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Abstract. A well-documented problem of Catmull and Clark subdivisionis that,
in the neighborhood of extraordinary point, the curvature is unbounded and fluc-
tuates. In fact, since one of the eigenvalues that determines elliptic shape is too
small, the limit surface can have a saddle point when the designer’s input mesh
suggests a convex shape. Here, we replace, near the extraordinary point, Catmull-
Clark subdivision by another set of rules derived by refiningeach bi-cubic B-
spline into nine. This provides many localized degrees of freedom for special
rules so that we need not reach out to, possibly irregular, neighbor vertices when
trying to improve, or tune the behavior. We illustrate a strategy how to sensibly
set such degrees of freedom and exhibit tuned ternary quad subdivision that yields
surfaces with bounded curvature, nonnegative weights and full contribution of el-
liptic and hyperbolic shape components.
Keywords: Subdivision, ternary, bounded curvature, convex hull

1 Introduction

Tuning a subdivision scheme means adjusting the subdivision rules or stencils to obtain
a refined mesh and surface with prescribed properties. To date, there exists no subdi-
vision algorithm on quadrilateral meshes that yields bounded curvature while guaran-
teeing the convex hull property at the extraordinary nodes.This paper proposes ternary
refinement to obtain such a scheme. Ternary subdivision offers more parameters in a
close vicinity of each extraordinary node to tune the subdivision than binary subdivi-
sion does and thereby localizes the tuning. Ternary quad subdivision generalizes the
splitting of each quad into nine. If all nodes of a quad are of valence 4, the rules for
bi-cubic B-splines shown in Figure 3 are applied and we have C2 continuity. The chal-
lenge is with nodes of valence other than 4, called extraordinary nodes. In particular, we
can devise rules at the extraordinary nodes and their newly created direct and diagonal
neighbors to achieve

– eigenvalues in order of magnitude as1, λ, λ, λ2, λ2, λ2,
λi, . . . and0 ≤ |λi| < 1

9 for i = 7, .., 2n + 1; and
– nonnegative weights.

It is possible to get, in addition,λ = 1/3. Yet, Figure 2 shows that the macroscopic
shape of the new scheme and Catmull-Clark are very similar (Figure 2), but, of course,
the mesh is denser.
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Fig. 1. (left) Control net:x, y the characteristic map of Catmull-Clark subdivision andz = 50(1−
x2 − 5y2); subdivision steps 3,4,5 and surface for Catmull-Clark subdivision (top) and ternary
subdivision (bottom).

Fig. 2. Three steps of Catmull-Clark subdivision (left) and ternary subdivision (right).
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1.1 Background

Subdivision is a widely adopted tool in computer graphics and is also making inroads
into geometric modeling, if only for conceptual modeling. However, [5] pointed out that
Catmull-Clark subdivision in particular, is lacking the full set of elliptic and hyperbolic
subsubdominant eigenfunctions and thereforetypically generates saddle shapes in the
limit at vertices with valence greater than four (see Figure1 top). This implies that any
high-quality (standard, symmetric) scheme needs to have a spectrum1, λ, λ, λ2, λ2, λ2

followed by smaller terms. With the strategy explained in the following, it is possible
to achieve such a spectrum by making subdivision stencils near the extraordinary point
depend on the valence (Figure 1bottom). While such localized improvement cannot be
expected to produce high-quality surfaces in all cases, it is worth seeing whether such
improvements can lead to improved rules that are easy to substitute for the known unsat-
isfactory rules. A major challenge is technical: there are either too few or far too many
free parameters occuring in nonlinear inequality constraints. This makes any selection
by general optimization [1] impractical. In [3, 4], Loop proposed improvements to his
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Fig. 3. The regular (bicubic B-spline refinement) stencils of Catmull-Clark (left) and ternary quad
subdivision (right).

well-known triangular scheme on triangular meshes to achieve both bounded curvature
for a binary and ternary schemes. To derive weights, he used fixed-degree interpolation
of known weights to setmanyunknown weights and reduce the number of free pa-
rameters. But quad mesh schemes are far more difficult than triangular mesh schemes
since the leading eigenvalues come from a 2 by 2 diagonal block matrix rather than
from a 1 by 1 block. They are therefore the roots of quadratic polynomials while, in
the case of triangular meshes, the eigenvalue is simple. Forn-sided facets, the problem
is even more complex due to4 × 4 blocks but can be avoided by applying one initial
Catmull-Clark subdivision step.

2 Problem Statement

We want to derive a ternary, quad subdivision scheme that is stationary, (rotational and
p-mirror) symmetric and affine invariant. Then the leading eigenvalues are, in order of
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magnitude,1, λ, λ, µ1, µ2, µ3. To achieve bounded curvature, the convex hull property,
the eigenvalues and the weightsαi, βi, γi, δi andvi of the ternary quad scheme (see
Figure 4) have to satisfy the following constraints:

(i) C1 scheme 1 > λ > µi, and the characteristic map is regular and injective.
(ii) Bounded Curvature|µ1| = |µ2| = |µ3| = λ2.
(iii) Convex Hull αi ≥ 0, βi ≥ 0, γi ≥ 0, δi ≥ 0, i = 0..n − 1, v1, v2 ≥ 0,

e0 := 1 −
P

n−1
i=0 (αi + βi) ≥ 0, f0 := 1 −

P

n−1
i=0 (γi + δi) ≥ 0,

v0 := 1 −
P2

i=1(vi) ≥ 0.

(iv) Symmetry αl = αn−l, βl = βn−1−l, γl = γ(n+1−l) mod n, andδl = δn−l

We focus on the leading eigenvalues and hence the 1-ring of control mesh around
extraordinary point and its eigenstructure. As shown in Figure 4, each refinement step
generates three types of points corresponding to vertices,edges and faces respectively.
Let n be the valence of a generic extraordinary point. We have, offhand,4n+2 weights
to determine. Symmetry reduces this to2n + 4 free parameters.
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Fig. 4. Refinement stencils used at an extraordinary point .

3 Spectral Analysis

The 1-ring subdivision matrix S with the control vertices shown in Figure 4 is:

S :=



























v0 v1 v2 v1 v2 · · · v1 v2

e0 α0 β0 α1 β1 · · · αn−1 βn−1

f0 γ0 δ0 γ1 δ1 · · · γn−1 δn−1

e0 αn−1 βn−1 α0 β0 · · · αn−2 βn−2

f0 γn−1 δn−1 γ0 δ0 · · · γn−2 δn−2

...
...

...
...

...
. . .

...
...

e0 α1 β1 α2 β2 · · · α0 β0

f0 γ1 δ1 γ2 δ2 · · · γ0 δ0



























∈ R
(2n+1)×(2n+1).
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Now denote the discrete Fourier transform of a cyclic sequence{φi} by

φ̂i :=

n−1
∑

j=0

φjω
i,j , wi,j := e

√
−1 2π

n
ij .

Lemma 1 The spectrum of S isΛ = diag(1, λ+
0 , λ−

0 , λ+
i , λ−

i , · · · , λ+
n−1, λ

−
n−1) where

λ±
i :=

(α̂i + δ̂i) ±
√

(α̂i − δ̂i)2 + 4β̂iγ̂i

2
, i = 1 . . . n − 1. (1)

Proof. Since the 2n× 2n lower block matrix of S is cyclic, we can apply the discrete
Fourier transform

F :=

(

1 0
0 I2

⊗

(ωi,j)

)

to obtain

Q := F−1SF =





























v0 nv1 nv2 0 0 · · · 0 0

e0 α̂0 β̂0 0 0 · · · 0 0

f0 γ̂0 δ̂0 0 0 · · · 0 0

e0 0 0 α̂1 β̂1 · · · 0 0

f0 0 0 γ̂1 δ̂1 · · · 0 0
...

...
...

...
...

. . .
...

...
e0 0 0 0 0 · · · α̂n−1 β̂n−1

f0 0 0 0 0 · · · γ̂n−1 δ̂n−1





























.

The eigenvalues1, λ+
0 , andλ−

0 come from the first3 × 3 block. Each 2× 2 diagonal
block

(

α̂i β̂i

γ̂i δ̂i

)

, i = 1 . . . n − 1,

contributes the pair of eigenvalues (1). ⊓⊔
By (iv) and sinceλ+

i andλ+
n−i are complex conjugate, we anticipate the following

lemma.

Lemma 2 λ+
i = λ+

n−i, λ−
i = λ−

n−i, and λ+
i , λ−

i ∈ R.

Proof. By symmetry (iv),

α̂i = α0 +

{

2
∑

n−1

2

j=1 αj cos 2πij

n
if n is odd,

2
∑

n

2
−1

j=1 αj cos 2πij

n
+ αn

2
cosπi if n is even.

(2)

Sincecos 2πij

n
= cos 2π(n−i)j

n
andcos(πi) = 1 when i is even,̂αi = α̂n−i ∈ R. The

same reasoning applies toδ̂i, β̂ie
π

n
i andγ̂ie

−π

n
i since, e.g.

β̂ie
π

n
i =

{

2
∑

n−1

2
−1

j=0 βj cos (2πj+π)i
n

+ βn−1

2

cosπi if n is odd,

2
∑

n

2
−1

j=0 βj cos (2πj+π)i
n

if n is even.
(3)

Therefore,λ±
i = λ±+

n−i ∈ R as claimed. ⊓⊔
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Forn = 4 the subdivision stencils are shown in Figure 3. Based on thissubdivision
matrix, we can compute the matrixQ in Section 3 and therefore compute explicitly the
expansions collected in Lemma 3.

Lemma 3 In the regular setting (n = 4),

[α̂4
0, α̂

4
1, α̂

4
2, α̂

4
3] = [

337

729
,
19

81
,
1

9
,
19

81
],

[β̂4
0e

π

n
i, β̂4

1e
π

n
i, β̂4

2e
π

n
i, β̂4

3e
π

n
i] = [

88

729
,
4
√

2

81
, 0,−4

√
2

81
],

[γ̂4
0e−

π

n
i, γ̂4

1e−
π

n
i, γ̂4

2e−
π

n
i, γ̂4

3e−
π

n
i] = [

352

729
,
16

√
2

81
, 0,−16

√
2

81
],

[δ̂4
0 , δ̂4

1 , δ̂
4
2 , δ̂

4
3 ] = [

121

729
,
11

81
,
1

9
,
11

81
]. (4)

4 Deriving Weights by Interpolating the Regular Case

The idea of deriving extraordinary rules is inspired by Loop’s approach [4]. First, we
interpolate the regular stencil by a polynomial. Such a polynomial, sayβn, will be
evaluated to define the coefficientsβn

i . Forn = 4, due to symmetry, the constraints on
the polynomialβn areβn(cos π

n
) = 40

729 andβn(cos 3π
n

) = 4
729 . The linear interpolant

to these values is negative on some subinterval of[−1, 1] and therefore cannot give
suitable coefficientsβn

i ≥ 0 for n > 4. Adding the constraintβn(−1) = 0 yields the
polynomial

β4(t) :=
1

729

(

(44 − 18
√

2)(1 − t)2 + (44 − 9
√

2)2t(1 − t) + (36
√

2)t2
)

which is nonnegative on[−1, 1]. We conjecture the general formulae for arbitraryn
based on the polynomials of the same low degree and choose

αn(t) := an,1

(

(t + bn,1)
2 + cn,1

)

, βn :=
4

n
β4, γn :=

16

n
β4,

δn(t) := an,4

(

(t + bn,4)
2 + cn,4

)

. (5)

Now, we predict the general formulae for anyn > 4 by evaluating the polynomials at
thex-component of points equally distributed over the unit circle. This yields two of
the three types of stencils at the extraordinary point and leaves, as degrees of freedom,
the coefficients depending onn in (5).

Lemma 4 The subdivision rules, for valencen andj = 0 . . . n − 1 can be chosen as

αn
j := αn(u), δn

j := δn(u), u := cos
2πj

n
, (6)

βn
j := βn(v+), v+ := cos

2πj + π

n
, γn

j := γn(v−), v− = cos
2πj − π

n
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where

an,1 :=
4

n
α̂n

2 , bn,1 :=
α̂n

1

nan,1
, an,4 :=

4

n
δ̂n
2 , bn,4 :=

δ̂n
1

nan,4
. (7)

Note that, together withβ andγ, equations (7) yield explicit expressions forλ±
1 andλ±

2

in terms of the the coefficientsan,1, bn,1, cn,1, an,4, bn,4, cn,4.

Proof. By symmetry, the weights are a discrete cosine transformation of their Fourier
coefficients:

αn
i =

1

n

n−1
∑

j=0

α̂n
j cos

2πij

n
, βn

i =
1

n

n−1
∑

j=0

β̂′n
j cos

2πij + πj

n
, (8)

γn
i =

1

n

n−1
∑

j=0

γ̂′n
j cos

2πij − πj

n
, δn

i =
1

n

n−1
∑

j=0

δ̂n
j cos

2πij

n
.

Forn = 4, we verify the consistency of the choice (6) by substituting(4) into (8).

α4
i =

1

18

(

(u +
19

18
)2 +

151

324

)

, δ4
i =

1

18

(

(u +
11

18
)2 − 41

324

)

.

Next, we decompose the polynomial into a vector of basis functions and a vector of
coefficients:

an,1

(

(u+bn,1)
2+cn,1

)

= [1, u, 2u2−1][an,1b
2
n,1+

1

2
an,1+an,1cn,1, 2an,1bn,1,

1

2
an,1]

T .

We mimic this decompostion forn > 4, by choosinĝαn
i = 0 for 2 < i < n − 2. Then

αn
i =

1

n

n−1
∑

j=0

α̂n
j cos

2πij

n
= [1, cos

2πi

n
, cos

4πi

n
][

1

n
α̂n

0 ,
2

n
α̂n

1 ,
2

n
α̂n

2 ]T .

Sincecos 2πi
n

= u, we havecos 4πi
n

= 2u2 − 1 and comparison of terms yields

2an,1bn,1 =
2

n
α̂n

1 , and
1

2
an,1 =

2

n
α̂n

2 .

Solvingan,1, bn,1 in terms ofα̂n
1 , α̂n

2 , n, and similarly forδn
i , yields (7). ⊓⊔

The rules of Lemma 4 preserve rotational and p-mirror symmetry. For n > 4, they
reduce the free parameters from2n + 4 to six, namelyan,i, bn,i, cn,i, i = 1, 4. (For
n = 3 we use the original2n + 4 = 10 free parameters to enforceλ+

1 = λ, λ−
1 =

λ2, λ+
0 = λ2, λ−

0 < λ2.) It remains need to determine the six free parameters
so that forn > 4 the weigthsαj , δj, v1, v2, e0, f0, v0 are nonnegative (βj andγj are
nonnegative sinceβ4 ≥ 0 on [−1, 1]) and

Λ = diag(1, λ+
1 , λ+

n−1, λ
+
2 , λ+

n−2, λ
+
0 , ν1, ν2, . . . , ν2n−5) (9)

= diag(1, λ, λ, λ2, λ2, λ2, . . . , λi, . . .), where 0 < |λi| < λ2.
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By (1), and sincêγk andβ̂k are fixed, each of the constraintsλ+
1 = λ andλ+

2 = λ2

is an equation in the parameters,an,1, bn,1, an,4, bn,4, explicitly so due to (7). The
additional necessary constraint,λ+

0 = λ2, λ−
0 < λ2 is enforced by choice ofv1, v2

in the first 3 by 3 block ofQ. The result is an underconstrained system with linear
inequality constraints. We find, for example, the closed-form solution forn = 5 . . . 10
stated in Lemma5 and yielding the elliptic and saddle shapes shown in Figure 7.

Lemma 5 For n = 5..10, the following choice satisfies (i)-(iv) andλ = 1/3:

an,1 =
.413

n
, bn,1 = .624, cn,1 = .229

an,4 =
.260

n
, bn,4 = .286, cn,4 = .058 (10)

Proof. We need only verify (i), (ii) and (iii) listed in Section 2 since the scheme is
symmetric by construction. Table 1 shows all eigenvalues other than1, 1

3 , 1
3 , 1

9 , 1
9 , 1

9 for
n = 3 . . . 10. In particular,λ1 = λn−1 = 1

3 is the subdominant eigenvalue. Table 2
verifies nonnegative weights summing to 1. The u-differences, scaled to unit size, fall
strictly into the lower right quadrant and, by symmetry, thev-differences fall strictly into
the upper right quadrant (Figure 6). The partial derivatives are a convex combination of
the differences and hence all pairwise crossproducts are strictly positive. By [8], the
characteristic map is regular. In addition, as shown in Figure 5, the first half-segment of
the control net does not intersect the negative x-axis. By the convex hull property and
[7] Theorem 21, injectivity of the characteristic map follows. ⊓⊔

νi n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
ν1 -.063 .037 .057 .057 .057 .057 .057 .057
ν2 · · · .037 .057 .057 .057 .057 .057 .057
ν3 · · · .012 -.023 -.012 -.002 .009 .019 .030
ν4 · · · · · · -.001 -.001 -.001 -.001 -.001 -.001
ν5 · · · · · · -.001 -.001 -.001 -.001 -.001 -.001
ν6 · · · · · · · · · ǫ ǫ ǫ ǫ ǫ

ν7 · · · · · · · · · ǫ ǫ ǫ ǫ ǫ

ν8 · · · · · · · · · · · · ǫ ǫ ǫ ǫ

ν9 · · · · · · · · · · · · ǫ ǫ ǫ ǫ

ν10 · · · · · · · · · · · · · · · ǫ ǫ ǫ

ν11 · · · · · · · · · · · · · · · ǫ ǫ ǫ

ν12 · · · · · · · · · · · · · · · · · · ǫ ǫ

ν13 · · · · · · · · · · · · · · · · · · ǫ ǫ

ν14 · · · · · · · · · · · · · · · · · · · · · ǫ

ν15 · · · · · · · · · · · · · · · · · · · · · ǫ

Table 1. Eigenvalues (see 9) other than1, 1
3
, 1

3
, 1

9
, 1

9
, 1

9
for n = 3..10. 0 < |ǫ| < .001

The main contribution of the paper is technical: to provide amanageable set of
parameters that make it easy to satisfy the formal constraints (i)–(iv). This set can be
further pruned by minimizing regions of meshes where the scheme exhibits hybrid be-
havior [5], i.e. the Gauss curvature is not uniquely of one sign in the limit. It should
be noted that this is typically not enough to guarantee surface fairness, for example to
avoid undue flatness when convexity is indicated by the control mesh.
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Fig. 5. Control polyhedron of the characteristic map forn = 3..10. Injectivity test: each red fat
segment does not intersect the negative x-axis.

Fig. 6. The normalized differences in theu direction (green) andv direction (blue).
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weights n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
v0 .524 .495 .460 .470 .481 .491 .502 .512
v1 .119 .104 .098 .078 .064 .053 .044 .038
v2 .040 .022 .010 .010 .010 .010 .010 .010
e0 .550 .417 .417 .417 .417 .417 .417 .417
α0 .291 .261 .237 .198 .169 .148 .132 .119
β0 .062 .055 .047 .042 .037 .033 .030 .027
α1 .009 .088 .091 .103 .105 .103 .099 .094
β1 .018 .005 .012 .017 .019 .020 .020 .020
α2 · · · .026 .022 .017 .023 .032 .040 .045
β2 · · · · · · .000 .002 .004 .007 .009 .010
α3 · · · · · · · · · .025 .018 .012 .011 .014
β3 · · · · · · · · · · · · .000 .001 .002 .003
α4 · · · · · · · · · · · · · · · .019 .015 .011
β4 · · · · · · · · · · · · · · · · · · .000 .000
α5 · · · · · · · · · · · · · · · · · · · · · .015
f0 .309 .351 .351 .351 .351 .351 .351 .351
δ0 .180 .137 .089 .074 .063 .056 .049 .044

γ1 = γ0 .226 .219 .191 .167 .148 .132 .118 .108
δ1 .017 .014 .021 .029 .033 .034 .034 .033
γ2 .023 .022 .050 .068 .077 .080 .080 .079
δ2 · · · .001 .017 .004 .002 .005 .008 .011
γ3 · · · · · · .000 .006 .017 .027 .035 .041
δ3 · · · · · · · · · .024 .000 .008 .003 .002
γ4 · · · · · · · · · · · · .078 .003 .007 .013
δ4 · · · · · · · · · · · · · · · .018 .014 .009
γ5 · · · · · · · · · · · · · · · · · · .000 .001
δ5 · · · · · · · · · · · · · · · · · · · · · .015

Table 2. The subdivision rule according to Lemma5 has non-negative weights.0 < ǫ < .001
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