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Abstract. A well-documented problem of Catmull and Clark subdivisisthat,
in the neighborhood of extraordinary point, the curvatsraribounded and fluc-
tuates. In fact, since one of the eigenvalues that detemeliiptic shape is too
small, the limit surface can have a saddle point when thegdess input mesh
suggests a convex shape. Here, we replace, near the ekteagnooint, Catmull-
Clark subdivision by another set of rules derived by refin@gh bi-cubic B-
spline into nine. This provides many localized degrees eédom for special
rules so that we need not reach out to, possibly irreguléghber vertices when
trying to improve, or tune the behavior. We illustrate atsgs how to sensibly
set such degrees of freedom and exhibit tuned ternary qumlilgsion that yields
surfaces with bounded curvature, nonnegative weightswhcdntribution of el-
liptic and hyperbolic shape components.
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1 Introduction

Tuning a subdivision scheme means adjusting the subdivisiles or stencils to obtain
a refined mesh and surface with prescribed properties. 1 tiare exists no subdi-
vision algorithm on quadrilateral meshes that yields baghcurvature while guaran-
teeing the convex hull property at the extraordinary nodlag paper proposes ternary
refinement to obtain such a scheme. Ternary subdivisiomsoffre parameters in a
close vicinity of each extraordinary node to tune the susdin than binary subdivi-
sion does and thereby localizes the tuning. Ternary quadigslon generalizes the
splitting of each quad into nine. If all nodes of a quad areaémce 4, the rules for
bi-cubic B-splines shown in Figure 3 are applied and we haveddtinuity. The chal-
lenge is with nodes of valence other than 4, called extraargtinodes. In particular, we
can devise rules at the extraordinary nodes and their nawated direct and diagonal
neighbors to achieve

— eigenvalues in order of magnitudelas\, A\, A2, A2, \2,
Aiy...and0 < |\ < L fori=7,.,2n+1; and
— nonnegative weights.

It is possible to get, in additiony, = 1/3. Yet, Figure 2 shows that the macroscopic
shape of the new scheme and Catmull-Clark are very similgu(€ 2), but, of course,
the mesh is denser.
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Fig. 1. (left) Control net:z, y the characteristic map of Catmull-Clark subdivision and 50(1—
x? — 5y?); subdivision steps 3,4,5 and surface for Catmull-Clarkdatibion (op) and ternary
subdivision botton).
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Subdivision

Fig. 2. Three steps of Catmull-Clark subdivisideff) and ternary subdivisiorright).



1.1 Background

Subdivision is a widely adopted tool in computer graphicd @snalso making inroads
into geometric modeling, if only for conceptual modelingawever, [5] pointed out that
Catmull-Clark subdivision in particular, is lacking thdlfset of elliptic and hyperbolic
subsubdominant eigenfunctions and theretgpecally generates saddle shapes in the
limit at vertices with valence greater than four (see Fidutep). This implies that any
high-quality (standard, symmetric) scheme needs to hape@rsimi, A, A, A2, A2, \2
followed by smaller terms. With the strategy explained ia tbllowing, it is possible
to achieve such a spectrum by making subdivision stencés the extraordinary point
depend on the valence (Figurdattorm). While such localized improvement cannot be
expected to produce high-quality surfaces in all cases\itarth seeing whether such
improvements can lead to improved rules that are easy taitutbgor the known unsat-
isfactory rules. A major challenge is technical: there atteee too few or far too many
free parameters occuring in nonlinear inequality constsaiT his makes any selection
by general optimization [1] impractical. In [3, 4], Loop mased improvements to his
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Fig. 3. The regular (bicubic B-spline refinement) stencils of Cdtr@lark (left) and ternary quad
subdivision fight).

well-known triangular scheme on triangular meshes to aettieth bounded curvature
for a binary and ternary schemes. To derive weights, he used-fiegree interpolation
of known weights to setnanyunknown weights and reduce the number of free pa-
rameters. But quad mesh schemes are far more difficult thergtrlar mesh schemes
since the leading eigenvalues come from a 2 by 2 diagonakbiwatrix rather than
from a 1 by 1 block. They are therefore the roots of quadratigromials while, in
the case of triangular meshes, the eigenvalue is simplenSated facets, the problem
is even more complex due tbx 4 blocks but can be avoided by applying one initial
Catmull-Clark subdivision step.

2 Problem Statement

We want to derive a ternary, quad subdivision scheme th#&i®sary, (rotational and
p-mirror) symmetric and affine invariant. Then the leadifgpavalues are, in order of



magnitudel, A\, A\, u1, p2, 3. To achieve bounded curvature, the convex hull property,
the eigenvalues and the weights, 3;, i, ; andv; of the ternary quad scheme (see
Figure 4) have to satisfy the following constraints:

@) C' scheme |1 > X > p;, and the characteristic map is regular and injectiv
(ii) [Bounded Curvaturgu; | = |pa| = |us| = A2

(III) Convex Hull a; > 0, ﬁz >0,v >0, 0; > 0,2=0.n—1, wvi,v2 >0,
co=1— 70 (@i + i) 20, fo:= 13775 (i + ) >0,
v i=1— 300 (vi) > 0.

(IV) Symmetry ap = Oénfhﬂl = ,@n,1,l7’yl = Y(n+1-1) mod n, andél = (Snfl

Y

We focus on the leading eigenvalues and hence the 1-ringrifaianesh around
extraordinary point and its eigenstructure. As shown iruFégd, each refinement step
generates three types of points corresponding to vergéckges and faces respectively.
Letn be the valence of a generic extraordinary point. We havbaoff 4n + 2 weights
to determine. Symmetry reduces thito-+ 4 free parameters.
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Fig. 4. Refinement stencils used at an extraordinary point .

3 Spectral Analysis

The 1-ring subdivision matrix S with the control vertice®sim in Figure 4 is:

Vo| U1 V2 U1 U2 -+ U1 V2

eol ag  Bo o1 B a1 Bua
fol 0 b0 Y101 Yno1 Oni
eolon—1 Bn-1 00 Bo - n_2 Bn_2
S = Jol -1 0n—1 70 do -+ Yn-2 On—2

c R@nH1)x(2n+1)

eol a1 P e fa-- ag fo
fol 1 61 22+ v do




Now denote the discrete Fourier transform of a cyclic seqeé¢n; } by
n—1
q;i = Z (bjwi’j, wh = e _127_:%]"
j=0

Lemmal The spectrum of Sid = diag(1, A\J, Ay, A, A7, -+ . A1 A ) where

N (G&i +0;) + \/(di — 0;)% + 484
(N 2 9
Proof. Since the 2nx 2n lower block matrix of S is cyclic, we can apply the discrete

Fourier transform
P 1 0
0 ®(wh)

volnvr nus 0 0 ---
€o do ﬁo 00 ---
fol %0 do 00---
' ol 00 4161 -

i=1...n—1. (1)

to obtain

O O O OO
o O O OO

el 0 0 0 0 -dnq B
fO 0 0 00 "'ﬁ/n—l 6n—1
The eigenvalues, \j, and\; come from the firs8 x 3 block. Each 2x 2 diagonal
block .
(aﬁ> i=1...n—1,
Yi 0i
contributes the pair of eigenvalues (1). a

By (iv) and since\; and\’_, are complex conjugate, we anticipate the following
lemma.

Lemma2 A\ = \f A=A\, and X, A7 eR.

n—i’ 7 AREA)

Proof. By symmetry (iv),

. 2322 qj cos 24 if n is odd
Q; = Qg + %,1 2mij L. . (2)
2274 ajcos + az cosmiifnis even

n

Sincecos 224 = cos 22=9I andcos(ri) = 1 when i is eveng@; = a,_; € R. The
n n

same reasoning appliesdg ;e and¥,e~ = since, e.g.

A ox 22%_16‘(308@4_571.71 cosmi ifnisodd
Bient = J=0 J n = (3)

n_y )i .
2577 B cos Gritm if nis even

Therefore\ = \X*, € R as claimed. O



Forn = 4 the subdivision stencils are shown in Figure 3. Based orstifiglivision
matrix, we can compute the mattixin Section 3 and therefore compute explicitly the
expansions collected in Lemma 3.

Lemma 3 In the regular setting. = 4),

337 19 1 19
~4 A4 A4 A4 vt 2y - =Y
[ 62, &l = 759 5 9 510

wi an ms 88 4v/2 42
4 Zi N4 _Zi A4 Zi H4 Tgqy _
[608 7618 aﬁQe aﬁ?,e ] - [7297 81 707 81 ]7

[A4e e nt Ake—nt A4 f*i] [ﬂ M 0 _M]
Yo 771 772 yV3€ 7297 ]1 (g ]1 )

121 11 1 11
[ ’ [ ] (4)
729 81°9° 81

[535 Sil’ S%’ Sél]

4 Deriving Weights by Interpolating the Regular Case

The idea of deriving extraordinary rules is inspired by Lsapproach [4]. First, we
interpolate the regular stencil by a polynomial. Such a pofyial, says™, will be
evaluated to define the coefficierziiﬁ Forn = 4, due to symmetry, the constraints on
the polynomials™ are"(cos Z) = - and" (cos 22) = 2. The linear interpolant
to these values is negative on some subintervdhdf, 1] and therefore cannot give
suitable coefficientg! > 0 for n > 4. Adding the constraing™(—1) = 0 yields the
polynomial

1
729

which is nonnegative of-1, 1]. We conjecture the general formulae for arbitrary
based on the polynomials of the same low degree and choose

Bit) == ((44 18V (1 — 1)% + (44 — 9V2)24(1 — 1) + (36\/§)t2)

4 16
a’(t) :==an ((t +bp1)? + Cn,l), B = 5547 A= ;547
o (t) = Qn,4 ((t + bn,4)2 —+ C'n.,4) . (5)

Now, we predict the general formulae for any> 4 by evaluating the polynomials at
the z-component of points equally distributed over the unitleird his yields two of
the three types of stencils at the extraordinary point aadds, as degrees of freedom,
the coefficients depending aenin (5).

Lemma4 The subdivision rules, for valeneeandj = 0...n — 1 can be chosen as

2
af i=a"(u), 0 :=0"(u), wu:=-cos % (6)
n on o 2+ 7 n._ o n - 2] — 7
B} = B"(vy), vy = cos — vj =7"(v-), wv- =cos -



where

(7)

Qn,1 =
Note that, together witf¥ and~, equations (7) yield explicit expressions ﬁqu and)\gE
in terms of the the coefficients, 1, by, 1, ¢n. 1, Gn 4, bp 4, Cp 4.

Proof. By symmetry, the weights are a discrete cosine transfoomati their Fourier
coefficients:

1 «— 2m] 1 Y 2mi) + 7y
5;@ R
1 omij — ] 1l 27isj
W?ZEZ%RCOST’ 5;’=E26;?cos —
=0 j=0

Forn = 4, we verify the consistency of the choice (6) by substitutihginto (8).

1 19, 151 1 11 41
of = 5w+ 18) taa) 0= et )~ 55)-

Next, we decompose the polynomial into a vector of basistfans and a vector of
coefficients:

2 2 2 1 1 T
an,1 ((U+bn1) +Cn,1) = [L u, 2u _1][an,lbml+§an,l+an,1cn,17 2an,1bn,17 §an,l]

We mimic this decompostion far > 4, by choosingi}* = 0 for 2 < i < n — 2. Then

1 2mig 27 dmi, 1 2
al! = - Zd? cos 7;] = [1, cos %,cos %][Edg’ Ed’f

2 o7
—Q .
n 2

Sincecos 2 = v, we havecos 2= = 2u* — 1 and comparison of terms yields

2 .0 1 2 .,
2Qn,1bn,1 = Eal, and Ean’l = EOZ?'
Solvinga, 1, b, in terms ofa?, 4%, n, and similarly ford?, yields (7). 0

The rules of Lemma 4 preserve rotational and p-mirror symyn€orn > 4, they
reduce the free parameters fram + 4 to six, namelya,, ;, by, i, ¢ni, @ = 1,4. (For

n = 3 we use the originatn + 4 = 10 free parameters to enforeg” = \, A\ =
AN = A% A < A%) It remains need to determine the six free parameters
so that forn > 4 the weigthsa;, 05, v1, ve, €o, fo, vo are nonnegative; and-~; are
nonnegative sincg* > 0 on|[-1,1]) and

A:dl&ldl,/\f,)\f{ 1,A;,A:72,ASF,V1,V2,...,V2n75) (9)
=diag 1, \, A, A2 0% 020000 N, ..)),  where 0 < |\] < A2
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By (1), and sincey,, and 3, are fixed, each of the constraimg = X and\y = )2

is an equation in the parametets, 1, b, 1, an 4, b, 4, explicitly so due to (7). The
additional necessary constrail;\l;f = /\2,)\5 < A2 is enforced by choice of, v,

in the first 3 by 3 block of@. The result is an underconstrained system with linear
inequality constraints. We find, for example, the closedrfgolution forn = 5...10
stated in Lemma and yielding the elliptic and saddle shapes shown in Figure 7

Lemma5 Forn = 5..10, the following choice satisfies (i)-(iv) and= 1/3:

413
an,1 = y bn,l = .624, Cn,1 = .229
n
.260
Gn,4 = —, bn,4 = .286, Cn,4a = .058 (10)
n

Proof. We need only verify (i), (i) and (iii) listed in Section 2 sia the scheme is
symmetric by construction. Table 1 shows all eigenvalukerthant, 7, . &, &, 3 for

n = 3...10. In particular,A\; = \,,—1 = % is the subdominant eigenvalue. Table 2
verifies nonnegative weights summing to 1. The u-differepsealed to unit size, fall
strictly into the lower right quadrant and, by symmetry, vheifferences fall strictly into
the upper right quadrant (Figure 6). The partial derivatiaee a convex combination of
the differences and hence all pairwise crossproducts aotlysipositive. By [8], the
characteristic map is regular. In addition, as shown in Fd the first half-segment of
the control net does not intersect the negative x-axis. Byctimvex hull property and
[7] Theorem 21, injectivity of the characteristic map folle. a

v; | n=3|{n=4| n=5| n=6| n=7 [ n=8 | n=9 |n=10|
v [-.063].037| .057| .057] .057] .057| .057| .057
vo | --+ |.037|.057|.057|.057|.057|.057| .057
vs | --- |.012-.023-.012/-.002| .009| .019| .030
vgl|---|---]-.001-.001f-.001]-.001-.001{-.001
vs |-+ |-+ ]-.001-.001{-.001]-.001-.001{-.001
ve |- [ € € € € €
12 IR IR B € € € €
vg | [ € € € €
123 IR I B € € € €
vig| o [ € € €
2253 IR I B € € €
720 EER R e o€ €
vigf o | € €
via| e | e €
Vis| - €

Table 1. Eigenvalues (see 9) other thant, 1,2 1 1 forn =3..10. 0 < |¢| < .001

The main contribution of the paper is technical: to providmanageable set of
parameters that make it easy to satisfy the formal conssréir-(iv). This set can be
further pruned by minimizing regions of meshes where thesehexhibits hybrid be-
havior [5], i.e. the Gauss curvature is not uniquely of orgmsn the limit. It should
be noted that this is typically not enough to guarantee sarfairness, for example to
avoid undue flatness when convexity is indicated by the ocbntesh.
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Fig. 5. Control polyhedron of the characteristic map for= 3..10. Injectivity test: each red fat

segment does not intersect the negative x-axis.

KOO
DO E

Fig. 6. The normalized differences in thedirection greer) andv direction plue).
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weights| n=3|n=4|n=5|n=6|n=7|n=8|n=9|n=10
vo |.524{.495.460.470.481.491.502 .512
v |.119.104.098.078.064.053.044 .038
vy [.040.022.010.010.010.010.010 .010
eo |.550.417.417).417|.417).417).417| .417
ap |.291).261.237).198.169.148.132.119
Bo |.062.055.047.042(.037.033.030 .027
a1 |.009.088.091.103.105.103.099 .094
£1 1.018.005.012.017.019.020.020 .020
az | ---1.026.022.017|.023.032/.040 .045
Ba ---1.0001.002.0041.007/.009 .010
Qs ---1.025.018.012.011] .014
Bs .0001.001{.002 .003
Qq ---1.019.015/.011
Ba ---1.000 .000
as P e S i IO O IR I 0 I 5
fo 1.309.351{.351.351].351.351{.351 .351
do |.1801.137.089.074.063.056/.049 .044
Y1 = 70/|.226(.219.191.167|.148.132.118 .108
o1 .017,.014{.021{.029.033.034{.034| .033
~v2 |.023.022.050.068.077.080.080 .079
02 ---1.0014.017.004{.002/.005/.008 .011
3 ---1.000.006/.017.027).035| .041
03 - 1.0241.000.008.003 .002
Ya ---1.078.003.007.013
04 ---1.018.014{ .009
5 ---1.000 .001
05 . .015

Table 2. The subdivision rule
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