrelated with its logical state, for example the detailed state of unconstrained thermal degrees of freedom (see thermal state). However, another part of the non-coding state (the structural state) is correlated with the system’s ability to have a well-defined logical state. For example, if a transistor gate is in a state of being shorted out then its nodes may no longer be able to maintain a valid logic level.
nondeterministic models of computing — The adjective “nondeterministic” is used misleadingly in computer science theory as jargon for models of computation in which not only is the computer’s operation at each step non-deterministic, in the sense of not being determined directly by the machine’s current state, but furthermore it is assumed to be magically selected to take the machine directly to the desired solution, if it exists (or equivalently, all solutions are magically tried in parallel, and the correct one is then selected). Computer scientists really ought to rename “nondeterministic” models to be called magical models of computing, to emphasize their total lack of realism. Probably this was not done historically for fear of scaring off potential funding agencies. In any case, the name seems intentionally misleading.
NP — Nondeterministic polynomial-time, the set of problem classes in which a proposed solution can be checked or verified within an amount of time that is polynomial in the length n of the problem description in bits, that is, in which the time to check the solution grows as Θ(nk) for some constant k.
NP-hard — The set of problems such that any problem in NP can be reduced (in polynomial time) to an instance of that problem. If any NP-hard problem can be solved in polynomial time, then all of them can.
NP-complete — The set of problems that are both in NP, and in NP-hard.
number of operations — A characteristic of a transformation trajectory that counts the total number of primitive orthogonalizing operations that occur along that trajectory. The number of operations can be counted in units of Planck’s constant or pops.
observable — In quantum theory, an observable is just any Hermitian operator on states. The eigenstates of an observable are orthogonal (distinguishable), and its eigenvalues are real-valued (zero imaginary component). The eigenstates of the observable have a definite value of the measured quantity, and its numerical value is given by the eigenvalue.
omega network — Similar to a butterfly network. Omega networks are not physically realistic for unit-time hops.
op — Short for operation, or pop. We also sometimes use ops to refer to operation units of other sizes besides pops, such as rops or iops.
operation — In this document, shorthand for primitive orthogonalizing operation. Also used sometimes to mean the special case of logic operation, a primitive orthogonalizing operation, or series of such, that effects a single change in the logical state.
operational — In the scientific method, a defined characteristic of a system is called operational in nature if there exists a reliable, physically realizable procedure for measuring or confirming that characteristic. For example, two states are operationally distinguishable if there exists a definite experiment that can reliably distinguish them from each other.
operator — In mathematics, a function that operates on a sequence of a prespecified number of members of a given set and returns a member of that same set. Functions that operate on sequences of length 1 are called unary operators or transformations.
opportunity cost — In economics, the implicit cost of consumption of resources that results from foregoing the best alternative use of those same resources.
orthogonal — A term from vector mathematics. Two vectors are orthogonal if and only if, considered as lines, they are perpendicular, or (equivalently), if their inner product (dot product) is zero. Orthogonality is the requirement for two quantum state vectors to be operationally distinguishable from each other.
orthogonalize — To transform a vector (such as a quantum state vector) to another vector that is orthogonal to the original one.
parallel — Two processes are parallel if they take place simultaneously.
p- — Short for pico, SI unit prefix meaning 10−12.
performance — Performance is a figure of merit for computing. It is equal to the quickness of a reference computation.
PFET — A field-effect transistor in which the dominant charge carriers are positive (holes).
phase — The complex number c has phase 0 ≤ θ < 2π if and only if c = m·eiθ for some real number m.
physical bit — Any bit of physical information.
physical entropy — Physical information that is entropy (unknown to a particular observer).
physical information — Information contained in a physical system, defining that system’s state. Of course, all the information that we can access and manipulate is, ultimately, physical information.
physically reversible — Synonym for adiabatic, isentropic, and thermodynamically reversible.
physical realism — In this article, a property had by a model of computation when it does not significantly (by unboundedly large factors) overstate the performance or understate the cost for executing any algorithm on top of physically possible implementations of the architecture. WARNING: Many models of computing that are studied by computer scientists lack this important property, and therefore can be very misleading as guides for computer engineering and algorithm design.
physical system — In essence this is an undefined term, based on intuition. But, we can distinguish between abstract types of physical systems, constrained by their descriptions, and specific instances of physical systems embedded within our actual universe. For a specific instance of a system, we may in general have incomplete knowledge about its actual state. We should emphasize that a particular system might be defined to consist of only specified state variables within a particular region of space, as opposed to the entirety of the physical information within that region.
pico- — SI unit prefix, denoting multiplication of the unit by 10−12. Abbreviated p.
picometer — A unit of length equal to 10−12 meters, or 0.01 Ångstroms. Roughly 1/100 the radius of a hydrogen atom, or 100 times the diameter of an atomic nucleus.
pipelined logic — A deep combinational network can be broken into a series of shorter stages which can be used simultaneously to process different sequential inputs, resulting in a higher overall hardware- and cost-efficiency for most irreversible computations. However, pipelined reversible logic is not always more cost-efficient than is non-pipelined reversible logic.
pitch — The distance between the center lines of neighboring wires in a circuit.
Planck energy — The fundamental constants h, G, c can be combined to give an energy unit, EP = ((c5/G)1/2 ≈ 1.956 GJ. This energy, or something close to it, is believed to be a fundamental maximum energy for a fundamental particle in whatever turns out to be the current unified theory of quantum gravity. It is the energy of a particle when traveling at a velocity so high that that its de Broglie wavelength is equal to the Planck length.
Planck length — The fundamental constants h, G, c can be combined to give a length unit, (P = ((G/c3)1/2 ≈ 1.616(10−35 m. This length, or something close to it, is believed to be a fundamental minimum length scale in whatever turns out to be the correct unified theory of quantum gravity. For example, it is already known that the maximum information in any region, in nats, is given by the area of the smallest enclosing surface around that region, in units of (2(P)2.
Planck mass — The fundamental constants h, G, c can be combined to give a mass unit, mP = ((c/G)1/2 ≈ 2.177(10−8 kg. This mass, or something close to it, is believed to likely be a maximum mass for a fundamental particle, and perhaps the minimum mass of a black hole, in whatever turns out to be the current unified theory of quantum gravity. It is the mass of a particle when traveling at a velocity so high that that its de Broglie wavelength is equal to the Planck length.
Planck’s constant — Expresses the fundamental quantum relationship between frequency and energy. Comes in two common forms, Planck’s unreduced constant, h = 6.6260755(10−34 J·s, and Planck’s reduced constant, (=h/2π. In computational terms, Planck’s constant is a fundamental unit of computational work; h can be viewed as equal to 2 primitive orthogonalizing operations.
Planck temperature — Dividing the Planck energy by Boltzmann’s constant k, we get a temperature TP ≈ 1.417(1032 K. This temperature, or something close to it, is believed to be a fundamental maximum temperature in whatever turns out to be the correct unified theory of quantum gravity. It is the temperature of a Planck-mass (minimum-sized) black hole, or a single photon of Planck energy. In computational terms it corresponds to 1 radian-op per Planck time, or 1 pop per π Planck times, which gives a maximum possible frequency of complete state update steps in a computational process of ~5.9(1042 steps per second.
Planck time — The fundamental constants h, G, c can be combined to give a time unit, tP = (G(/c5)1/2 ≈ 5.391(10−43 s. This time, or something close to it, is believed to be a fundamental minimum time unit in whatever turns out to be the correct unified theory of quantum gravity. It is the time for light to travel 1 Planck length, and is the reciprocal of the angular phase velocity of a quantum wavefunction of a Planck-mass particle, or in other words the minimum time per rop. The minimum time for a primitive orthogonalizing operation is πtP ≈ 1.69(10−42 s.
pm — Standard abbreviation for picometer.

polynomial time — In computational complexity theory, having a time complexity that grows as Θ(nk) in input length n for some constant k.
pop — Abbreviation for primitive orthogonalizing operation or π-op.
pointer state — A state of a quantum system that remains stable under the most frequent modes of interaction with the environment, that is, an eigenstate of the observable that characterizes the interaction. The states chosen to represent logical bits in a classical (non-quantum) computer are usually pointer states. Quantum computers, however, are not restricted to using only pointer states. This is what gives them additional power. However it requires a high degree of isolation from unwanted interactions with the environment, which will destroy (decohere) non-pointer states.
polysilicon — Sometimes abbreviated just poly, this is polycrystalline silicon, a quasi-amorphous state of solid silicon, made of numerous nanoscale crystal grains. Often used for local interconnect layers, in contrast with the single-crystal silicon forming the chip substrate.
power — Rate of energy transfer, often measured in Watts.
PR — See physical realism.
PRAM — Parallel variant of the RAM machine model of computation. There are several varieties of PRAM model. One simply has n RAMs accessing the same shared memory in parallel. PRAM models are not physically realistic, in the sense used in this article.
primitive orthogonalizing operation — Also pop, π-op. In this document, a unitary transformation that takes some quantum states to new states that are orthogonal to the original state. A πop is equal to π rops or to π(= h/2.
principle of locality — Causal effects can only happen through local interactions in space. This is a consequence of special relativity, and it is obeyed by modern quantum field theory, in which the global Hamiltonian is composed from local interaction terms only. Einstein thought that quantum mechanics was non-local, but it turned out he was wrong.
processor — Short for information processor, this refers either to a computer or to a part of a computer (e.g., a CPU) that is large and complex enough to be programmed to perform different types of computations.

program — Information specifying in complete detail an algorithm that a computer will perform. Relates to a specific programming language or to a computer’s specific programming model.
programming model — Specifies how a given architecture can be programmed to carry out whatever computation is desired. Most computers today have a specific type of programming model called an instruction set architecture (ISA). Other kinds of programming models exist, such as those used in FPGA’s (field-programmable gate arrays), cellular automata machines (CAMs), and dataflow machines.
programming language — A standard language, usually textual (although graphical languages are also possible) for representing algorithms. A compiler translates a program from an easily human-readable programming language into a form that can be utilized by a given machine’s programming model.
proper time — In relativity, this is the amount of time (number of update steps) to pass, as experienced in a reference frame moving along with a given object, rather than in some other arbitrarily chosen reference frame.
public-key cryptography — An approach to cryptography and authentication based on a complementary pair of keys, a public key and a private key, each of which decrypts the code that the other encrypts. The most popular known public-key cryptography algorithms are vulnerable to being broken by quantum computing.
pure state — See quantum state.
Q3M — Quantum 3-d Mesh, a model of computing consisting of a 3-dimensional mesh-connected network of fixed-size, arbitrarily-reversible and quantum-coherent processing elements. The Q3M is posulated by the author to be a UMS model. See tight Church’s thesis.
quality — In this article, the quality or q factor of a device or process is defined as the ratio of energy transferred to energy dissipated, or (quantum) bit-operations performed to entropy generated, or quantum bit-operations performed to decoherence events. It is also the ratio between the coding-state temperature and the temperature of the decoherence interaction, or the ratio between the coherence time and the operation time.
quantum algorithms — Algorithms for a quantum computer, which use superpositions of states and interference effects in an essential way. Quantum algorithms must be reversible to avoid decoherence.
quantum computer — A computer that uses superpositions of pointer states as intended intermediate states in a computation. Ordinary classical computers are restricted to only using pointer states. The less-constrained state space available in a quantum computer opens up exponentially shorter trajectories toward the solution of certain problems, such as the factoring problem. The more constrained state space available to a classical computer appears to require exponentially more steps to arrive at solutions to this problem.
quantum dot — A mesoscale or nanoscale structure in which conduction-electron energies are quantized.
quantum dot cellular automaton — Abbreviated QDCA or just QCA, this is a particular logic scheme using quantum dots which was invented at Notre Dame. Involves “cells” (made of four dots) which interact with each other locally; in this respect, it roughly resembles the cellular automaton model of computing. QDCA also includes adiabatic variants.
quantum electrodynamics — Abbreviated QED, this is the quantum field theory that deals with charged particles, photons, and the electromagnetic field. Now subsumed by the Standard Model of particle physics.
quantum field theory — When quantum mechanics is unified with special relativity, the result is a field theory. The Standard Model of particle physics is the modern working quantum field theory. Other, simplified models, which omit some details of the Standard Model, include Quantum Electrodynamics (QED), the quantum field theory of electric charge and electromagnetism, and Quantum Chromodynamics (QCD), the quantum field theory of “color” charge (carried by quarks and gluons) and the strong nuclear force.
quantum information — The specific quantum information contained in a system can be identified with the actual quantum state of the system, itself. The total amount of quantum information is the same as the amount of classical information—namely, the logarithm of the number of orthogonal states—except it is measured in qubits rather than bits. The quantum information can be thought of as a choice of basis, together with the classical information inherent in the selection of one of the basis states. The classical information is only the selection of basis state, with the basis itself being fixed.
quantum mechanics — Modern theory of mechanics, initiated by Planck’s discovery of the fundamental relationship between frequency and energy, namely that a system performing transitions between distinguishable states at a given rate or frequency must contain a corresponding minimum amount of energy. (This fact was first discovered by Planck in the context of blackbody radiation.)
quantum state — Also called a pure state, the state of a quantum system is identified with a vector (normalized to unit length) in the system’s many-dimensional Hilbert space. Two states are distinguishable if and only if their state vectors are orthogonal (perpendicular to each other).
qubit — A unit of quantum information, as well as a name for any particular instance of a physical system or subsystem that contains this amount of quantum information. A system that contains one qubit of information has only two distinguishable states. A qubit may be in a state that is superposition of pointer states, and this state may be entangled (correlated) with the states of other systems.
quickness — The quickness of any process is the reciprocal of the total real time from the beginning of that process to the end of the process. Quickness is measured in units of Hertz (inverse seconds).
R3M — Reversible 3-d Mesh, a model of computing consisting of a 3-dimensionally-connected mesh network of fixed-size, arbitrarily reversible processors. The R3M is postulated to be a UMS model for non-quantum computations. See also Q3M.
RAM — Random Access Memory, a memory in which any random element can be accessed (read or written) equally easily, by supplying its numeric address. Also stands for Random Access Machine, an early non-PR, non-UMS model of computation in which any random element of an unboundedly large memory can be accessed within a small constant amount of time.
radian-op — See rop.
random access — To access (read or write) a bit of memory selected at random.
resonant tunneling diodes/transistors — Structures in which the rate of tunneling between source and drain electrodes is controlled by the resonant alignment of electron energy levels in an intervening island with the Fermi energies of free conduction electrons in the source terminal.
rest mass — Computationally, the rate of ops in a system that are concerned with the internal updating of the system’s state, rather than with net translation of the system in a particular direction. I.e., that portion of a system’s total energy that is not kinetic energy.
retractile cascade logic — Or, just retractile logic. A reversible combinational logic style in which inputs are presented and intermediate results computed, and then (after use) are uncomputed by “retracting” the operations that produced the results, in reverse order.
reversibility — A process or dynamical law is reversible if the function mapping initial state to final state is one-to-one (that is, its inverse is a function). Reversible is synonymous with reverse-deterministic (deterministic looking backwards in time). It is not synonymous with time-reversal symmetric. A dynamical law is time-reversal symmetric if it has the identical form under negation of the time component. Modern particle physics actually has a slightly changed form under time-reversal (namely, charges and handedness must also be changed), but it is still reverse-deterministic, thus still reversible.
reversible algorithms — Algorithms composed of reversible operations
reversible operations — An operation is reversible if it transforms initial states to final states according to a one-to-one (bijective) transformation.
reversible computing — A paradigm for computing in which most logical operations perform a logically reversible (bijective) transformation of the local logical state; this transformation can then be carried out adiabatically (nearly thermodynamically reversibly).
reversiblize — To translate a computation described as an irreversible algorithm to an equivalent but reversible form, often by reversibly emulating the steps of the irreversible algorithm.
rop — Short for radian-op, a unit of computational work equal to Planck’s reduced constant (. Equal to 1/π of a π-op (pop). An example would be the rotation of a quantum spin by an angle of 1 radian.
RSA — Rivest, Shamir, Adleman, the abbreviation for a popular public-key cryptography algorithm whose security depends on the assumed hardness of factoring large numbers. The advent of large-scale quantum computing would falsify this assumption, and permit RSA codes to be broken.
RTD — See resonant tunneling diode.
s — Abbreviation for second (the time unit).
SI — Standard abbreviation for Système Internationale d’Unites, the International System of Units, adopted by the 11th General Conference on Weights and Measures (1960).
Second law of thermodynamics — The law that entropy always increases in closed systems. The law can be proven trivially from the unitarity of quantum theory, together with von Neumann’s definition of entropy for a mixed quantum state, by analyzing the effect when a quantum system evolves according to a Hamiltonian that is not precisely known, or interacts with an environment whose state is not precisely known.
semiconductor — A semiconductor is a material in which there is (small but positive) gap (called the band gap) between the highest energy levels of valence electrons that are bound to specific atoms, and the lowest energy levels of conduction electrons, electrons that are freely moving through the material. Due to the bandgap, only a small number of electrons will be free to move, and the material will not conduct electricity well. However, addition of dopants, applied fields, etc., can significantly change the concentration of charge carriers in the material. The ease of manipulation of carrier concentration is what makes a semiconductor a useful material for controlling conductance in transistors. Contrast conductor and insulator.
sequential logic — Digital logic with feedback loops and storage capability, in which new results are produced sequentially, one at a time in definite steps, and in which a given piece of hardware is reused, in sequence, for calculating results of subsequent steps. Compare combinational logic.
Shannon entropy — The appropriate definition of entropy for a situation in which not all possible states are considered equally probable. The Shannon entropy is the expected amount of information gain from learning the actual state.
single-electron transistor — A transistor whose conductance changes significantly upon the addition or removal of a single electron to/from its gate electrode. Can be built today.
space complexity — In traditional computational complexity theory, this is the machine capacity (in bits) required to perform a computation. In physical computing theory, this is seen as an inaccurate measure of the true economic cost of a computation; spacetime cost is a more accurate substitute.
spacetime — A volume of physical spacetime is measured as the physical volume of a region of space, integrated over an interval of time. Computational spacetime reflects the same idea, for the region of space actually utilized to perform computations, or store intermediate results during a computation. It may be approximated in restricted contexts by just integrating the number of bits in use over the number of parallel update steps performed.
special relativity — Einstein’s theory based on the principle that the speed of light is independent of the observer’s velocity. It revolutionized mechanics with the discovery that space and time are interwoven with each other, and that moving objects slow down, shorten, and become more massive, and that mass itself is nothing but a bound form of energy. It predicts that nothing can go faster than light. Its predictions have been exhaustively confirmed to high accuracy by myriads of experiments. It was later generalized to incorporate gravity and accelerated motion in the General Theory of Relativity.
speed of light — Denoted by c ≈ 3(108 m/s, the speed of light is the maximum propagation velocity of information and energy through space, as was discovered by Einstein in his theory of relativity. Computationally speaking, the speed of light is that speed at which all of the quantum operations taking place in a system are spatial-translation ops, which makes it clear why this speed cannot be exceeded, and why non-zero rest-mass systems (which have a non-zero rate of internal ops) can not achieve it. We should emphasize that modern quantum field theory, being entirely local, definitely and explicitly obeys the constraint that information (both classical and quantum information) can travel at most at the speed of light.
spent energy — The spent energy in a system is defined as the system’s entropy S times the temperature T of the coolest available thermal reservoir of effectively unlimited capacity. At least ST energy must be permanently dedicated in order to remove the entropy to the reservoir (unless a cooler reservoir later becomes available). Spent energy is total energy minus free energy.
spin — Fundamental particles in quantum field theory have a spin, an inherent angular momentum whose absolute numerical value is always an integer multiple of (/2. (This prediction arose from the unification of quantum theory and special relativity, and was subsequently confirmed.) Spin states have an orientation; oppositely-oriented spins are distinguishable, but other pairs of orientations are not. A spin can hold only 1 qubit of quantum information, and only 1 bit of classical information.
spintronics — Electronic technology in which electron and/or nuclear spin states (instead of or in addition to the position and momentum states of electric charges) are used to store, transmit, or process information. Magnetic storage technology can be considered an early example of spintronics. NMR quantum computing is a more recent example. Spintronic diodes and switches are also being developed.
Standard Model of particle physics — This is the consensus bedrock of modern physics. It treats electromagnetism and the strong and weak nuclear forces together in a single quantum field-theoretic framework. It encompasses all known fundamental particles, and all forces except for gravity. Its predictions have been verified to many decimal places. Aside from an eventual unification with general relativity, which would modify the theory’s predictions only at extremely high-energy scales, there is no indication that any future developments in physics would change the Standard Model’s ramifications for nano-scale engineering. In other words, the Standard Model seems to be a totally complete model so far as nanotechnology is concerned. This allows us to make confident predictions about the fundamental limits of computing based on the Standard Model.
state — An exact configuration of a given type of physical system. States of quantum systems are identified with mathematical vectors. (See quantum state.)
state space — The set of all possible states of a system.
statistical mechanics — Branch of mechanics dealing with the statistical behavior of large numbers of simple system. The foundation of thermodynamics. Modern statistical mechanics is based on quantum-mechanical counting of distinguishable states, and is sometimes called quantum statistical mechanics.
statistical mixture — An ensemble of systems, characterized by a probability distribution, that is, a function from states to their probability.
step — A complete parallel update step or just step of a quantum system or subsystem is a transformation that can be expressed as a trajectory (sequence) of quantum bit-operations totaling an average amount of computational work performed of 1 pop per bit of physical information contained in the system. Physical temperature is just a measure of the rate at which steps are performed.
stored-program computer — A computer in which the program to be executed can be stored in the computer’s memory along with the data to be manipulated.

String Theory — An hypothetical extension of the Standard Model of particle physics in which fundamental particles of different masses are explained as different modes of vibration of tiny strings and closed loops. String Theory is not yet a complete theory that yields testable predictions, and so it has not yet been experimentally confirmed. It does however predict a number of surprising things such as the existence of extra “hidden” spatial dimensions. However these are not expected to have a major bearing on the physical limits of computing beyond what we already know based on the Standard Model and General Relativity.
strong Church’s thesis — This early expectation of computer science theory claimed that any physically realizable model of computation has a time cost for all problems that is within at most a polynomially-growing factor above or below the minimum time to solve the same problem on a Turing machine. However, if quantum computers can be built on arbitrarily large scales, and if no polynomial-time classical algorithm exists for emulating them to arbitrarily precision, then the strong Church’s thesis is false. See also Church’s thesis, tight Church’s thesis.
structural state — The part of the non-coding physical state of a computer/device that is required to remain unchanged in order for the machine to even continue functioning as intended. For example, for a given circuit to function as intended, its wires must remain unbroken, although in practice they may actually break occasionally, due to electromigration effects, an example of state decay.
superposition of states — A superposition of states in a quantum system is a linear combination (with complex-valued coefficients) of those states, considered as vectors. The coefficients are normalized so that their squared magnitudes sum to 1. A superposition of states is therefore another vector, and therefore is a quantum state, just as much as the states being superposed. However, a superposition of pointer states will not generally be a pointer state and thus may be subject to decay (decoherence) to a statistical mixture of pointer states upon interaction with the environment.
subsystem — Informally, a piece of a larger (physical) system. Often (but not always) identified with a particular region of space. May include some degrees of freedom but not others.
superconductor — In a superconducting material, pure electron momentum states occupy a decoherence-free subspace, and therefore constitute pointer states that are immune from decoherence via ordinary modes of interaction with the environment. A current in a superconductor is therefore maintained indefinitely (with zero resistance). In the more well-understood superconductors, this occurs as a result of a pairing-up of electrons (into Cooper pairs) due to indirect mutually attractive interactions intermediated by phonon exchange through the material’s crystal lattice.
syndrome — In error correction, when an error occurs, the syndrome is the information contained in the exact identity of the error (when/what/how it occurred). This information is entropy from the perspective of the designer of the error-correction mechanism, and so must be removed from the device in question in order to free up space for desired computational purposes.
technology — For purposes of this article, a technology refers to a device-level technology, for example a specific fabrication process for circuits of electronic or electromechanical devices, or to another low-level physical mechanism used for communication, cooling, etc. Higher-level design elements such as processor architecture or software algorithms also represent technology, in the broader sense of the word, but we will reserve the word for lower-level technology in this article (the parts that are not traditionally the domain of the computer scientist).
technology scaling model — A part of a model of computing that describes how key characteristics of devices and systems change as the parameters of the underlying manufacturing process technology are varied, for example by scaling devices to smaller sizes, or by scaling cooling technology to effect higher or lower operating temperatures.
temperature — The physical temperature of any system can be interpreted as the average rate of quantum operations per bit of physical information, that is, the average rate at which the system’s quantum information is (potentially) completely updated. Usually in thermodynamics we are only interested in the temperature of an entropic subsystem (that is, a subsystem whose state information is all unknown); however, the temperature of the known information in a system (that is, of the subsystems whose state information is known) is related and also important. If the known information is transitioning at a much faster rate than is the entropy, then an increasing degree of thermal insulation of the known information from the entropy is necessary in order to prevent the entropic subsystem from becoming too hot (and causing the computer to melt).
tensor product — A term from vector algebra. The tensor product of two vectors of dimensionality d1 and d2 is a new vector of dimensionality d1d2 whose components in a given basis are obtained by pairwise multiplying components of d1 and d2.
thermal energy — See kT.
thermal state — That part of the state of a physical system that is entirely entropy, and whose exact state under normal circumstances and intended operating temperatures is expected to fluctuate constantly and unpredictably. E.g., a circuit node may be at a fairly definite average voltage level, and so its logic state (high or low) may have low entropy, but at the same time, the detailed occupancy numbers of all of the electron states within a few kT’s of the Fermi surface will be rapidly and unpredictably fluctuating, and so will constitute another, high-entropy part of the state.
thermal temperature — The temperature of those subsystems whose physical information happens to be entropy (i.e., whose energy is heat). Thermal temperature is the traditional thermodynamic concept of temperature, but it is subsumed by the more general, modern definition of temperature given above.
thermodynamically reversible — Synonym for adiabatic or isentropic. A process is thermodynamically reversible to the extent that it does not produce any new entropy, that is, to the extent that the modeler does not become increasingly uncertain about the identity of the actual state. Even though quantum physics itself is reversible, a quantum process can still be thermodynamically irreversible, to the extent that the state of known parts of the system become mixed up with and affected by the state of unknown parts.
Theta (greek letter Θ) — Θ(f) is a mathematical order-of-growth notation denoting any function that is constrained to be within a constant factor of the given function f, for all sufficiently large inputs.
tight Church’s thesis — This thesis (by the author) postulates that a reversible, quantum 3-D mesh (Q3M) is a UMS model of computing, that is, that the minimum time cost to solve any problem in any physically realizable machine lies within a constant factor of the time cost in the Q3M model. See also Church’s thesis, strong Church’s thesis.
time — A quantity of physical time itself (specifically, relativistic proper time) can be defined computationally, in terms of the number of (parallel complete update) steps taken by a fixed reference subsystem (perhaps, a Planck-mass photon) over the course of a particular transformation trajectory that is undergone by an entire system as it follows its dynamics.
time complexity — In traditional computational complexity theory, this is the number of update steps of the logical state of a computation. In physical computing theory, this quantity is seen as an insufficient basis for a correct engineering optimization, and we prefer to use the actual physical time cost, together with other components of true economic cost, instead. In an optimized family of adiabatic architectures, it turns out that time and number of logical steps are not always proportional to each other, since the optimum frequency varies with the machine capacity as well as the algorithm to be performed.
total energy — The total energy of all kinds in a system can be measured by weighing the mass of the system in a gravitational field, and converting to energy units using E = mc2. This includes rest mass-energy as well as thermodynamic internal energy.
transformation — A unary operator on a state space (or any other set), mapping states to states. The transformations corresponding to time-evolution in quantum mechanics is unitary.
transformation trajectory — A transformation expressed as a sequence of simpler, irreducible transformations, e.g., bit-operations. A quantum logic network is a description of transformation trajectories in a particular graphical language.
transistor — An electronic device that is a voltage-controlled current switch. That is, the conductance between two nodes is determined by the level of voltage (relative to some threshold) on a third gate node.

transmission gate — A circuit element buildable from parallel NFET and PFET transistors that conducts at any voltage level between logic high and low levels when turned on.
tunneling — Quantum mechanical phenomenon in which an electron of given energy can penetrate a potential energy barrier that would be too high for it to penetrate classically. This occurs because the inherent indistinguishability of nearby quantum states means that if a barrier is narrow enough, the electron wavefunction can have significant amplitude even on the other side of the barrier.
Turing machine — A simple early mathematical model of computing due to Alan Turing, in which a fixed-size processor serially traverses an unbounded, 1-dimensional memory. The Turing machine is a physically realistic model, but it is not universally maximally scalable.
UMS — See universal maximum scalability.
uncompute — To uncompute some information that is correlated with other information is to remove the correlation, by undoing (performing in reverse) a transformation that could have computed the information to begin with. Uncomputing and related operations provide the only physically and logically reversible way to remove known information so as to return a memory cell to a standard state that can be reused for later computations. The ability to uncompute is a key capability for reversible algorithms. (However, uncomputing an old result and computing a new one can sometimes be combined in a single operation, so uncomputing by itself is not always strictly necessary for reversible operation.)
unitary transformation — A term from linear algebra. An invertible, length-preserving linear transformation of a vector space. All quantum systems evolve over time via a unitary transformation U = exp(iHt/h) of their state vector in each unit of time t, where i2 = −1, H is the system’s Hamiltonian, and h is Planck’s unreduced constant.
univeral — A model of computation is called universal if it can emulate any Turing machine, given sufficient resources.
universal maximal scalability (UMS) — A model of computation has this property if there is no physically-realizable algorithm that is asymptotically more cost-efficient (by unboundedly large factors) than all algorithms possible in a physical realization of the given model. None of the models of computation that have been traditionally studied by computer scientists in the past have this property. Nevertheless, it is a desirable property to have, from a computer engineering and algorithm-design standpoint. A reversible 3-D mesh that supports quantum operations is conjectured to be a physically realistic, UMS model.

unstructured search — A class of problems characterized by the following general description: Given a black-box function f over some domain, and a target element y, find a value x in the domain such that f(x)=y.
valence band — In condensed matter theory, the valence band is the range of energies accessible to electrons that are bound to specific atoms and therefore not free to move throughout the material.
velocity — Computationally speaking, velocity is a dimensionless quantity giving the fraction of ops taking place in a system that are devoted to the spatial translation of the system in a particular direction. There is therefore a maximum velocity for all systems of 1, which is equal to the speed of light. Only systems with zero rest mass can actually attain this speed. Of course, we all know that velocity also expresses the distance traversed per unit time.
virtual particles — In quantum field theories, fundamental forces are transmitted via the exchange of “virtual” particles (called such because they are not directly observed). E.g., the electromagnetic force is transmitted via the exchange of virtual photons.
VLSI — Very Large Scale Integrated circuits. That is, monolithic chips fabricated with tens of thousands to millions of devices.
VLSI theory — A model of computation, invented by Charles Leiserson of MIT, that is appropriate for a wide variety of VLSI design applications that focuses on concerns with circuit area and hardware efficiency. It is more suitable for engineering purposes than is traditional computational complexity theory. However, VLSI theory is still not the most comprehensive possible model, because it does not take energy costs and heat-dissipation considerations into account, and also does not always account adequately for communication delays. The example model presented in this article removes these limitations.
voltage — The voltage between two circuit nodes or points is the electrostatic potential energy difference between those points per unit charge, for an imaginary infinitesimal test charge located at either point.

voltage coding — A simple physical logic coding scheme (the one used today in digitial electronics) that considers all voltage states above a certain threshold to represent a logic 1, and all voltage states below a certain threshold to represent a logic 0. However, many other coding schemes are possible (e.g. using superconducting current states, or electron spin states).
von Neumann entropy — The appropriate definition of entropy for an uncertain quantum state, or mixed state. It is equal to the Shannon entropy of the mixed state when expressed in the diagonalized basis, as a statistical mixture of orthogonal pure states.
von Neumann machine — A simple computer architecture often attributed to von Neumann, consisting of a single fixed-capacity serial processor that accesses an external memory of arbitrary capacity. Closely related to the RAM machine model of computation.
Watt — A unit of power (rate of energy transfer) equal to 1 Joule per second.
wavefunction — A particular quantum state can be identified with a function that maps all state vectors to the corresponding complex number that arises when the given state vector is combined by a dot product with the state vector of the particular state in question. This function is called the state’s wavefunction. The wave has nonzero amplitude for most states (all except the ones that are orthogonal to the particular state). It is a consequence of this wave aspect of quantum mechanics that states can never be totally localized with infinite precision; any system of finite size and energy can have only a certain finite number of distinguishable states, corresponding to different normal modes of vibration of the given wave [15,16] up to the maximum energy.
wave packet — A wavefunction whose magnitude approaches zero for all position states outside of a given region of space. A system whose position is localized is in a wave packet state.
zetta- — SI unit prefix meaning 1021.
10. References
� EMBED PowerPoint.Slide.8 ���

� EMBED PowerPoint.Slide.8 ���

room-T�kT

� Seth Lloyd pointed out this analogy to me in personal discussions.

� 	John E. Savage, Models of Computation: Exploring the Power of Computing, Addison-Wesley (1998)

� 	Charles H. Bennett, International Journal of Theoretical Physics, 21, 12, pp. 905-940 (1982)

� 	Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2000)

� 	Michael P. Frank, Reversibility for Efficient Computing, manuscript based on Ph.D. thesis, MIT (1999)

� 	Michael P. Frank, “Nanocomputer Systems Engineering,” Technical Proceedings of the 2003 Nanotechnology Conference and Trade Show (2003)

� 	Semiconductor Industry Association, International Technology Roadmap for Semiconductors, 2002 Update (2002)

� 	Brian Doyle et al., Intel Technology Journal, 6, 2, pp. 42-54, May 16 (2002)

� 	B. Doris et al., “Extreme Scaling with Ultra-Thin Silicon Channel MOSFET’s (XFET),” 2002 IEEE International Electron Devices Meeting, San Francisco, Dec. 9-11 (2002)

� 	B. Yu et al., “FinFET Scaling to 10nm Gate Length,” 2002 IEEE International Electron Devices Meeting, San Francisco, Dec. 9-11 (2002)

� 	V. Derycke et al., Nano Letters, 1, 9, pp. 453-456 (2001)

� 	Yu Huang et al., Science, 294, pp. 1313-1317, Nov. 9 (2001)

� 	F. Preparata and G. Bilardi, 25th Anniversary of INRIA 1992, pp. 155-174 (1992)

� 	Brian Greene, The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory, Norton, Feb. (1999)

� 	Lee Smolin, Three Roads to Quantum Gravity, Basic Books (2002). For a more recent and more technical introduction, also see Smolin, “Quantum gravity with a positive cosmological constant,” ArXiv.org preprint hep-th/0209079 (2002)

� 	W. Smith, “Fundamental physical limits on computation,” NECI Technical Report, May (1995)

� 	S. Lloyd, Nature, 406, pp. 1047-1054, (2000).

� 	P. Vitányi, SIAM J. Computing, 17, pp. 659-672 (1988)

� 	N. Margolus and L. Levitin, Physica D, 120, pp. 188-195 (1998)

� 	R. Landauer, IBM J. of Research and Development, 5, pp. 183-191 (1961)

� 	M. Frank and T. Knight, Nanotechnology, 9, 3, pp. 162-176 (1998).

� 	M. Frank, “Realistic Cost-Efficiency Advantages for Reversible Computing in Coming Decades,” UF Reversible Computing Project Memo #M16, http://www.cise.ufl.edu/research/revcomp/memos/Memo16-three-d.doc, Oct. (2002).

� 	M. Frank, “The Adiabatic Principle: A Generalized Derivation,” UF Reversible Computing Project Memo #M14, http://www.cise.ufl.edu/research/revcomp/memos/M14_adiaprinc.ps, Aug. (2001)

� 	F. Thomson Leighton, Introduction to Parallel Algorithms and Architectures: Arrays ∙ Trees ∙ Hypercubes, Morgan Kaufmann (1992)

� 	Werner Heisenberg, The Physical Principles of the Quantum Theory, Dover (1949)

� 	Ludwig Boltzmann, Wiener Berichte, 2, 76, pp. 373-435 (1877)

� 	Julian Barbour, The End of Time: The Next Revolution in Physics, Oxford University Press (1999)

� 	Seth Lloyd, Physical Review Letters, 88, 23, p. 237901, 10 June (2002)

� 	Michael P. Frank, “Physics as Computation,” UF Reversible Computing Project Memo #M17, http://www.cise.ufl.edu/research/revcomp/memos/Memo17-PhysComp.doc, Nov. (2002).

� 	Christos H. Papadimitriou, Computational Complexity, Addison-Wesley (1994)

� 	Charles Leiserson, Area-Efficient VLSI Computation, MIT Press (1983)

� 	J. C. Shepherdson and H. E. Sturgis, Journal of the ACM, 10, 2, pp. 217-255 (1963)

� 	David Deutsch, Proceedings of the Royal Society of London A, 425, p. 73 (1989)

� 	Alan M. Turing, Proceedings of the London Mathematical Society, Series 2, 42, pp. 230-265; 43, pp. 544-546 (1936-1937)

� 	P. van Emde Boas, in J. van Leeuwen, ed., Handbook of Theoretical Computer Science, A, pp. 1-66, Elsevier, Amsterdam (1990)

� 	John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 3rd Edition, Morgan Kaufmann (2002)

� 	John von Neumann, Theory of Self-Reproducing Automata, University of Illinois Press (1966) [This is a posthumous collection of earlier work.]

� 	J. E. Avron and A. Elgart, Commun. Math. Phys., 203, pp. 445-463 (1999)

� 	Ralph C. Merkle and K. Eric Drexler, Nanotechnology, 7, 4, pp. 325-339 (1996)

� 	C. S. Lent and P. D. Tougaw, Proceedings of the IEEE, 85, p. 541 (1997)

� 	Saed G. Younis and Thomas F. Knight, Jr., International Workshop on Low Power Design, pp. 177-182 (1994)

� 	K. Eric Drexler, Nanosystems, Wiley (1992)

� 	K. K. Likharev, International Journal of Theoretical Physics, 21, 3/4, pp. 311-326 (1982)

� 	Ralph C. Merkle, Nanotechnology, 4, pp. 114-131 (1993)

� 	J. Storrs Hall, “An Electroid Switching Model for Reversible Computer Architectures,” in PhysComp ‘92: Proceedings of the Workshop on Physics and Computation, October 2-4, 1992, Dallas, Texas. IEEE Computer Society Press (1992). Also in Proceedings ICCI ’92, 4th International Conference on Computing and Information (1992)

� 	K. Eric Drexler, in F. L. Carter et al., Molecular Electronic Devices, Elsevier, pp. 39-56 (1988)

� 	E. F. Fredkin and T. Toffoli, International Journal of Theoretical Physics, 21, 3/4, pp. 219-253 (1982)

� 	Richard Feynman, Optics News, 11 (1985) Also in Foundations of Physics, 16, 6, pp. 507-531 (1986)

� 	Norman H. Margolus, “Parallel Quantum Computation,” in Complexity, Entropy, and the Physics of Information, Wojciech Zurek, ed. (1990)

� 	H. S. Leff and A. F. Rex, eds., Maxwell’s Demon: Entropy, Information, Computing, American International Distribution Corp., Oct. (1990)

� 	C. H. Bennett, IBM Journal of Research and Development, 17, 6, pp. 525-532 (1973)

� 	Yves Lecerf, Comptes Rendus Hebdomadaires des Séances de L’académie des Sciences, 257, pp. 2597-2600, Oct. 28 (1963)

� 	Klaus-Jörn Lange, Pierre McKenzie, and Alain Tapp, in Proceedings of the 12th Annual IEEE Conference on Computational Complexity (CCC ’97), pp. 45-50, June (1997)

� 	Michael Sipser, Theoretical Computer Science, 10, pp. 335-338 (1980)

� 	C. H. Bennett, SIAM Journal on Computing, 18, 4, pp. 766-776 (1989)

� 	Ryan Williams, “Space-Efficient Reversible Simulations,” CMU, http://www.cs.cmu.edu/~ryanw/spacesim9_22.pdf, Sep. 22 (2000)

� 	Harry Buhrman, John Tromp, and Paul Vitányi, “Time and Space Bounds for Reversible Simulation,” in Proceedings of the International Conference on Automata, Languages, and Programming (2001)

� 	Michael P. Frank and M. Josephine Ammer, “Relativized Separation of Reversible and Irreversible Space-Time Complexity Classes,” UF Reversible Computing Project Memo #M6, http://www.cise.ufl.edu/~mpf/rc/memos/M06_oracle.html, (1997)

� 	Michael P. Frank, “Cost-Efficiency of Adiabatic Computing with Leakage and Algorithmic Overheads,” UF Reversible Computing Project Memo #M15, http://www.cise.ufl.edu/research/revcomp/memos/Memo15-newalg.ps (2002)

� 	Michael P. Frank et al., in Calude, Casti, Dineen, eds., Unconventional Models of Computation, Springer (1998), pp. 183-200.

� 	Carlin J. Vieri, Reversible Computer Engineering and Architecture, Ph.D. thesis, MIT (1999)

� 	Peter W. Shor, “Algorithms for quantum computation: Discrete log and factoring,” in Proc. 35th Annual Symposium on Foundations of Computer Science, pp. 124-134. IEEE Computer Society Press, Nov. (1994)

� 	Seth Lloyd, Science, 273, p. 1073 (1996)

� 	R. L. Rivest, A. Shamir, L. A. Adleman, Communications of the ACM, 21, 2, pp. 120-126 (1978)

� 	Richard Feynman, International Journal of Theoretical Physics, 21, 6&7, pp. 467-488 (1982)

� 	Lov Grover, in Proceedings, 28th Annual ACM Symposium on the Theory of Computing (STOC), pp. 212-219, May (1996)

� 	Vittorio Giovanetti et al., “Quantum limits to dynamical evolution,” ArXiv.org preprint quant-ph/0210197, Oct. (2002)

� 	C. H. Bennett et al., SIAM Journal on Computing, 26, 5, pp. 1510-1523 (1997)

� 	Ethan Bernstein and Umesh V. Vazirani, in 25th ACM Symposium on the Theory of Computing, pp. 11-20 (1993)

� 	Andrew M. Steane, “Overhead and noise threshold of fault-tolerant quantum error correction,” ArXiv.org preprint quant-ph/0207119, July 19 (2002)

� 	David Cory et al., Proceedings of the National Academy of Sciences, 94, 5, p. 1634 (1997)

� 	Mark Friesen et al., “Practical design and simulation of silicon-based quantum dot qubits,” ArXiv.org preprint cond-mat/0208021, Aug. (2002)

� 	J. E. Mooij et al., Science, 285, pp. 1036-1039, Aug. 13 (1999)

� 	J. I. Cirac and P. Zoller, Physical Review Letters, 74, 20, pp. 4091-4094, May 15 (1995)

� 	Adriano Barenco et al., Physical Review A, 52, pp. 3457-3467 (1995)

� 	P. Zanardi and M. Rasetti, Physical Review Letters, 79, 17, pp. 3306-3309 (1998)

� 	Wojciech H. Zurek, “Decoherence, einselection, and the quantum origins of the classical,” ArXiv.org preprint quant-ph/0105127, July (2002)

� 	Michael P. Frank, “Scaling of Energy Efficiency with Decoherence Rate in Closed, Self-Timed Reversible Computing,” UF Reversible Computing Project Memo #M18, http://www.cise.ufl.edu/research/revcomp/memos/Memo18-Timing.doc (2002).

� 	Andrew Ressler, “The design of a conservative logic computer and a graphical editor simulator,” MIT Master’s thesis (1981)

� 	J. Storrs Hall, in PhysComp ’94: Proceedings of the Workshop on Physics and Computation, November 17-20, 1994, Dallas, Texas, IEEE Computer Society Press, pp. 128-134 (1994)

� 	Seth Goldstein and Mihai Budiu, “NanoFabrics: Spatial Computing Using Molecular Electronics,” 28th Annual International Symposium on Computer Architecture (ISCA’01), June (2001)

� 	Lisa Durbeck and Nicholas Macias, Nanotechnology, 12, pp. 217-230 (2001)

� 	Michael P. Frank, “Computer Architecture Principles,” course lecture slides, http://www.cise.ufl.edu/class/cda5155fa02/, Fall (2002).

� 	D. B. Skillicorn, “Parallelism and the Bird-Meertens Formalism,” Dept. of Computing and Information Science, Queen’s University, Kingston, Canada, http://citeseer.nj.nec.com/skillicorn92parallelism.html, April 24 (1992)

� 	Christopher Lutz and Howard Derby, “Janus: A time-reversible language,” CalTech class project, http://www.cise.ufl.edu/~mpf/rc/janus.html, (1982)

� 	Henry Baker, “NREVERSAL of Fortune—the Thermodynamics of Garbage Collection,” Proceedings of the International Workshop on Memory Management, St. Malo, France, Sep. 1992. Also in Lecture Notes in Computer Science, 637, Springer (1992)

� 	S. Bettelli et al., “Toward an architecture for quantum programming,” IRST technical report 0103-010, Nov. 23 (2001)

� 	Bernhard Ömer, “A Procedural Formalism for Quantum Computing,” Masters thesis, Dept. of Theoretical Physics, Technical University of Vienna, July (1998)

� 	B. Ömer, “QCL – A Programming Language for Quantum Computers,” Masters thesis, Institute of Information Systems, Technical University of Vienna, January (2000)

� 	J. W. Sanders and P. Zuliani, “Quantum Programming,” TR-5-99, Programming Research Group, OUCL, Oxford, Nov. (1999)

� 	Peter Selinger, “Towards a Quantum Programming Language,” Dept. of Mathematics, University of Ottawa (2002)

� 	Greg Baker, “ ‘Qgol’: A system for simulating quantum computations: Theory, Implementation and Insights,” Honors thesis, Macquarie University, Oct. (1996)

� 	R. L. Wigington, Proceedings of the IRE, 47, pp. 516-523, April (1961)

� 	P. Shor, Physical Review A, 52, p. 2493 (1995)

� 	Jan M. Rabaey, Digital Integrated Circuits: A Design Perspective, Prentice-Hall (1995)

� 	Robert Chau, “30nm and 20nm Physical Gate Length CMOS Transistors,” Silicon Nanoelectronics Workshop (2001)

� 	B. Doris et al., “Extreme Scaling with Ultra-thin Silicon Channel MOSFET’s (XFET),” 2003 International Electron Devices Meeting (IEDM), San Francisco, Dec. 9-11 (2002)

� 	Y. Huang, et al., Science, 294, 9 Nov. (2001)

� 	V. Derycke et al., Nano Letters, 1, 9, Sep. (2001); A. Bachtold et al., Science, 294, 9 Nov. (2001)

� 	T. Yamada, “Doping Scheme of Semiconducting Atomic Chain,” Fifth Foresight Conference on Molecular Nanotechnology, Palo Alto, CA, Nov. 5-8, (1997)

� 	R. Eisberg & R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, 2nd ed., Wiley (1985)

� 	D. Frank, IBM J. Res. & Dev., 46, 2/3, pp. 235-244, March/May (2002)

� Sankar Das Sarma, American Scientist, Nov.-Dec. (2001)

� David Goldhaber-Gordon et al., “Overview of Nanoelectronic Devices,” Proceedings of the IEEE, April (1997)

� Jiwoong Park et al., Nature, 417, p. 6890 (2002)

� G. L. Snider et al., Journal of Applied Physics, 85, 8, pp. 4283-4285, Apr. (1999)

� C. P. Collier et al., Science, 285, pp. 391-394, Jul. 16 (1999)

� K. K. Likharev, “Rapid Single-Flux-Quantum Logic,” Dept. of Physics, State University of New York, http://pavel.physics.sunysb.edu/RSFQ/Research/WhatIs/rsfqre2m.html (1992)

� Theodore van Duzer and Charles W. Turner, Principles of Superconductive Devices and Circuits, 2nd ed., Prentice Hall (1999)

� Z. K. Tang et al., Science, 292, pp. 2462-2465, Jun. 29 (2001)

� S. Datta and B. Das, Applied Physics Letters, 56, p. 665 (1990)

� M. Johnson, IEEE Spectrum, 31, 47 (1994)

� Milena D’Angelo et al., Physical Review Letters, 87, 1, June 14 (2001)

� Guang He and Song Liu, Physics of Nonlinear Optics, World Scientific, Jan. (2000)

� M. Frank, Computing in Science & Engineering, 4, 3, pp. 16-25, May/June (2002)

� M. Frank, “Cyclic Mixture Mutagenesis for DNA-Based Computing,” Ph.D. thesis proposal, MIT, http://www.cise.ufl.edu/~mpf/DNAprop/phd-proposal.html (1995)

� Thomas F. Knight, Jr., and Gerald Jay Sussman, “Cellular Gate Technology,” MIT AI Lab, July, http://www.ai.mit.edu/people/tk/ce/cellgates.ps (1997).

� Ray Kurzweil, The Age of Spiritual Machines: When Computers Exceed Human Intelligence, Penguin Books, Jan. (2000)

� Stephen W. Hawking, Commun. Math. Phys., 43, pp. 199-220 (1975)

� Jacob D. Bekenstein and Avraham Mayo, Gen. Rel. Grav., 33, pp. 2095-2099 (2001)

� Freeman J. Dyson, Rev. Modern Physics, 51, 3, pp. 447-460, July (1979)

� L. M. Krauss and G. D. Starkman, Astrophysical J., 531, 1, pp. 22-30 (2000)

[image: image8.emf]Redundancy N

r

of coding

information, nats/bit

Logarithm of relative

decoherence rate,

ln 1/q = ln T

dec

/T

cod

Minimum

entropy ΔS

op

generated

per operation,

nats/bit-op

[image: image9.emf]0

5

10

15

20

25

0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1

Nopt

-ln Smin

~Nopt

~-lnSmin

Relative decoherencerate (inverse quality factor), 1/q= T

dec

/T

cod

= t

cod

/ t

dec

Optimal

redundancy factor

N

r

, in nats/bit

Exponent of factor

reduction of entropy

generated per bit-op,

ln(1 nat/ΔS

op

)

_1100717592.ppt

Redundancy Nr of coding

information, nats/bit

Logarithm of relative

decoherence rate,

ln 1/q = ln Tdec/Tcod

Minimum

entropy ΔSop

generated

per operation,

nats/bit-op

_1101108456.ppt

Possible Adiabatic Transitions

Direction of Bias Force

Barrier

Height

0

0

0

1

1

1

1

0

N

(Ignoring superposition states.)

leak

leak

“1”

states

“0”

states

leak

leak

BFIORIDA

_1100023162.ppt

Relative decoherence rate (inverse quality factor), 1/q = Tdec/Tcod = tcod / tdec

Optimal redundancy factor Nr, in nats/bit

Exponent of factor reduction of entropy generated per bit-op,

ln (1 nat/ΔSop)

0

5

10

15

20

25

0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1

Nopt

-ln Smin

~Nopt

~-lnSmin

