1. The data

We want to construct a curve segment ${\bf g}$ to match

- a feature point \mathbf{y}^c (at (0,2)) exactly and
- \bullet at either end, second-order boundary data \mathbf{y}^0 , a 2-jet, in the least-squares sense. Here the second-order data are represented as three Bézier points on a line segment.

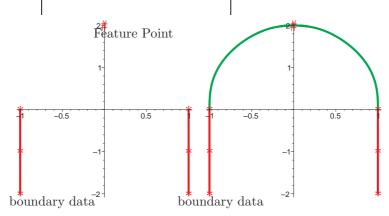


Figure 1: left: The data to be matched. right: approximate shape of a curve segment \mathbf{g} fit to the data.

This segment will serve as curve guide. Note that the boundary data prescribe vertical tangents and zero curvature at $(\pm 1, 0, 0)$.

2. Guides consisting of a single polynomial

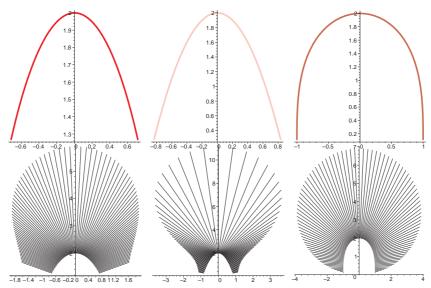


Figure 2: top: Fitting the data in 1 using a single cubic curve segment, a quartic and quintic fitting. bottom: curvature profile of each fit.

In addition to fitting the data, the guides \mathbf{g} need to have a good curvature distribution. Here, we use 'hedge hog' plots that draw normals vectors scaled according to curvature.

3. Composite guides

We choose two C^2 -connected cubic pieces to form ${\bf g}$ and approximate the boundary data. We parameterize the two pieces to have the parameter value u=0 at the feature point, where they join. In Figure 3, left, we fit the boundary data by each piece at parameter u = 1. In Figure 3, right, however, we compose \mathbf{g} with the map $\rho: \mathbb{R} \to \mathbb{R}$ defined as a quadratic with Bézier coefficients 1, 1.5, 3 and then we fit the boundary data by the composed map $\mathbf{g} \circ \rho$ at parameter u=1.

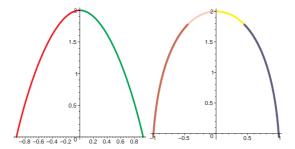


Figure 3: left: Two C^2 connected cubic pieces. right: Two C^2 -connected reparamterized cubic pieces.

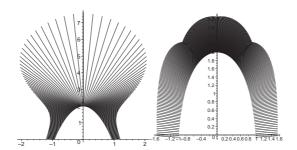


Figure 4: Curvature of the guides in Figure 3.

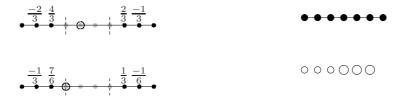


Figure 5: Hermit sampling to get quintic or C^2 cubics. (left) Interpolation stencil of a 2-jet at the corners to form C^2 cubics. (right) 2-jet at the corners to give a quintic curve.

4. Sampling the guide

Even the last piecewise cubic guide $\mathbf{g} \circ \rho$ did not fit the boundary data exactly. We will now sample $\mathbf{g} \circ \rho$ in a hermite fashion h to create an overall C^2 curve $\mathbf{x}^0 := h(\mathbf{g} \circ \rho)$ that matches the boundary data exactly, but leaves a gap between the left and the right piece.

We sample the guide curve $f := \mathbf{g} \circ \lambda^m \rho$ at u = 0 and at u = 1 to obtain three Bézier coefficients. The three Bézier coefficents at each end alternatively define one degree 5 curve segment or three C^2 -connected cubic curve segments (Illustrated in Figure 5). To match the boundary data y^0 exactly, we replace the jet by the jet of the data.

We then fill the gap, by sampling again,

$$\mathbf{x}^m := h(\mathbf{g} \circ \lambda^m \rho), \quad \lambda := \frac{\rho(0)}{\rho(1)}.$$

The resulting sequence of curve pieces converges to \mathbf{y}^c and formes and (inifinte) composite curve of degree 5.

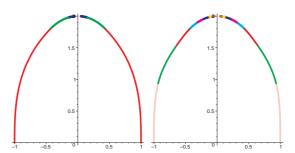


Figure 6: Hermit quintics and cubics fitting

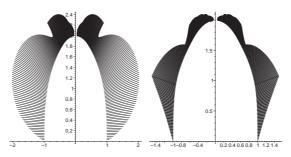


Figure 7: Curvature of Hermit quintics and cubics fitting

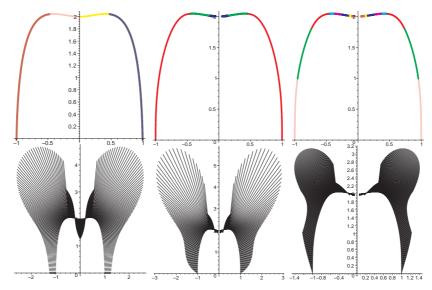


Figure 8: ct-map coefficients 1, 2, 3. From *left* to *right*: C^2 composed cubics, Hermite sampled quintics and cubics. bottom: curvature comb.

The influence of parametrization on the guide shape

With different choices of ρ , the resulting fitting curves have different shapes. In the following figures, the map $\rho: \mathbb{R} \to \mathbb{R}$ defined as a quadratic with Bézier coefficients 1, 2, 3 (Figure ??), 1, 1.5, 2 (Figure ??), 1, 2, 4 (Figure ??) and 1, 4, 8 (Figure ??).

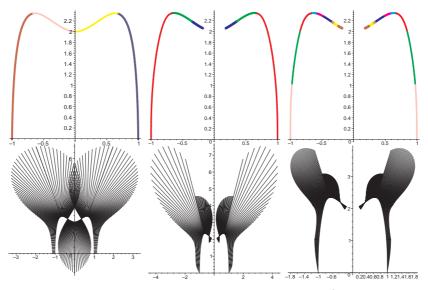


Figure 9: ct-map coefficients 1, 1.5, 2. From left to right : C^2 composed cubics, Hermite sampled quintics and cubics.

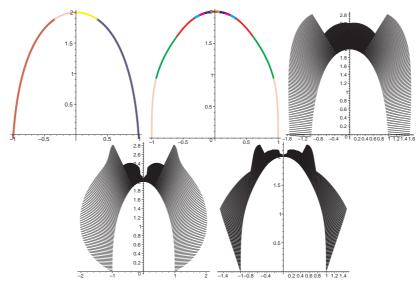


Figure 10: ct-map coefficients 1, 2, 4. From left to right : C^2 composed cubics, Hermite sampled quintics and cubics.

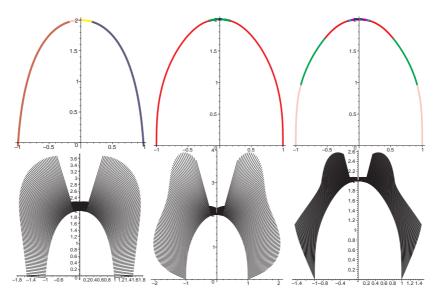


Figure 11: ct-map coefficients 1,4,8. From left to right: C^2 composed cubics, Hermite sampled quintics and cubics.