1. The data

We want to construct a curve segment \mathbf{g} to match

- a feature point \mathbf{y}^{c} (at $\left.(0,2)\right)$ exactly and
- at either end, second-order boundary data \mathbf{y}^{0}, a 2 -jet, in the least-squares sense. Here the second-order data are represented as three Bézier points on a line segment.

Figure 1: left: The data to be matched. right: approximate shape of a curve segment \mathbf{g} fit to the data.

This segment will serve as curve guide. Note that the boundary data prescribe vertical tangents and zero curvature at $(\pm 1,0,0)$.

2. Guides consisting of a single polynomial

Figure 2: top: Fitting the data in 1 using a single cubic curve segment, a quartic and quintic fitting. bottom: curvature profile of each fit.

In addition to fitting the data, the guides \mathbf{g} need to have a good curvature distribution. Here, we use 'hedge hog' plots that draw normals vectors scaled according to curvature.

3. Composite guides

We choose two C^{2}-connected cubic pieces to form \mathbf{g} and approximate the boundary data. We parameterize the two pieces to have the parameter value $u=0$ at the feature point, where they join. In Figure 3, left, we fit the boundary data by each piece at parameter $u=1$. In Figure 3, right, however, we compose \mathbf{g} with the map $\rho: \mathbb{R} \rightarrow \mathbb{R}$ defined as a quadratic with Bézier coefficients 1, 1.5, 3 and then we fit the boundary data by the composed map $\mathbf{g} \circ \rho$ at parameter $u=1$.

Figure 3: left: Two C^{2} connected cubic pieces. right: Two C^{2}-connected reparamterized cubic pieces.

Figure 4: Curvature of the guides in Figure 3.

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Figure 5: Hermit sampling to get quintic or C^{2} cubics. (left) Interpolation stencil of a 2-jet at the corners to form C^{2} cubics. (right) 2-jet at the corners to give a quintic curve.

4. Sampling the guide

Even the last piecewise cubic guide $\mathbf{g} \circ \rho$ did not fit the boundary data exactly. We will now sample $\mathbf{g} \circ \rho$ in a hermite fashion h to create an overall C^{2} curve $\mathbf{x}^{0}:=h(\mathbf{g} \circ \rho)$ that matches the boundary data exactly, but leaves a gap between the left and the right piece.

We sample the guide curve $f:=\mathbf{g} \circ \lambda^{m} \rho$ at $u=0$ and at $u=1$ to obtain three Bézier coefficients. The three Bézier coeeficents at each end alternatively define one degree 5 curve segment or three C^{2}-connected cubic curve segments (Illustrated in Figure 5). To match the boundary data \mathbf{y}^{0} exactly, we replace the jet by the jet of the data.

We then fill the gap, by sampling again,

$$
\mathbf{x}^{m}:=h\left(\mathbf{g} \circ \lambda^{m} \rho\right), \quad \lambda:=\frac{\rho(0)}{\rho(1)} .
$$

The resulting sequence of curve pieces converges to \mathbf{y}^{c} and formes and (inifinte) composite curve of degree 5 .

Figure 6: Hermit quintics and cubics fitting

Figure 7: Curvature of Hermit quintics and cubics fitting

Figure 8: ct-map coefficients $1,2,3$. From left to right: C^{2} composed cubics, Hermite sampled quintics and cubics. bottom: curvature comb.

5. The influence of parametrization on the guide shape

With different choices of ρ, the resulting fitting curves have different shapes. In the following figures, the map $\rho: \mathbb{R} \rightarrow \mathbb{R}$ defined as a quadratic with Bézier coefficients 1, 2, 3 (Figure ??), 1, 1.5, 2 (Figure ??), $1,2,4$ (Figure ??) and 1, 4, 8 (Figure ??).

Figure 9: ct-map coefficients $1,1.5,2$. From left to right: C^{2} composed cubics, Hermite sampled quintics and cubics.

Figure 10: ct-map coefficients $1,2,4$. From left to right: C^{2} composed cubics, Hermite sampled quintics and cubics.

Figure 11: ct-map coefficients $1,4,8$. From left to right: C^{2} composed cubics, Hermite sampled quintics and cubics.

