
To appear in SIGGRAPH 2006.

Inverse Kinematics for Reduced Deformable Models

Kevin G. Der Robert W. Sumner† Jovan Popovíc

Computer Science and Artificial Intelligence Laboratory †ETH Zürich
Massachusetts Institute of Technology

E
x
am
p
le
s

Interactive
Posing

A B

Figure 1: Our method uses example shapes to build a reduced deformable model, visualized in (A) by coloring portions of the mesh that move
in a coordinated fashion. (B) A small number of proxy vertices are found that summarize the movement of the example meshes independent
of their geometric complexity, providing a resolution-independent metric for mesh posing. The user can pose even highly detailed meshes
interactively with just a few vertex constraints.

Abstract

Articulated shapes are aptly described by reduced deformable mod-
els that express required shape deformations using a compact set of
control parameters. Although sufficient to describe most shape de-
formations, these control parameters can be ill-suited for animation
tasks, particularly when reduced deformable models are inferred
automatically from example shapes. Our algorithm provides intu-
itive and direct control of reduced deformable models similar to
a conventional inverse-kinematics algorithm for jointed rigid struc-
tures. We present a fully automated pipeline that transforms a set of
unarticulated example shapes into a controllable, articulated model.
With only a few manipulations, an animator can automatically and
interactively pose detailed shapes at rates independent of their geo-
metric complexity.

CR Categories: I.3.7 [Computer Graphics]: Three Dimensional
Graphics and Realism—Animation

Keywords: Animation with Constraints, Deformations

Contact: {kevinder|jovan}@csail.mit.edu
†sumnerb@inf.ethz.ch

1 Introduction

Efficient and intuitive manipulation of detailed triangle meshes is
challenging because they have thousands of degrees of freedom.
Modeling algorithms must cope with this geometric complexity to
provide effective tools for sculpting broad changes as well as fine-
scale details. However, in animation, the complexity of a char-
acter’smovementis far less than its geometric complexity since
vertices move in a coordinated fashion. An articulated character

bends its limbs at the joints, so most limb vertices move together
rigidly. Even non-articulated deformations such as those of a slith-
ering snake, facial expressions, or skin deformations are highly cor-
related because an individual vertex of a detailed mesh never moves
independently with respect to its neighbors.

Animators often build a reduced deformable model that repre-
sents meaningful deformations by instrumenting a static mesh with
control parameters that modify posture, bulge muscles, change fa-
cial expressions, and generate other necessary deformations. These
controls provide a compact representation of the mesh deformation
and allow the animator to generate movement efficiently. However,
many animation tasks are more easily accomplished through direct
manipulation. In particular, reaching for or interacting with sur-
rounding objects is most effectively expressed through direct con-
trol of contact vertices.

Reduced deformable models can also be inferred automatically
from a set of example deformations. Although this approach eases
the laborious task of designing controls by hand, applications are
limited because the inferred control parameters are often ill-suited
for animation tasks. Our work hides these unintuitive control pa-
rameters with a procedure for direct manipulation of reduced de-
formable models, allowing the animator to generate meaningful
mesh deformations without learning the mapping between the con-
trols and their effects.

Our method identifies control parameters of a reduced de-
formable model with a set of transformation matrices that control
shape deformations. The animator can then select and move any
subset of mesh vertices to pose the entire shape (Figure 1). In
general, direct manipulation is an ill-posed problem whether using
skeletons or inferred models, since many pose configurations can
satisfy a given set of user constraints. We use a nonlinear optimiza-
tion to find the pose whose transformations best meet the animator’s
constraints with a resolution-independent objective function, while
favoring poses close to the space of examples. Lastly, a linear re-
construction computes the new deformed vertex positions. This fi-
nal step is linear in the number of vertices but is computationally
negligible when implemented efficiently in hardware. In total, the
result is an inverse-kinematics method that permits interactive ani-
mation of highly detailed shapes using a space learned from just a
few scanned or hand-sculpted poses.

1



To appear in SIGGRAPH 2006.

2 Related Work

Because of an ever increasing demand for realism in computer
graphics and the wide availability of 3D scanners, meshes with ex-
tremely high geometric complexity are commonplace. Research
in mesh editing focuses on tools to manage the complexity while
performing sculpting operations. Detail preservation is a central
goal: low-frequency changes to the mesh should preserve the high-
frequency details. Multiresolution methods [Zorin et al. 1997;
Lounsbery et al. 1997; Kobbelt et al. 1998] address mesh detail di-
rectly by generating a hierarchy of simplified meshes together with
corresponding detail coefficients. Modeling tools based on differ-
ential representations encode mesh detail in terms of local shape
properties such as curvature, scale, and orientation. Sculpting op-
erations can be performed by solving a discretized version of the
Laplace [Lipman et al. 2004; Sorkine 2005] or Poisson equation
[Yu et al. 2004]. The most successful editing methods are linear
in the mesh vertices and admit efficient solution even for detailed
meshes through pre-factorization of the linear system. A recent
technique [Lipman et al. 2005] achieves rotation invariance with
two linear solves. While mesh editing tools excel at sculpting oper-
ations, they are not designed for animation since they cannot easily
incorporate the user’s semantic knowledge about the deformations
needed for a particular task.

Mesh-based inverse kinematics learns a space of natural defor-
mations from example meshes [Sumner et al. 2005]. All tasks,
which are specified by direct manipulation of a few mesh vertices,
are accomplished with deformations that mimic those of the ex-
amples. However, the drawback of this method is that the number
of unknowns in the optimization is proportional to thegeometric
complexity of the mesh, rather than to thedeformationcomplexity.
Each triangle is assigned a transformation matrix that encodes an
independent rotation and stretch. The correlated movement of ver-
tices in the example meshes is ignored so that non-meaningful de-
formations incur the same computational cost as highly structured
ones. A special-purpose solver can solve the associated nonlin-
ear optimization problem quickly enough for interaction with mod-
erately sized meshes of around 10,000 vertices. Conversely, our
method takes advantage of the deformation complexity to achieve
interactive rates for meshes with extremely detailed geometry.

Shape interpolation or manual rigging with skeletal structures is
the traditional way to represent deformations compactly, particu-
larly in film production where the quality of the final result often
justifies the cost of manual labor [Lewis et al. 2000; Sloan et al.
2001]. In other applications, methods such as modal analysis [Pent-
land and Williams 1989; James and Pai 2002] compute a set of
basis deformations to enable real-time simulations of deformable
models, while other methods rely on similar principles to achieve
compression or hardware-accelerated rendering [Alexa and Müller
2000; Karni and Gotsman 2004; James and Twigg 2005]. Exist-
ing techniques that solve for the parameters of a linear superposi-
tion of basis vectors using an inverse-kinematics interface [Zhang
et al. 2004] perform well when exhibited deformations are small but
do not extend to deformations of articulated figures [Sumner et al.
2005].

Our algorithm uses a reduced deformable model that generalizes
the core technique for animation of skeletal deformation. As shown
in previous work, this model can be inferred automatically by iden-
tifying clusters of triangles that exhibit near-rigid deformation in
the example meshes [James and Twigg 2005]. Although the auto-
matically generated control parameters do not immediately support
intuitive mesh control, our algorithm shows that an animator can
manipulate meshes directly without learning the relationship be-
tween control parameters and their effects. In doing so, we broaden
the scope of the original model from compression and real-time
playback, where control is not needed, to animation, where control
is paramount.

3 Inverse Kinematics

Our inverse-kinematics algorithm provides intuitive and direct con-
trol of non-rigid shapes similar to a conventional inverse-kinematics
algorithm for jointed rigid skeletons. It manages the geomet-
ric complexity of detailed meshes by using a reduced deformable
model that parameterizes shape deformation with a compact set of
control parameters. For example, our algorithm could be applied
to manually skinned meshes whose deformations have been para-
meterized by the joint variables in the skeleton. More interestingly,
reduced deformable models can be inferred automatically from a
few example shapes to learn the demonstrated space of shape de-
formations. Further, we show how to select the optimal pose near
the space of example shapes from the many valid configurations
that meet the animator’s manipulations.

3.1 Reduced Deformable Model

Reduced deformable models describe shape deformations with a
compact set of control parameters. For example, a conventional
skinning model may employ a skeleton to deform mesh vertices ac-
cording to a weighted average of bone transformations. The anima-
tor can then change the shape by modifying individual joint vari-
ables explicitly or by using a traditional inverse-kinematics algo-
rithm for jointed rigid bodies. However, the simple skinning model
struggles to capture articulated shape deformation without signifi-
cant visual artifacts [Mohr and Gleicher 2003].

A more powerful reduced deformable model can be obtained by
generalizing the notion of a skeleton from a collection of hierarchi-
cally linked rigid bones to a set of abstract, non-hierarchical, non-
rigid control transformations. With this generalization in place, a
reduced deformable model can be built automatically by identifying
portions of the mesh whose deformation in the examples is nearly
rigid [James and Twigg 2005]. The estimated model consists of a
set of affine control transformations{Fi ,di} and a set of skinning
weights{αi(x)} that depend on the coordinates of each vertex. To-
gether these define each shape deformation as a weighted average
of transformed vertex coordinates:

v = ∑
i

αi(x)(Fix+di), (1)

where the coordinatesx andv contain the position of the vertex be-
fore and after deformation, respectively. Though similar to the ex-
pression used in a more conventional skinning model, the abstract
affine transformations enrich the space of representable shapes to
allow for more complex deformations [James and Twigg 2005]. An
animator could, in principle, deform the mesh by manually adjust-
ing control transformations; however, the complex dependencies of
the controls and the lack of a hierarchy make such indirect manipu-
lation quite impractical. Instead, our inverse-kinematics algorithm
offers direct control over mesh vertices.

3.2 Direct Manipulation

Direct manipulation eases shape deformation through intuitive con-
trol of individual mesh vertices. Instead of positioning a char-
acter’s hands or feet by adjusting the joint angles of the elbow,
shoulder, and so on, tasks such as lifting, reaching, and locomo-
tion are described intuitively with direct control over hand or feet
vertices. Direct manipulation is crucial for control of a reduced
deformable model whose control parameters include numerous ro-
tations, scales, and translations with no intuitive or semantic mean-
ing. Not only is the total number of parameters overwhelming but
also the changes in control parameters must be coordinated to in-
duce meaningful deformations of the shape. Simply observing the

2



To appear in SIGGRAPH 2006.

control transformations for each example is ineffective at coordi-
nating their movement, because it does not capture the relationships
among them.

This necessary coordination can be learned automatically
through optimization. For example, a nonlinear blend of deforma-
tion gradients produces an effective objective function for direct
manipulation of general shape deformations [Sumner et al. 2005].
However, direct application of deformation gradients is inefficient
for geometrically detailed meshes because it requires examining
every vertex of the model regardless of its motion complexity. We
obtain a resolution-independent solution with approximations that
replace groups of related mesh vertices with a single new estimate.
This reduces the size of the numerical problem significantly while
preserving the visual quality of the final result.

Deformation Gradients. Deformation gradients are convenient
localized descriptions of arbitrary deformation [Barr 1984]. These
simple 3× 3 transformations can be interpolated and aggregated
to reconstruct pleasing deformations from a few example shapes
[Alexa et al. 2000; Sumner and Popović 2004]. We examine the
deformation gradients of vertices, because the vertices affected by
multiple control transformations establish additional relationships
among the controls to ensure that they change in coordination.

The deformation gradient of a vertex in our reduced deformable
model is computed by differentiating Eq. (1) with the product rule:

Dxv = ∑
i

(

Fi
(

13×3αi(x)+xDxαi(x)
)

+diDxαi(x)
)

. (2)

The derivatives of the skinning weights are non-zero because they
depend on the position of each vertex. The non-negative skinning
weights are computed in the construction of the reduced deformable
model by minimizing the least-squares error between predicted ver-
tex positions and their true location in the example shapes [James
and Twigg 2005]. The derivative values can be precomputed using
a finite difference approximation.

The deformation gradients of the vertices in each example shape
allow us to define a nonlinear objective function that coordinates all
control parameters to ensure meaningful deformation. For example,
we can blend between the example shapes by solving for the control
parameters that yield deformation gradients most similar to those of
the blend:

t∗ = argmin
t

‖Gt−m(β )‖2
, (3)

where the vectort stacks the unrolled control transformations and
the matrixG is built from the coefficients in Eq. (2). The blending
functionm(β ) combines the deformation gradients of the vertices
of each example, whereβ consists of a blending weight for each
example. Deformation gradients are factored into rotational and
scale/shear terms prior to blending rotations with the nonlinear ex-
ponential map [Sumner et al. 2005].

Proxy Vertices. The objective function need not evaluate defor-
mation gradients at every mesh vertex because reduced deformable
models coordinate the motion of many vertices. This structure al-
lows us to design an efficient algorithm whose complexity is inde-
pendent of geometric detail. The procedure is most easily observed
in vertices whose positions are influenced by only one control trans-
formation and whose weight derivatives are zero. These vertices
all share the identical deformation gradient. As a result, they con-
tribute identical row entries to both the deformation-gradient matrix
G and the nonlinear blend of feature vectorsm(β ). Eliminating this
redundancy reduces the size of the problem and maintains the qual-
ity of the final result.

More generally, our formulation replaces each group of vertices
affected by the same set of control parameters with a single proxy
vertex, as shown in Figure 2. Intuitively, this process strives to

A B C

Figure 2: Our resolution-independent formulation evaluates defor-
mation gradients at a few carefully chosen proxy vertices instead
of the many mesh vertices. (A) A portion of a mesh is displayed,
visualizing the influence of three control parameters and (B) five re-
sulting vertex groups, each influenced by either one or two control
parameters. (C) Each group is replaced by a proxy vertex, shown in
red, located at the weighted centroid of its vertices.

map the objective function from the high-dimensional space of ver-
tex positions to the low-dimensional space of control parameters.
For example, replacing a group of vertices that are attached to one
control transformation is analogous to evaluating the deformation
gradient of that transformation, rather than of all the individual ver-
tices. Other vertices that are affected by more than one control
transformation establish additional relationships among controls to
ensure that all control parameters change in coordination.

Each vertex group affected by more than one control transfor-
mation is represented by the weighted centroid of its vertices. We
prefer centroids that are uniformly affected by all control transfor-
mations for this group. In a skeleton, such a centroid would ap-
proximate the location of a joint because vertices close to the joint
are usually uniformly affected by both adjoining bones. As a result,
our centroid computation assigns more importance to vertices with
uniform skinning weights (smaller maximum weightᾱ(xi)) than to
vertices with non-uniform weights (larger maximum weight). The
position of a new proxy vertexf for groupV is given by:

f =
∑i∈V xi(1− ᾱ(xi))

∑i∈V(1− ᾱ(xi))
. (4)

The deformation gradient for each newf is computed using Eq. (2)
after its skinning weights and derivatives have been computed. The
required position of the proxy vertex in each example is also esti-
mated using Eq. (4). When building the model, we limit the number
of control parameters that can influence a single vertex and thus the
number of new proxy vertices is small. The overall computation is
greatly reduced since we use aG matrix that evaluates deformation
gradients only for the proxy vertices.

Vertex Constraints. Direct manipulation of mesh vertices pro-
vides an intuitive framework for posing the mesh. Vertices posi-
tioned by the user supply constraints that limit the degrees of free-
dom of the control transformations. We express the posing problem
according to the constrained optimization:

t∗,β ∗ = argmin
t,β

‖Gt−m(β )‖2 such that Ct = b. (5)

The user-controlled mesh vertices are expressed as linear equality
constraints inCt = b where the vectorb stacks the constrained ver-
tex positions and the rows of the matrixC express the deformed ver-
tex positions in terms of the coefficients shown in Eq. (1). While the
objective function evaluates deformation gradients only for proxy
vertices, the user is free to constrain any of the original mesh ver-
tices. If the constraint matrix is overdetermined, the control para-
meters can be computed directly with a least-squares solution. In
practice, this case arises only when many vertices are constrained
over the entire mesh. A more common situation for mesh posing
occurs at the opposite extreme when only a few constraints are

3



To appear in SIGGRAPH 2006.

specified and one out of many valid mesh configurations must be
selected [Grochow et al. 2004; Sumner et al. 2005].

We reformulate this problem into an unconstrained optimization
by describing the space of all possible solutions:

t = C+b+Nt1, (6)

where the matricesC+ andN are the pseudoinverse and the null
space basis of the constraint matrix respectively, both computed via
singular value decomposition. The vectort1 consists of free vari-
ables that parameterize the space of valid mesh configurations.

Inserting this expression into the constrained optimization of
Eq. (5) allows us to compute the free control variables, yielding
the control parameters that closely match the deformation gradients
suggested by the example deformations:

t∗1,β
∗ = argmin

t1,β
‖GNt1− (m(β )−GC+b)‖2

. (7)

An efficient numerical solution of this optimization problem is
possible because the reduced model parameters comprise the un-
knowns and because the resolution-independent objective function
need not evaluate deformation gradients at every mesh vertex.

3.3 Numerical Methods

The nonlinear optimization in Eq. (7) solves for the pose that best
matches the given examples, subject to user-specified vertex con-
straints. This formulation can be solved using an iterative Gauss-
Newton algorithm [Gill et al. 1989]. The most critical step in each
iteration is a solution to a dense set of normal equations, whose
block Cholesky factorization enables efficient solution after appro-
priate precomputation.

Gauss-Newton Iteration. The optimization is nonlinear be-
causem(β ) combines the rotation portion of the deformation gra-
dients nonlinearly. The Gauss-Newton method linearizes this func-
tion in each iteration to compute the change in blending weights,δ ,
by solving the normal equations:

A⊤A
[

t1
δ

]

= A⊤
(

m(β )−GC+b
)

, (8)

where the dense matrixA is defined by:

A =
[

GN −Dβ m(β )
]

. (9)

The Gauss-Newton method iterates until the optimization con-
verges, which is measured by observing the objective function, its
gradient, and the change in blending weights. However, efficient
optimization requires precomputing the Cholesky factorization of
the largest block in the denseA matrix.

Cholesky Factorization. The size ofA is linear in the number
of proxy vertices. Although the number of control transformations
is typically quite small (between 20 and 80 in our examples), the
number of proxy vertices can be in the hundreds, preventing ef-
ficient solution without a carefully designed numerical method. A
block Cholesky factorization, however, allows us to precompute the
factors of the largest block in our system matrix:

U⊤
11U11 = N⊤G⊤GN, (10)

because its value is constant for a given set of vertex constraints
in every iteration of the Gauss-Newton algorithm. The remaining
terms of the block Cholesky factorization,

A⊤A =

[

U⊤
11 0

U⊤
12 U⊤

22

][

U11 U12

0 U22

]

,

are computed efficiently in each iteration. The block matrixU12
is computed with backsubstitution and the block matrixU22 is
computed with the Cholesky factorization of a small dense matrix
whose size depends on the number of example shapes. Given these
Cholesky factors, the normal equations are solved efficiently with
two solutions to triangular linear systems. The complexity of each
solver iteration isO(pce+e3), wherep is the number of proxy ver-
tices,c the number of control transformations, ande the number
of example shapes. When the number of proxy vertices is large
compared to the number of examples, the computational penalty of
adding additional examples (up to 27 in our experiments) is a small
fraction of the total cost.

4 Results

Prior to interactive posing, our procedure learns a reduced de-
formable model from a few user-supplied examples. It relies on
a skinning technique that recognizes near-rigid deformations in ex-
ample shapes [James and Twigg 2005]. All reduced deformable
models in our experiments were generated by the same four-step
procedure. First, mean-shift clustering forms near-rigid groups of
triangles that express similar rotation sequences in the example
poses. Second, each near-rigid component is associated with an
affine transformation that optimally deforms the triangle centroids
in each example. Third, a small set of control transformations is se-
lected for each vertex according to an error metric that measures the
influence of that control on the vertex. And fourth, the affine skin-
ning weights are computed with a solution to the non-negative least-
squares optimization that maximizes the fit to example shapes. It is
known that correct shape interpolation using deformation gradients
may require that some rotations be manually adjusted to include ro-
tation in a different range of 2π [Sumner et al. 2005; Sumner 2005].
We chose example shapes that did not require modification.

Once the reduced deformable model is constructed, our pro-
cedure estimates the proxy vertices needed for the resolution-
independent formulation. Proxy vertices, which summarize the co-
ordinated vertex movement, are computed for each vertex group
according to Eq. (4). The third and fourth steps of the model con-
struction process are repeated to compute the skinning weights and
their derivatives for each proxy vertex.

Mesh Posing. The resolution-independent formulation supports
fast and fluid mesh posing independent of the geometric complex-
ity. The animator selects a few mesh vertices, drags them with a
mouse-based interface, and the entire shape is posed in a natural
way as suggested by the examples. The real-time video on the con-
ference DVD demonstrates the ease of interaction in this system.

In Figure 3 (A), our system learns the natural space of deforma-
tions for a horse mesh from the provided examples. The user se-
lects a handle on two hooves and moves them to deform the mesh.
The horse bends its legs at the appropriate joints and extends all its
limbs when the handles encourage the horse into a galloping pose.
Similar interaction is shown in Figure 3 (B), in which an elephant
mesh with over 42,000 vertices is posed at interactive rates. The
user constrains the elephant’s feet and trunk to induce an expres-
sive charging pose. Such fluid interaction would not be possible
without our resolution-independent formulation.

Our system is particularly powerful for meshes that exhibit di-
verse and expressive deformations, such as the human character
shown in Figure 3 (C). A set of scanned and reconstructed human
shapes [Anguelov et al. 2005] allows our system to easily learn a
space of natural human deformations. By selecting a few vertex
handles such as on the hands or feet, the entire character is posed
intuitively based on the handle positions. The limbs bend, flex,
and extend naturally according to the constraints, and subtle de-
formations such as muscle bulges are implicitly captured by draw-

4



To appear in SIGGRAPH 2006.

Figure 3: Top row: Example shapes for three different meshes. Bottom row: New meshes interactively posed using our system. (A) A few
vertex handles are selected on the horse’s hooves to induce the animal into stepping and galloping poses. (B) An elephant with over 42,000
vertices is sculpted into a charging pose at equivalent interactive rates.(C) Scanned human shapes allow our system to learn the space of
natural human poses. The posed character’s limbs bend and extend naturally to accommodate the user-provided vertex constraints.

A B C D E F G H

Figure 4: Top row: Mouse example poses. (A) Control transformations are inferred from the examples. (C–E) Constraining several vertices
poses the mouse into a push-up position, followed by a crawl and a grandstand. (F–G) The mouse is posed as if on a balance beam and then
falling off. (H) A classic disco pose is induced by only four handle vertices.

Mesh Verts Ex Ct Pxy Total Solve MIK Efull(Eproxy)
Horse 8431 12 33 195 0.019 0.007 0.424 3.01(3.00)
Human 12500 10 42 471 0.031 0.013 0.675 6.01(5.95)
Mouse 13188 26 48 278 0.037 0.019 1.351 1.63(1.73)
Dragon 15560 7 72 380 0.046 0.023 0.590 0.96(0.97)
Gorilla 25436 27 28 198 0.045 0.013 2.962 4.38(4.33)
Elephant 42321 11 23 210 0.058 0.008 1.928 5.38(5.46)

Table 1: Number of vertices, examples, control transformations,
and proxy vertices in our meshes. We show the computation
time for our solver compared to that of Sumner and colleagues
(MIK) [2005]. All timings are in seconds. Comparison of percent
error distortionE between a full vertex representation and usage of
proxy vertices shows that the latter is comparably accurate.

ing upon the examples. Our abstract, non-hierarchical, non-rigid
controls can capture these complex deformations much more faith-
fully than could inverse kinematics on a conventional, rigid skeleton
[Anguelov et al. 2005; James and Twigg 2005].

Other anthropomorphic characters are successfully manipulated
using our system with highly expressive results, such as the gorilla
in Figure 1 and the mouse in Figure 4. In the case of both charac-
ters, meaningful deformations are represented by both bipedal and
quadrupedal poses. The user can deform the mesh anywhere in this
space of natural poses by constraining several vertices. In (4 C–D),
the mouse is manipulated into a push-up pose and then the handles
are moved to change the pose into a quadrupedal crawl. Lifting
a single vertex on each hand moves the character into a bipedal
grandstanding pose (4 E). Direct manipulation of vertices easily
aligns the mouse’s feet, as if the character were walking on a bal-
ance beam (4 F). Further manipulation makes the mouse look as
though it just fell off (4 G). Finally, only a few vertex handles are
required to induce a classic disco pose (4 H).

Resolution-Independent Interaction. Table 1 provides statis-
tics about our experiments, including the number of mesh vertices,
examples, control transformations, and proxy vertices. The running
times provided are given for one iteration of our nonlinear solver;

all timing was measured on a 3.4 GHz Pentium 4 PC with 2GB
of RAM. The “Solve” column indicates the amount of time needed
for all computation in one Gauss-Newton iteration excluding vertex
skinning and display, while the “Total” column indicates the total
time for one iteration. Convergence was typically reached in 3 to
7 iterations. These timings reflect the fact that the computation is
proportional only to the number of examples and proxy vertices,
which is independent of the mesh’s geometric complexity. In the
case of the horse and elephant, both quadrupeds possess similar
movement complexity, and thus their solve times are nearly identi-
cal even though the elephant’s geometric complexity is far greater.

We use a software implementation of the skinning algorithm to
position the vertices after the transformations have been found, but
this functionality is greatly accelerated when implemented in hard-
ware via matrix palette skinning [Lindholm et al. 2001]. Finally, we
compare one iteration of our solving time to one Gauss-Newton it-
eration of the mesh-based inverse kinematics solver (MIK) [Sumner
et al. 2005] used with the same mesh and examples. In all cases, our
solver is at least an order of magnitude faster. The elephant exam-
ple requires merely 8ms for one iteration, compared with nearly two
seconds for mesh-based inverse kinematics. Similarly, the SCAPE
algorithm [Anguelov et al. 2005] requires approximately one sec-
ond to generate new meshes from the set of human poses, whereas
our system allows posing and shape blending more than an order of
magnitude faster.

We validate our approximations of the example meshes by treat-
ing them as a mesh sequence and measuring error in terms of per-
cent distortion [Karni and Gotsman 2004], shown in the last column
of Table 1. Example reconstruction using deformation gradients for
all vertices incurs error due to approximation with controls. There
is no significant difference in error using proxy vertices.

Highly Non-Rigid Deformations. Many control parameters are
required to faithfully capture highly non-rigid deformations, such
as the dragon’s tail which curls smoothly (Figure 5). Mean-shift
parameters can be adjusted to yield more controls, better reproduc-
ing deformations. Though many controls will slow our method, it

5



To appear in SIGGRAPH 2006.

will remain faster than MeshIK [Sumner et al. 2005] until defor-
mations are so complex that controls express deformations no more
compactly than individual vertices.

Figure 5: A storybook dragon, requiring many controls in the
highly non-rigid tail and neck, is deformed into several poses.

5 Conclusion

Reduced deformable models provide a means to separate the ever
increasing geometric complexity of animated meshes from the
complexity of their movement. Although current models are ef-
fective for compression and hardware rendering, they impede user
control since the model parameters often do not match the user’s se-
mantic understanding of character movement. Our work provides
interactive control of reduced deformable models via an intuitive
inverse-kinematics framework. A collection of transformations
compactly represents articulated character movement and can be
derived automatically from example data. We formulate the inverse
kinematics problem in this reduced space to achieve resolution-
independent performance: the speed of the posing task is a function
of the model parameters rather than of character geometry.

Our choice of control transformations as a reduced deformable
model incurs some limitations. Noise and cloth wrinkles in the
scanned human dataset yield a dense sampling of controls. Our
method would benefit from a more accurate and controllable way
to estimate transformations. Furthermore, since our overall opti-
mization framework applies to alternate reduced models, exploring
different ones may lead to more efficient formulations or solutions
appropriate for different types of deformations.

While we show how to separate deformation complexity from
geometric complexity for efficient mesh posing, movement and
geometry are not entirely separate: the reduced deformable model
is tailored to a particular mesh’s shape and mesh structure. Future
work might develop ways to automatically extract a reduced de-
formable model that encapsulates one character’s movement, and
apply it to a different character. A new mesh could be posed with-
out needing to repeat the process of example creation and model
estimation.

6 Acknowledgements

We would like to thank Dragomir Anguelov for the human dataset,
the Rutgers Image Understanding Laboratory for the mean-shift
implementation, and the anonymous reviewers for their feedback.
This work was partially supported by the John Reed UROP Fund
and a donation from Pixar Animation Studios.

References

ALEXA , M., AND M ÜLLER, W. 2000. Representing animations by princi-
pal components.Computer Graphics Forum 19, 3 (Aug.), 411–418.

ALEXA , M., COHEN-OR, D., AND LEVIN , D. 2000. As-rigid-as-possible
shape interpolation. InProceedings of ACM SIGGRAPH 2000, Annual
Conference Series, 157–164.

ANGUELOV, D., SRINIVASAN , P., KOLLER, D., THRUN, S., RODGERS,
J., AND DAVIS , J. 2005. SCAPE: shape completion and animation of
people.ACM Transactions on Graphics 24, 3 (Aug.), 408–416.

BARR, A. H. 1984. Global and local deformations of solid primitives.
In Computer Graphics (Proceedings of ACM SIGGRAPH 84), vol. 18,
21–30.

GILL , P. E., MURRAY, W., AND WRIGHT, M. H. 1989. Practical Opti-
mization. Academic Press, London.

GROCHOW, K., MARTIN , S. L., HERTZMANN, A., AND POPOVIĆ, Z.
2004. Style-based inverse kinematics.ACM Transactions on Graphics
23, 3 (Aug.), 522–531.

JAMES, D. L., AND PAI , D. K. 2002. DyRT: Dynamic response tex-
tures for real time deformation simulation with graphics hardware.ACM
Transactions on Graphics 21, 3 (July), 582–585.

JAMES, D. L., AND TWIGG, C. D. 2005. Skinning mesh animations.ACM
Transactions on Graphics 24, 3 (Aug.), 399–407.

KARNI , Z., AND GOTSMAN, C. 2004. Compression of soft-body animation
sequences.Computers & Graphics 28, 1, 25–34.

KOBBELT, L., CAMPAGNA , S., VORSATZ, J., AND SEIDEL, H.-P. 1998.
Interactive multi-resolution modeling on arbitrary meshes. In Proceed-
ings of ACM SIGGRAPH 98, Annual Conference Series, 105–114.

LEWIS, J. P., CORDNER, M., AND FONG, N. 2000. Pose space defor-
mations: A unified approach to shape interpolation and skeleton-driven
deformation. InProceedings of ACM SIGGRAPH 2000, Annual Confer-
ence Series, 165–172.

L INDHOLM , E., KILGARD , M. J., AND MORETON, H. 2001. A user-
programmable vertex engine. InProceedings of ACM SIGGRAPH 2001,
Computer Graphics Proceedings, Annual Conference Series, 149–158.

L IPMAN , Y., SORKINE, O., COHEN-OR, D., LEVIN , D., RÖSSL, C., AND

SEIDEL, H.-P. 2004. Differential coordinates for interactive meshedit-
ing. In Proceedings of Shape Modeling International, 181–190.

L IPMAN , Y., SORKINE, O., LEVIN , D., AND COHEN-OR, D. 2005. Linear
rotation-invariant coordinates for meshes.ACM Trans. Graph. 24, 3,
479–487.

LOUNSBERY, M., DEROSE, T. D., AND WARREN, J. 1997. Multireso-
lution analysis for surfaces of arbitrary topological type. ACM Transac-
tions on Graphics 16, 1 (Jan.), 34–73.

MOHR, A., AND GLEICHER, M. 2003. Building efficient, accurate char-
acter skins from examples.ACM Transactions on Graphics 22, 3 (July),
562–568.

PENTLAND , A., AND WILLIAMS , J. 1989. Good vibrations: Modal dy-
namics for graphics and animation. InComputer Graphics (Proceedings
of SIGGRAPH 89), vol. 23, 215–222.

SLOAN , P.-P. J., ROSE, III, C. F., AND COHEN, M. F. 2001. Shape by
example. InSymposium on Interactive 3D Graphics (I3D), ACM Press,
135–144.

SORKINE, O. 2005. State-of-the-art report: Laplacian mesh processing. In
Eurographics 2005—State of the Art Reports, The Eurographics Associ-
ation, Dublin, Ireland, Eurographics, 53–70.

SUMNER, R. W.,AND POPOVIĆ, J. 2004. Deformation transfer for triangle
meshes.ACM Transactions on Graphics 23, 3 (Aug.), 399–405.

SUMNER, R. W., ZWICKER, M., GOTSMAN, C., AND POPOVIĆ, J. 2005.
Mesh-based inverse kinematics.ACM Transactions on Graphics 24, 3
(Aug.), 488–495.

SUMNER, R. W. 2005.Mesh Modification Using Deformation Gradients.
PhD thesis, Massachusetts Institute of Technology.

YU, Y., ZHOU, K., XU, D., SHI , X., BAO, H., GUO, B., AND SHUM , H.-
Y. 2004. Mesh editing with poisson-based gradient field manipulation.
ACM Transactions on Graphics 23, 3 (Aug.), 644–651.

ZHANG, L., SNAVELY, N., CURLESS, B., AND SEITZ, S. M. 2004. Space-
time faces: high resolution capture for modeling and animation. ACM
Transactions on Graphics 23, 3 (Aug.), 548–558.

ZORIN, D., SCHRÖDER, P., AND SWELDENS, W. 1997. Interactive mul-
tiresolution mesh editing. InProceedings of ACM SIGGRAPH 97, An-
nual Conference Series, 259–268.

6


