
EK-SVD: Optimized Dictionary Design for Sparse Representations

Raazia Mazhar, Paul D. Gader
Department of Computer and Information Science and Engineering, University of Florida

rmazhar@cise.ufl.edu

Abstract

Sparse representations using overcomplete dictio-
naries are used in a variety of field such as pattern
recognition and compression. However, the size of
dictionary is usually a tradeoff between approxima-
tion speed and accuracy. In this paper we propose a
novel technique called the Enhanced K-SVD algorithm
(EK-SVD), which finds a dictionary of optimized size-
for a given dataset, without compromising its approx-
imation accuracy. EK-SVD improves the K-SVD dic-
tionary learning algorithm by introducing an optimized
dictionary size discovery feature to K-SVD. Optimiz-
ing strict sparsity and MSE constraints, it starts with
a large number of dictionary elements and gradually
prunes the under-utilized or similar-looking elements
to produce a well-trained dictionary that has no redun-
dant elements. Experimental results show the optimized
dictionaries learned using EK-SVD give the same accu-
racy as dictionaries learned using the K-SVD algorithm
while substantially reducing the dictionary size by 60%.

1. Introduction

Sparse signal representations using overcomplete
dictionaries are used in a variety of fields such as, pat-
tern recognition [3], image [1] and video coding [2].
Overcompleteness of a set means that it has more mem-
bers than the dimensionality of the its members. Given
an overcomplete set of basis signals, called the dictio-
nary, the goal is to express input signals as sparse linear
combinations of the dictionary members. The advan-
tage of overcompleteness of a dictionary is its robust-
ness in case of noisy or degraded signals. Also, it in-
troduces greater variety of shapes in the dictionary, thus
leading to sparser representations of a variety of input
signals.

Overcompleteness of dictionaries for sparse repre-
sentations is certainly desirable. However, there are no

set guidelines about choosing the optimal size of a dic-
tionary. For example, for an n-dimensional input sig-
nals, both a size n + 1 and 2n dictionary may be con-
sidered overcomplete. A bigger dictionary may seem to
give more variety of shapes, it also adds to approxima-
tion speed. Also, bigger may not always be better as the
dictionary can contain some similar looking elements
or some elements that are seldom used for representa-
tion. Excluding such elements can enhance the encod-
ing speed of the dictionary but will not compromise its
approximation accuracy.

In this paper, we propose a novel dictionary learning
technique that discovers an optimized number of dictio-
nary elements by reducing redundancies in the learned
dictionary. We call this method Enhanced K-SVD (EK-
SVD) as it improves upon a state-of-the-art dictionary
learning algorithm, K-SVD [4]. For a given dataset, K-
SVD learns an excellent dictionary while enforcing a
strict sparsity constraint. However, the drawback of K-
SVD is that the total number of elements K is heuristi-
cally chosen by human interpretation. Therefore, the
problem of training a good dictionary using K-SVD
boils down to the cumbersome process of manually se-
lecting a good value of K.

This drawback of K-SVD is removed by EK-SVD
as it automatically discovers the value of K during the
dictionary learning process. For this purpose, EK-SVD
uses an approach similar to the Competitive Agglomer-
ation (CA) algorithm [6] to update the dictionary coef-
ficients. CA is a clustering algorithm that discovers the
optimal partitioning as well as the optimal number of
clusters for a given dataset. Using CA-style approach
for updating dictionary coefficients helps prune seldom
used elements. If there are many similar-looking ele-
ments, this approach helps retain only those elements
that are frequently used or can be used in place of the
others. Once the correct number of clusters has been
discovered, EK-SVD uses the Matching Pursuits (MP)
[5] algorithm to learn a truly sparse and accurate dictio-
nary.

The rest of the paper is organized as follows: Section

2 introduces some of the algorithms used by EK-SVD.
Section 3 describes the K-SVD algorithm. EK-SVD al-
gorithm is defined in section 4. Exprimental results are
reported in section 6 and section 7 concludes the paper.

2. Preliminaries

2.1 Matching Pursuits Algorithm

Matching pursuits is a greedy algorithm that finds
sparse representation of a given signal x ∈ <n. Given
a set of dictionary elements D = {gj}M

j=1 in a Hilbert
space H , such that gj ∈ <n and ‖gj‖ = 1, MP approx-
imates x by iteratively projecting it onto D:

x =
t−1∑

j=0

wjgj + Rt (1)

where Rt is called the tth residue and R0 ≡ x. Also,
wj = 〈Rj , gj〉 is called the dictionary coefficient. At
each iteration, the jth dictionary element and its co-
efficient is chosen by projecting the jth residue onto
D and choosing the one with the maximum projection:
gj = gd, where d = arg max 〈x, gk〉, k ∈ {1 . . . M}.
The residue is updated as: Rj+1 = Rj − wjgj .

Final residue after t − 1 iterations is denoted by
Rx. The ordered list of dictionary elements gj is called
the projection sequence Gx = {g1, . . . , gt−1} and the
corresponding coefficients wj are denoted by Wx =
{w1, . . . , wt−1}.

2.2. Competitive Agglomeration Algorithm

The CA algorithm combines the benefits of the hier-
archical and partitional clustering algorithms as it dis-
covers the optimal number of clusters during the clus-
tering process. Given X = {xi}N

i=1, xi ∈ <n and
cluster centres B = (β1, . . . , βc), CA minimizes the
following objective function:

J(B, U,X) =
C∑

j=1

N∑

i=1

u2
ijd

2(xi, βj)−η

C∑

j=1

[
N∑

i=1

uij

]2

(2)
Subject to

∑C
j=1 uij = 1, for i ∈ {1, . . . , N}.

d2(xi, βi) measures the dissimilarity of the data
point xi to the centre βj , uij represents the degree of
membership of xi in cluster βj . The first component of
(2) tries to minimize the dissimilarity between a clus-
ter centre and its members and the second component
tries to minimize the total number of clusters. When
both components are combined and η is chosen prop-
erly, the final partition will minimize the sum of intra-
cluster distances, while partitioning the dataset into the

smallest possible number of clusters. Hence the CA al-
gorithm reduces redundancies in cluster representatives
by merging together similar clusters, while preserving
dissimilar clusters.

2.3 MP Based Similarity Measure

In [3] the Matching Pursuits based Similarity Mea-
sure (MPSM) is proposed and used with the CA algo-
rithm. MPSM uses the residue and coefficient infor-
mation provided by the MP algorithm to compare two
signals:

d2(x1, x2) = α‖Rx2
x1
−Rx2‖2+(1−α)‖W x2

x1
−Wx2‖2,

(3)
where Rx2

x1
and W x2

x1
respectively represent the residue

and coefficients of x1 when projected onto the projec-
tion sequence Gx2 of the signal x2.

3. The K-SVD Algorithm

The K-SVD algorithm generalizes the K-means clus-
tering algorithm by relaxing the K-means constraint of
using only one cluster to represent each xi. It treats the
dictionary elements gj as the cluster centers and the co-
efficents wij as membership of a signal xi into cluster
gj . K-SVD minimizes the following:

min
D,W

{‖X −DW‖2F } (4)

Subject to ‖wi‖0 ≤ T0, for i ∈ {1, . . . , N}.
X ∈ <nxN is a column matrix of all signals xi:

X = [x1| . . . |xN]. D ∈ <nxM is a column ma-
trix of all dictionary elements: D = [g1| . . . |gM] and
W ∈ <MxN is a matrix of all coefficients of xi corre-
sponding to dictionary element gj and wi is one row of
W corresponding to coefficients of xi. ‖.‖0 is called the
l0 norm and counts the number of non-zero elements in
a vector. Thus K-SVD enforces a strict sparsity con-
straint on wi. ‖A‖F is called the Frobenius norm and is

defined as ‖A‖F =
√∑

ij A2
ij .

Like K-means, K-SVD uses a two phase approach
to update the values of W and D. In the first phase,
the dictionary coefficients are updated using MP. In the
second phase, D and W are assumed to be fixed and
only one column gk of D is updated at a time. Let the
kth row in W that gets multiplied with gk be denoted by
wk. Then gkwk can be separated from (4) as follows:

‖X −DW‖2F =
∥∥Ek − gkwk

∥∥2

F
(5)

where Ek = (X − ∑
j 6=k gjw

j) is the approximation
error of all xi when the kth atom is removed. The Sin-
gular Value Decomposition (SVD) of Ek will produce

the closest rank-1 matrix that minimize the above error.
After removing columns from Ek that do not use gk,
SVD of Ek yields Ek = U∆V T . The gk is replaced
with the first column of U and wk with the first col-
umn of V . All dictionary elements gj are updated using
the same method. Iterating through the two phases of
K-SVD produces dictionary that approximates given xi

sparsely and accurately.

4. The Enhanced K-SVD Algorithm

The dictionary learning capabilities of K-SVD and
pruning capabilities of the CA algorithm can be com-
bined to learn optimal dictionaries. The idea is that in
the first phase of K-SVD, instead of using MP to up-
date coefficients gk, use the CA algorithm. The dic-
tionary elements gj are treated as the cluster centers
and the memberships uij of signal xi in the cluster gj

are derived from the coefficients wij . Memberships of
dispensable dictionary elements are progressively made
smaller and thus diminished over a few iterations. Such
elements can then be pruned. Thus the optimal dictio-
nary design algorithm is defined by the following ob-
jective function:

J(D,U,X) =
M∑

j=1

N∑

i=1

u2
ijd

2(xi, gj)−η

C∑

j=1

[
N∑

i=1

uij

]2

(6)
Subject to

∑C
j=1 uij = 1− R̂xi , for i ∈ {1, . . . , N}.

Note that (6) is same as the CA objective func-
tion, except the constraint. In (6)R̂xi is the normalized
residue of the signal xi and is defined as:

R̂xi =
‖Rxi‖2
‖xi‖2

(7)

MPSM is used as the dissimilarity measure between
xi and gj . Since gj is a dictionary element, its projec-
tion sequence contains only itself, i.e. Wgj = {gj}.
Therefore MPSM reduces to:

d2(x1, x2) = α‖xi−wijgj‖2+(1−α)‖wij−1‖2. (8)

The interpretation of uij is interesting as they build
the bridge between CA and K-SVD algorithms. The
relationship between uij and wij is defined as:

uij =
|wj |2
‖xi‖2

(9)

Therefore the constraint in (6) states that the sum of
normalized coefficients wij and the normalized residue
R̂xi should sum to one. However the values of uij are

updated by minimizing (6). For this purpose, we apply
Lagrange multipliers to obtain:

J =
M∑

j=1

N∑

i=1

u2
ijd

2(xi, gj)− η

C∑

j=1

[
N∑

i=1

uij

]2

−
N∑

i=1

λi




C∑

j=1

uij − 1 + R̂xi




Assuming D and X fixed, we obtain:

∂J(D,U,X)
∂ust

= 2ustd
2(xs, gt)− 2η

N∑

i=1

uit − λs = 0

(10)

⇒ ust =
2ητt + λs

2d2(xs, gt)
(11)

where τt =
∑N

i=1 uit. For computational ease, τt from
previous iteration is used as the values are assumed to
not change drastically over consecutive iterations. To
solve for λs, apply the constraint in (6) to (11):

M∑
t=1

2ητt + λs

2d2(xs, gt)
= 1− R̂xs (12)

By rearranging terms we get:

λs = 2

(
1− R̂xs∑M

t=1 δst

− η

∑M
t=1 δstτt∑M
t=1 δst

)
(13)

where δst = 1
d2(xs,gt)

. Putting (13) in (11):

uij = (1− R̂xi)
δij∑M

t=1 δij

+ ηδij

(
τj −

∑M
t=1 δstτt∑M
t=1 δst

)

(14)
⇒ uij = (1− R̂xi)u

(Update) + ηu(Prune) (15)

where the definitions of u(Update) and u(Prune) follow
from (14). When u(Update) dominates (15), the value of
uij is updated as usual and when u(Prune) dominates,
the value of uij may be increased or decreased based on
the usage of gj . A method for calculating η is discussed
in [6].

Once all uij have been updated, equation (9) can be
used to find the corresponding wij . Sign of wij can be
resolved by inspecting the sign of projection of xi onto
gj . The algorithm then updated the dictionary elements
gj using the K-SVD algorithm and these computed wij .
R̂xi is assumed to be constant during the iteration of
CA. Once the dictionary has been updated, the value of
R̂xi is updated using the MP algorithm. CA iterations
continue while the average R̂xi stays below the desired
threshold. Average R̂xi can go up during an iteration

where a few dictionary elements are dropped simulta-
neously. But it comes down in successive iterations.
In the early pruning stages of the algorithm, the coeffi-
cients chosen by the CA algorithm may not be optimal
in terms of sparse representation. But once the correct
number of dictionary elements has been discovered, the
coefficients wij can be chosen according to the strict
sparsity constraint of the K-SVD algorithm using the
standard MP algorithm.

5. Experimental Results

The goal of our experiments is to show that a smaller
dictionary learned using EK-SVD can achieve the per-
formance of a bigger dictionary learned using the K-
SVD algorithm. The training data consisted of 11000
block patches of size 8x8 pixels taken from facial im-
ages from a publicaly available face images database
[7]. Random face images from database that were not
used for training were chosen as the test images.

Since in [4], K was set to 441, we also trained K-
SVD with K = 441 and T0 = 6. EK-SVD was also
initialized at M = 441 and T0 = 6. For demonstration
purposes, EK-SVD was allowed to run till M = 1 and
at each pruning step, test images were approximated us-
ing the intermediate dictionary. Figure 1 shows the av-
erage root mean square error (RMSE) of all test images
against the dictionary size M. The value at M = 441
is the performance of K-SVD. The RMSE stays almost
constant till the dictionary size is reduced to about 40%
of its size before it starts increasing. During actual train-
ing, accuracy goals were set same as K-SVD and EK-
SVD learned the dictionary with M = 179.

Figure 2 shows two test images approximated using
K-SVD and EK-SVD dictionary. For images 1 and 2,
both K-SVD and EK-SVD produce the RMSE of 0.03
and 0.02 respectively. The EK-SVD dictionary thus
gives the approximation accuracy similar to the K-SVD
dictionary. But it has a huge speed advantage as EK-
SVD dictionary is 60% smaller than the K-SVD dictio-
nary.

6. Conclusion

In this paper we introduced a novel dictionary learn-
ing technique EK-SVD that discovers the correct num-
ber of dictionary elements during dictionary learning,
for a given dataset. We demonstrated its enhancement
over K-SVD by achieving the same approximation ac-
curacy with a much smaller dictionary.

References

[1] A. E. Moghadam, S. Shirani. Matching Pursuit-Based
Region-of-Interest Image Coding. IEEE Trans. Image Pro-
cessing, 16(2), February 2007.

[2] R. Neff, A. Zakhor. Very Low Bit-Rate Video Coding
Based on Matching Pursuits IEEE Trans. Circuits and Sys-
tems, 7(1), February 1997.

[3] R. Mazhar, P. D. Gader, J. N. Wilson. A Matching Pursuit
Based Similarity Measure for Fuzzy Clustering and Clas-
sification of Signals. IEEE intl. conf. Fuzzy Systems, June
2008.

[4] M. Aharon, M. Elad, A. Bruckstein. K-SVD: An Algo-
rithm for Designing Overcomplete Dictionaries for Sparse
Representation. IEEE Trans. Signal Processing, 54(11),
November 2006.

[5] S. G. Mallat, Z. Zhang. Matching Pursuits With Time-
Frequency Dictionaries. IEEE Trans. Signal Processing,
41(12), December 1993.

[6] H. Frigui, R. Krishnapuram. Clustering by Competitive
Agglomeration. Pattern Recognition, 30(7): 1109–1119,
1997.

[7] Yale Face Database. http://cvc.yale.edu/projects/ yale-
faces/yalefaces.html

50 100 150 200 250 300 350 400
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Dictionary Size (M)

R
M

S
E

Figure 1. EK-SVD Iterations

Original Image K−SVD Coded EK−SVD Coded

Figure 2. Dictionaries Comparison

