Groebner Bases

Jianhua fan

April 7, 2006

1 Commutative Ring, Field and Ideal

Commutative Ring: consist of a set R and two binary operations "." and "+" defined on R for which the following conditions are satisfied, given $a, b, c \in R$:

- 1. (a+b) + c = a + (b+c) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- $2. \ a+b=b+a \quad a\cdot b=b\cdot a$
- 3. $a \cdot (b+c) = a \cdot b + a \cdot c$
- 4. There are 0, 1 such that $a + 0 = a \cdot 1 = a$
- 5. Given $a \in R$, there is $b \in R$, such that a + b = 0

Example: Integers set \mathbb{Z} , Polynomials $k[x_1, \dots, x_n]$

- **Field:** Commutative Ring and also satisfies the following one more condition:consist of a set R and two binary operations "·" and "+" defined on R for which the following conditions are satisfied, given $a, b, c \in R$:
 - 1. (a+b) + c = a + (b+c) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
 - $2. \ a+b=b+a \quad a\cdot b=b\cdot a$
 - 3. $a \cdot (b+c) = a \cdot b + a \cdot c$
 - 4. There are 0, 1 such that $a + 0 = a \cdot 1 = a$
 - 5. Given $a \in R$, there is $b \in R$, such that a + b = 0
 - 6. Given $a \in R$ and $a \neq 0$, there is $c \in R$, such that $a \cdot c = 1$

Example: Real number set \mathbb{R} , Complex number set \mathbb{C}

Ideal: A subset $I \subset k[x_1, \dots, x_n]$ is an ideal if it satisfies:

- $1. \ 0 \in I$
- 2. if $f, g \in I$, then $f + g \in I$
- 3. if $f \in I$, and $h \in k[x_1, \dots, x_n]$, then $hf \in I$
- **Ideal:** $f_1, \dots f_s \in k[x_1, \dots, x_n], \langle f_1, \dots f_s \rangle = \{\sum h_i f_i : h_1, \dots h_s \in k[x_1, \dots, x_n]\}$ is an ideal (Prove that), $f_1, \dots f_s$ are finite generating set called basis.

Observation 1: Every idea can have multiple bases.

Observation 2: if $\langle f_1, \cdots, f_s \rangle = \langle g_1, \cdots, g_t \rangle$, then equations $f_1 = 0, \cdots, f_s = 0$ have the same solutions with equations $g_1 = 0, \cdots, g_s = 0$. (Prove it)

2 Problems

- 1. Does every ideal I have a finite generating set?
- 2. Given $f_1, \dots, f_s \in k[x_1, \dots, x_n]$ and $I = \langle f_1, \dots, f_s \rangle$, decide if $f \in I$?
- 3. solve polynomial equations $f_1 = \cdots = f_s = 0$?

3 Solutions

3.1 n = 1 polynomials

- **3.1.1** For given polynomial $g \neq 0$, every polynomial f can be represented as f = qg + r, either r = 0 or deg(r) < deg(g), here q is a polynomial.
- **3.1.2** Every idea $I = \langle f \rangle$, here f is nonzero polynomial of minimum degree in I.
- **3.1.3** $\langle f_1, f_2 \rangle = \langle GCD(f_1, f_2) \rangle$
- $\textbf{3.1.4} \quad g \in I = < f > iff \ g = qf$

3.2 Multivariables and any degree polynomials

3.2.1 Does every ideal have a finite generator?

Monomial ideals: An ideal $I \subset k[x_1, \dots, x_n]$ is a monomial ideal if there is a subset $A \subset \mathbb{Z}_{\geq 0}^n$, such that I consists of all polynomials which are finite sums of the form $\sum h_a x^a$ where $h_a \in k[x_1, \dots, x_n], a \in A$, and we write $I = \langle x^a, a \in A \rangle$

Examples: $I = \langle x^4y^2, x^3y^4, x^2y^5 \rangle$ is a monomial ideal.

Theorem: $I = \langle x^a, a \in A \rangle$ then a monomial $x^b \in I$ iff x^b is divisible by x^a for some $a \in A$.

Leading Term: $LT(I) = \{cx^a : there \ exist \ f \in I \ with \ LT(f) = cx^a\}$

Hilber Basis Theorem: Every ideal I has a finite generating set. $I = \langle g_1, \cdots, g_s \rangle$ for some $g_1, \cdots, g_s \in I$.

Proof: $\langle g_1, \cdots, g_s \rangle \subseteq I$ and $I \subseteq \langle g_1, \cdots, g_s \rangle$?

 $\Rightarrow \langle g_1, \cdots g_s \rangle \subseteq I \text{ is true}$ \Leftarrow $f \in I = a_1g_1 + \cdots + a_sg_s + r \text{ then } r = f - a_1g_1 - \cdots - a_sg_s \in I$

if $r \neq 0$ then $LT(r) \in LT(I) = LT(g_1), \cdots LT(g_s)$ >then LT(r) is divisible by some $LT(g_i)$

then $r = 0, f \in \langle g_1, \cdots g_s \rangle$ Proved.

3.2.2 Groebner Bases

 $G = \{g_1, \cdots g_s\}$ of I is a Groebner basis if $< LT(g_1), \cdots LT(g_s) > = < LT(I) >$

Every nonzero ideal has Groebner basis.

A set $\{g_1, \dots, g_s\}$ is a Groebner basis of I iff the leading term of any element of I is divisible by one of $LT(g_i)$

 $G = \{g_1, \dots, g_s\}$ of I is a Groebner basis and f is a polynomial, then $f \in I$ iff the remainder on division of f by G is zero.

3.2.2.1 How to compute Groebner Bases

1. S-polynomials: Given polynomials f, g, a = multideg(f) b = multideg(g) $c = (c_1, \dots, c_n)$, $c_i = max(a_i, b_i)$

$$S(f,g) = \frac{x^c}{LT(f)} \cdot f - \frac{x^c}{LT(g)} \cdot g$$

Examples: $f = x^3y^2 - x^2y^3 + x$, $g = 3x^4y + y^2$, c = (4,2), $S(f,g) = \frac{x^4y^2}{x^3y^2} \cdot f - \frac{x^4y^2}{3x^4y} \cdot g$

2. $G = \{g_1, \dots g_s\}$ of I is a Groebner basis iff any pairs $i \neq j$, $\overline{S(p,q)}^G$ (the remainder on division of $S(g_i, g_j)$ by G) is zero.

3. Compute Groebner Basis: try to extend the original generating set to a Groebner basis by adding more polynomials in I

Algorithm: input $F = (f_1, \dots f_s)$ output $G = (g_1, \dots g_t)$ G = F, repeat G' = Gfor each pair $\{p,q\}, p \neq q$ in G' do $S = \overline{S(p,q)}^G$ if $S \neq 0$ then $G = G \cup \{S\}$ until G = G'

4. Let G be a Groebner basis for polynomial ideal I, $p \in G$ such that $LT(p) \in \langle LT(G - \{p\}) \rangle$ then $G - \{p\}$ is also a Groebner basis.

3.2.2.2 Applications of Groebner Bases

1. ideal membership algorithm

Given $I = \langle f_1, \cdots f_s \rangle$ decide if $f \in I$? First find Grobner basis $G = \{g_1, \cdots g_s\}$ of I then $f \in I$ iff $\overline{f}^G = 0$

2. Solving polynomial equations $\begin{pmatrix} x^2 + y^2 + z^2 = 1 \\ x^2 + z^2 = y \\ x = z \end{pmatrix} G = \{x - z, -y + 2z^2, z^4 + (1/2)z^2 - 1/4\} \Rightarrow \text{solutions}$