Groebner Bases

Jianhua fan

April 7, 2006

1 Commutative Ring, Field and Ideal

Commutative Ring: consist of a set R and two binary operations "." and " + " defined on R for which the following conditions are satisfied, given $a, b, c \in$ R :

1. $(a+b)+c=a+(b+c)(a \cdot b) \cdot c=a \cdot(b \cdot c)$
2. $a+b=b+a \quad a \cdot b=b \cdot a$
3. $a \cdot(b+c)=a \cdot b+a \cdot c$
4. There are 0,1 such that $a+0=a \cdot 1=a$
5. Given $a \in R$, there is $b \in R$, such that $a+b=0$

Example: Integers set \mathbb{Z}, Polynomials $k\left[x_{1}, \cdots, x_{n}\right]$
Field: Commutative Ring and also satisfies the following one more condition:consist of a set R and two binary operations "." and "+" defined on R for which the following conditions are satisfied, given $a, b, c \in R$:

1. $(a+b)+c=a+(b+c)(a \cdot b) \cdot c=a \cdot(b \cdot c)$
2. $a+b=b+a \quad a \cdot b=b \cdot a$
3. $a \cdot(b+c)=a \cdot b+a \cdot c$
4. There are 0,1 such that $a+0=a \cdot 1=a$
5. Given $a \in R$, there is $b \in R$, such that $a+b=0$
6. Given $a \in R$ and $a \neq 0$, there is $c \in R$, such that $a \cdot c=1$

Example: Real number set \mathbb{R}, Complex number set \mathbb{C}
Ideal: A subset $I \subset k\left[x_{1}, \cdots, x_{n}\right]$ is an ideal if it satisfies:

1. $0 \in I$
2. if $f, g \in I$, then $f+g \in I$
3. if $f \in I$, and $h \in k\left[x_{1}, \cdots, x_{n}\right]$, then $h f \in I$

Ideal: $f_{1}, \cdots f_{s} \in k\left[x_{1}, \cdots, x_{n}\right],<f_{1}, \cdots f_{s}>=\left\{\sum h_{i} f_{i}: h_{1}, \cdots h_{s} \in k\left[x_{1}, \cdots, x_{n}\right]\right\}$ is an ideal (Prove that), $f_{1}, \cdots f_{s}$ are finite generating set called basis.

Observation 1: Every idea can have multiple bases.
Observation 2: if $\left.<f_{1}, \cdots f_{s}\right\rangle=<g_{1}, \cdots g_{t}>$, then equations $f_{1}=0, \cdots, f_{s}=$ 0 have the same solutions with equations $g_{1}=0, \cdots g_{s}=0$. (Prove it)

2 Problems

1. Does every ideal I have a finite generating set?
2. Given $f_{1}, \cdots f_{s} \in k\left[x_{1}, \cdots, x_{n}\right]$ and $I=<f_{1}, \cdots f_{s}>$, decide if $f \in I$?
3. solve polynomial equations $f_{1}=\cdots=f_{s}=0$?

3 Solutions

$3.1 n=1$ polynomials

3.1.1 For given polynomial $g \neq 0$, every polynomial f can be represented as $f=q g+r$, either $r=0$ or $\operatorname{deg}(r)<\operatorname{deg}(g)$, here q is a polynomial.
3.1.2 Every idea $I=\langle f\rangle$, here f is nonzero polynomial of minimum degree in I.
3.1.3 $<f_{1}, f_{2}>=<G C D\left(f_{1}, f_{2}\right)>$
3.1.4 $g \in I=<f>i f f g=q f$

3.2 Multivariables and any degree polynomials

3.2.1 Does every ideal have a finite generator?

Monomial ideals: An ideal $I \subset k\left[x_{1}, \cdots, x_{n}\right]$ is a monomial ideal if there is a subset $A \subset \mathbb{Z}_{>0}^{n}$, such that I consists of all polynomials which are finite sums of the form $\sum h_{a} x^{a}$ where $h_{a} \in k\left[x_{1}, \cdots, x_{n}\right], a \in A$, and we write $I=<x^{a}, a \in A>$

Examples: $I=<x^{4} y^{2}, x^{3} y^{4}, x^{2} y^{5}>$ is a monomial ideal.

Theorem: $I=<x^{a}, a \in A>$ then a monomial $x^{b} \in I$ iff x^{b} is divisible by x^{a} for some $a \in A$.

Leading Term: $L T(I)=\left\{c x^{a}\right.$: there exist $f \in I$ with $\left.L T(f)=c x^{a}\right\}$
Hilber Basis Theorem: Every ideal I has a finite generating set. $I=<$ $g_{1}, \cdots g_{s}>$ for some $g_{1}, \cdots g_{s} \in I$.

Proof: $<g_{1}, \cdots g_{s}>\subseteq I$ and $I \subseteq<g_{1}, \cdots g_{s}>$?
$\Rightarrow<g_{1}, \cdots g_{s}>\subseteq I$ is true
\Leftarrow
$f \in I=a_{1} g_{1}+\cdots+a_{s} g_{s}+r$ then $r=f-a_{1} g_{1}-\cdots-a_{s} g_{s} \in I$
if $r \neq 0$ then $L T(r) \in<L T(I)=<L T\left(g_{1}\right), \cdots L T\left(g_{s}\right)>$ then $L T(r)$ is divisible by some $L T\left(g_{i}\right)$
then $r=0, f \in<g_{1}, \cdots g_{s}>$ Proved.

3.2.2 Groebner Bases

$G=\left\{g_{1}, \cdots g_{s}\right\}$ of I is a Groebner basis if $<L T\left(g_{1}\right), \cdots L T\left(g_{s}\right)>=<$ $L T(I)>$

Every nonzero ideal has Groebner basis.

A set $\left\{g_{1}, \cdots g_{s}\right\}$ is a Groebner basis of I iff the leading term of any element of I is divisible by one of $L T\left(g_{i}\right)$
$G=\left\{g_{1}, \cdots g_{s}\right\}$ of I is a Groebner basis and f is a polynomial, then $f \in I$ iff the remainder on division of f by G is zero.

3.2.2.1 How to compute Groebner Bases

1. S-polynomials: Given polynomials $f, g, a=\operatorname{multideg}(f) b=$ $\operatorname{multideg}(g) c=\left(c_{1}, \cdots c_{n}\right), c_{i}=\max \left(a_{i}, b_{i}\right)$
$S(f, g)=\frac{x^{c}}{L T(f)} \cdot f-\frac{x^{c}}{L T(g)} \cdot g$

Examples: $f=x^{3} y^{2}-x^{2} y^{3}+x, g=3 x^{4} y+y^{2}, c=(4,2), S(f, g)=$ $\frac{x^{4} y^{2}}{x^{3} y^{2}} \cdot f-\frac{x^{4} y^{2}}{3 x^{4} y} \cdot g$
2. $G=\left\{g_{1}, \cdots g_{s}\right\}$ of I is a Groebner basis iff any pairs $i \neq j$, $\overline{S(p, q)}^{G}$ (the remainder on division of $S\left(g_{i}, g_{j}\right)$ by G) is zero.
3. Compute Groebner Basis: try to extend the original generating set to a Groebner basis by adding more polynomials in I

```
Algorithm: input \(F=\left(f_{1}, \cdots f_{s}\right) \quad\) output \(G=\left(g_{1}, \cdots g_{t}\right) \quad G=F\),
repeat
    \(G^{\prime}=G\)
    for each pair \(\{p, q\}, \quad p \neq q\) in \(G^{\prime}\) do
        \(S=\overline{S(p, q)}^{G}\)
        if \(S \neq 0\) then \(G=G \cup\{S\}\)
until \(G=G^{\prime}\)
```

4. Let G be a Groebner basis for polynomial ideal $I, p \in G$ such that $L T(p) \in<L T(G-\{p\})>$ then $G-\{p\}$ is also a Groebner basis.

3.2.2.2 Applications of Groebner Bases

1. ideal membership algorithm

Given $I=<f_{1}, \cdots f_{s}>$ decide if $f \in I$?
First find Grobner basis $G=\left\{g_{1}, \cdots g_{s}\right\}$ of I then $f \in I$ iff $\bar{f}^{G}=0$
2. Solving polynomial equations
$\left(\begin{array}{c}x^{2}+y^{2}+z^{2}=1 \\ x^{2}+z^{2}=y \\ x=z\end{array}\right) G=\left\{x-z,-y+2 z^{2}, z^{4}+(1 / 2) z^{2}-1 / 4\right\} \Rightarrow$ solutions

