
Algebraic manipulation in the Bernstein form

made simple via convolutions

J. Sánchez-Reyes*

Department of Applied Mechanics, University of Castilla-La Mancha, ETS Ingenieros Industriales, Campus Universitario, 13071 Ciudad Real, Spain

Received 19 March 2002; received in revised form 13 January 2003; accepted 15 January 2003

Abstract

Traditional methods for algebraic manipulation of polynomials in Bernstein form try to obtain an explicit formula for each coefficient of

the result of a given procedure, such us multiplication, arbitrarily high degree elevation, composition, or differentiation of rational functions.

Whereas this strategy often furnishes involved expressions, these operations become trivial in terms of convolutions between coefficient lists

if we employ the scaled Bernstein basis, which does not include binomial coefficients. We also carry over this scheme from the univariate

case to multivariate polynomials, Bézier simplexes of any dimension and B-bases of other functional spaces. Examples of applications in

geometry processing are provided, such as conversions between the triangular and tensor-product Bézier forms.

q 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Scaled Bernstein form; Convolution; Multivariate polynomials

1. Introduction

1.1. The Bernstein basis

In a CAGD context, a degree-n polynomial bðuÞ over

u [½0; 1� is usually represented in Bernstein–Bézier

form

bðuÞ ¼
Xn

i¼0

biB
n
i ðuÞ; Bn

i ¼
n

i

 !
ð1 2 uÞn2iui

; ð1:1Þ

where Bn
i ðuÞ denotes the degree-n Bernstein polynomials.

This representation has become a standard, as it enjoys

many advantages [4,10,17].

† Elegant geometric properties, including an intuitive

geometric interpretation of the coefficients as control

points.

† Existence of a de Casteljau-type algorithm: it is the

only polynomial representation admitting a corner-

cutting procedure that simultaneously provides sub-

division, as proved by Barry and Goldman [1].

† Optimal stability: Farouki and Goodman [14] showed

that we cannot find any other nonnegative polynomial

basis on the unit interval with smaller condition

numbers for evaluation and roots.

Formally speaking, the Bernstein basis can be identified

as the normalized B-basis [6] of the space of algebraic

polynomials. Given a space with normalized totally positive

bases, among all them there exists a unique basis, called

B-basis, with optimal shape-preserving properties and

optimal stability [24]. In addition, such a B-basis is the

only basis in the space furnishing a de Casteljau-type

algorithm [23].

Despite all these advantageous properties, some systems

convert their Bézier curves or surfaces to the monomial

(power) form before performing certain operations,

because, supposedly, such operations are more easily

formulated. These conversions are not recommendable, as

they sacrifice the stability advantages of the Bernstein form.

In addition, as widely know, the transformation between

the Bernstein and the power form is ill conditioned [13].

In conclusion, to take advantage of the intrinsic stability of

the Bernstein basis, all procedures must be performed in

this basis, without conversions. Thus, Tsay and Farouki

0010-4485/03/$ - see front matter q 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0010-4485(03)00021-6

Computer-Aided Design 35 (2003) 959–967

www.elsevier.com/locate/cad

* Tel.: þ34-926-295-463; fax: þ34-926-295-361.

E-mail address: javier.sanchezreyes@uclm.es (J. Sánchez-Reyes).

http://www.elsevier.com/locate/cad

[29] have recently developed specific algorithms for

univariate polynomials in Bernstein form, and written an

object-oriented library. An extension to tensor-product

polynomials is due to Berchtold and Bowyer [2].

1.2. The scaled Bernstein basis

The scaled Bernstein form, first introduced by Farouki

and Rajan [12], transfers the binomial numbers from the

basis functions to the coefficients. Henceforth, we adopt the

convention of denoting the scaled coefficients ~bi and basis

functions ~Bn
i ðuÞ by a tilde, so that a degree-n polynomial

bðuÞ is written as

bðuÞ ¼
Xn

i¼0

~bi
~Bn

i ðuÞ;
~bi ¼

n

i

 !
bi;

~Bn
i ¼ ð1 2 uÞn2iui

: ð1:2Þ

The scaled basis is still a B-basis (although no longer

normalized), thereby keeping the same condition numbers

for evaluation or roots, because such numbers do not depend

on the particular scaling adopted for the individual basis

functions [11]. Hence, regarding stability there is no penalty

if we carry out arithmetic in the scaled basis rather than in

the customary Bernstein basis.

Farouki and Rajan [12] observed that several procedures

are simplified in this scaled basis, because the often

annoying binomial coefficients disappear. Indeed, the

product between two polynomials reduces to the convolu-

tion between their lists of coefficients, a key property that

has not been exploited in the literature. This property leads

to a trivial formulation of generalized degree-elevation,

addition of polynomials with different degrees and compo-

sition. In consequence, any polynomial expression invol-

ving basic algebraic operations is simply ‘written out’ in

terms of convolutions and additions between lists of scaled

coefficients. Several problems in geometry processing admit

exact explicit algebraic expressions involving just these

basic operations, in the customary case of polynomial

curves and surfaces. Surprisingly, most works dealing

with such problems try to obtain a (usually cumbersome)

closed-form formula for a generic Bernstein coefficient of

the result.

The paper is arranged as follows. Section 2 presents the

product in the scaled Bernstein basis as a convolution and

derives from this cornerstone other basic operations.

In Section 3, the generalization of this idea to multivariate

polynomials is outlined. Section 4 describes several

examples of applications in geometry processing: conver-

sions between rectangular and triangular Bézier represen-

tations, and obtaining the 3D representation of trimming

curves or of surfaces after a free-form deformation.

In Section 5 we carry over these ideas to other functional

spaces that admit a B-basis with convolution structure,

such as the space of trigonometric polynomials. Finally,

conclusions are drawn in Chapter 6.

2. Basic operations in the scaled Bernstein basis

2.1. Multiplication as convolution

The key advantage of the scaled Bernstein basis (1.2)

is that multiplying polynomials is done exactly as in

the power form, using the familiar Cauchy product

rule: Given two polynomials aðuÞ; bðuÞ of degrees m; n

and lists of scaled coefficients ~a ¼ {~a0;…; ~am}; ~b ¼

{~b0;…; ~bn}; respectively, their product has degree mþ n

and a coefficient list ~c obtained via discrete convolution p

cðuÞ ¼ aðuÞbðuÞ ! ~c ¼ ~a p ~b ¼
Xn

j¼0

shiftjð~bj ~aÞ; ð2:1Þ

where the operation shiftj means shifting a list j positions to

the right, filling the leading gaps with zeros. When two lists

of different lengths are added in the summation (2.1), the

shortest one is padded with trailing zeros. Note that

multiplication by the ith monomial ui; which coincides

with the scaled Bernstein polynomial ~Bi
iðuÞ; reduces to

shifting the coefficient list

cðuÞ ¼ uibðuÞ ! ~c ¼ shiftið ~bÞ: ð2:2Þ

Convolutions are implemented as built-in functions in most

software packages for symbolic computation, such as

Mathematica [31].

We have written the convolution (2.1) with paralleliza-

tion in mind, in terms of products of lists by scalars and

additions of lists. For the sake of completeness, the

sequential code for the convolution follows

~c ¼ 0

for j U 0 to n do

for k U j to m þ j do

~ck ¼ ~ck þ ~bk ~ak2j

endfor

endfor

This algorithm has a cost of ðm þ 1Þðn þ 1Þ products

and additions. For the complete multiplication in the

standard form, we require conversions between the standard

and scaled forms, which incur (m þ n þ 2) additional

products and (m þ n þ 1) divisions by binomial coefficients.

We assume that the binomial coefficients are precalculated

and hence obtained at no extra cost.

The traditional formula [12] for multiplying

two polynomials, of standard Bernstein coefficients

a ¼ {a0;…; am};b ¼ {b0;…; bn}; contains a non-trivial

summation rule for the generic coefficient of the product

cðuÞ ¼ aðuÞbðuÞ !

ck ¼
Xminðm;kÞ

j¼maxð0;k2nÞ

m

j

0
@

1
A n

k 2 j

0
@

1
A

m þ n

k

0
@

1
A ajbk2j:

ð2:3Þ

J. Sánchez-Reyes / Computer-Aided Design 35 (2003) 959–967960

Not surprisingly, the formula above has exactly the same

cost than our approach, because both involve the same

arithmetic operations, yet rearranged in a different way.

Nevertheless, expression (2.1) is much simpler and suitable

for parallelization.

Furthermore, many software packages for symbolic

computation include convolutions as built-in functions.

For instance, in Mathematica 4 the convolution

(2.1) between two lists is simply written as

ListConvolve[a,b,{1, 2 1},0]. Since these

built-in functions run usually faster than any code created

by the user, in such packages the implementation via

convolutions results in substantial computational savings

with respect to the traditional summation rule (2.3),

especially for high degrees. This fact is shown in Fig. 1,

which compares the computing times to multiply two

degree-n polynomials, using Mathematica 4 [31] on a

400 MHz Power Mac G4 Computer.

2.2. Elevation to the kth power

Once established the equivalence between products in

the scaled form and convolutions, the elevation to the

kth power of a polynomial corresponds to the k-fold

convolution

ðbðuÞÞk ! ~bk ¼ ~b p ~b p · · · p ~b|fflfflfflfflffl{zfflfflfflfflffl}
k

:

The resulting coefficients are those of the multinomial

formula. For the special case of a list ~b ¼ {~b0; ~b1} ðn ¼ 1Þ;

elevation to the kth power yields the terms of the binomial

formula

~bk ¼
k

i

 !
~bk2i

0
~bi

1

()k

i¼0

; ~b ¼ {~b0; ~b1}: ð2:4Þ

2.3. The unit function and generalized degree-elevation

To begin, consider how to calculate the degree-n scaled

coefficients ~bi (1.2) for the unit function bðuÞ ¼ 1:

Clearly, they are the binomial coefficients from the nth

row in Pascal’s triangle. Moreover, it coincides with the

n-fold convolution 1n (2.4) of the scaled (or unscaled)

degree-1 coefficients 1 of the unit function

n

i

 !()n

i¼0

¼ 1n ¼ 1 p 1 p · · · p 1; 1 ¼ {1; 1}: ð2:5Þ

Note that the expression above can be regarded as a rewriting

of Pascal’s formula for adjacent binomial coefficients. It also

furnishes a compact notation for the conversion between

standard b (1.1) and scaled ~b (1.2) coefficients

~b ¼ 1n·b; b ¼
~b

1n
; ð2:6Þ

where the product or quotient between two lists is interpreted

as a term-wise operation.

This simple representation of the unit function leads to a

trivial formulation of arbitrary degree elevation n ! N for a

polynomial bðuÞ in scaled form

~b
degree n

! 1N2n p ~b
degree N.n

; ð2:7Þ

which is much more compact than the formula found in

standard books [10,17] or Farouki and Rajan’s paper [12].

Degree-elevation is a fundamental operation when dealing

with polynomials in Bernstein form. In particular, to add

two polynomials aðuÞ; bðuÞ of dissimilar degrees N; n;

respectively, with N . n; we must perform degree-

elevation up to the common maximum degree

cðuÞ ¼ aðuÞ þ bðuÞ ! ~c ¼ ~a þ 1N2n p ~b:

2.4. Composition

Suppose that we are given a certain polynomial

expression f ðpiðuÞÞ involving additions and products of

polynomials piðuÞ; and that we want to compute the scaled

coefficients of the result. From the fundamental results

reached in the preceding sections, we simply rewrite f ;

following a three-step procedure

1. Replace in expression f the polynomials piðuÞ by their

lists of scaled coefficients.

2. Replace products/additions between polynomials with

convolutions/additions between lists, performing

degree-elevation when two polynomials of different

degrees are added.

3. Evaluate the resulting expression using any suitable

evaluation algorithm.

We can apply this procedure for the composition

cðvÞ ¼ bðuðvÞÞ of two polynomials bðuÞ; uðvÞ of degrees

Fig. 1. CPU time for multiplying two degree-n polynomials: using the

traditional summation rule versus convolutions.

J. Sánchez-Reyes / Computer-Aided Design 35 (2003) 959–967 961

n; p; respectively, in scaled form. To compute the scaled

coefficients ~c of cðvÞ;first we substitute in the definition (1.2)

of bðuÞ the variable u by the scaled coefficients ~u; and then

make the replacements indicated in step 2

~c ¼
Xn

i¼0

~bið1
p 2 ~uÞn2i p ~ui

: ð2:8Þ

Finally, we evaluate the resulting expression. For instance,

we could employ the de Casteljau algorithm: beginning with
~b0

i ¼ {bi}; the recursive algorithm

~bk
i ¼ ð1p 2 ~uÞ p ~bk21

i þ ~u p ~bk21
iþ1 ;

k ¼ 1;…; n

i ¼ 0;…; n 2 k
;

yields the sought coefficients ~c ¼ ~bn
0: In fact, we could

employ any other strategy for evaluating standard Bézier

curves, such as a more efficient nested algorithm, with

the flavour of Horner’s scheme, described in Farin’s

textbook [10].

We must remark the conceptual and formal simplicity of

expression (2.8) compared with other existing approaches.

Farouki and Rajan [12] employ the scaled form, but they try

to obtain a explicit formula form each generic coefficient by

applying the multinomial expansion, thereby leading to

complex expressions that involve non-trivial cycling

through a set of indices. By similar reasons, the method

by Piegl and Tiller [25] for composing polynomial functions

has no straightforward implementation. DeRose’s product

algorithm [8], implemented by Tsay and Farouki in their

library [29], avoids closed forms for the final coefficients

and computes them recursively filling a tetrahedral array.

However, our approach is still considerably simpler thanks

to the systematic use of the scaled basis. A variant [8] of the

product algorithm, based on the blossoming theory,

provides some geometric meaning, but at the cost of even

more complex maths.

2.5. Differentiation

Obtaining the derivative b0ðuÞ of a polynomial bðuÞ in the

scaled basis (1.2) is only slightly more involved than in the

standard basis

~b0
i ¼ ði þ 1Þ~biþ1 2 ðn 2 iÞ~bi; i ¼ 0;…; n 2 1:

Needless to say, as an alternative, we could differentiate

bðuÞ in the Bernstein basis and then convert the resulting

coefficients b0 to the scaled basis ~b0:

The superiority of the scaled basis becomes clear when

we compute the derivative r0ðuÞ of a degree-n rational

function rðuÞ :

rðuÞ ¼
bðuÞ

wðuÞ
!
d=du

r0ðuÞ ¼
b0ðuÞwðuÞ2 bðuÞw0ðuÞ

w2ðuÞ
:

The derivative is a rational function of degree 2n;

whose numerator and denominator have scaled coefficients

ð ~b0 p ~w 2 ~b p ~w0Þ p 1

~w p ~w
;

respectively. Once again, this expression is dramatically

more compact than that obtained in the standard Bernstein

form for each individual coefficient by Kim et al. [19].

2.6. Conversion between power and Bernstein form

Consider first the conversion of a degree-n polynomial

aðuÞ in monomial (power) form

aðuÞ ¼
Xn

i¼0

uiai

to the scaled Bernstein representation ~b (1.2). Since

ui ¼ ~Bi
iðuÞ; the solution is trivial in terms of degree-

elevation. Just degree-raise (2.7) these functions up to

degree n; taking into account the simplification (2.2), and

collect the resulting terms

~b ¼
Xn

i¼0

shiftiðai1
n2iÞ:

Regarding the inverse conversion, from scaled Bernstein to

monomial, expand in the definition (1.2) the powers of ð1 2

uÞ; a polynomial with monomial coefficients {1;21};

and apply that the monomial coefficients of a product are

also computed via convolution

{ai}
n
i¼0 ¼

Xn

i¼0

shiftið ~bi{1;21}n2iÞ:

3. Extension to multivariate polynomials

In this section the framework for univariate polynomials

is carried over to multivariate polynomials, by applying two

key ideas

1. Define the suitable multivariate scaled form by absorbing

the binomial numbers into the coefficients.

2. Generalize the convolution p (2.1) to multidimensional

lists.

3.1. Tensor-product polynomials

A bivariate polynomial bðu; vÞ of degree ðm; nÞ; over a

rectangular domain ðu; vÞ [½0; 1� £ ½0; 1�; is written in

tensor-product Bernstein form as

bðu; vÞ ¼
Xm
i¼0

Xn

j¼0

bijB
m;n
i;j ðu; vÞ;

Bm;n
i;j ðu; vÞ ¼ Bm

i ðuÞB
n
j ðvÞ:

ð3:1Þ

J. Sánchez-Reyes / Computer-Aided Design 35 (2003) 959–967962

In the alternative scaled form

bðu; vÞ ¼
Xm
i¼0

Xn

j¼0

~bij
~Bm;n

i;j ðu; vÞ;

~bij ¼
m

i

 !
n

j

 !
bij

~Bm;n
i;j ðu; vÞ ¼ ð1 2 uÞm2iuið1 2 vÞn2jvj

:

ð3:2Þ

Now the scaled coefficients are represented as a m £ n

matrix ~b; and the product between two polynomials is

computed through bivariate convolution

cðu; vÞ ¼ aðu; vÞbðu; vÞ !

~c ¼ ~a p ~b ¼
Xm
i¼0

Xn

j¼0

shifti;jðbi;jaÞ:
ð3:3Þ

We initialize to zero a matrix c and add to it, starting at the

ði; jÞth position, submatrices bi;ja padded with zeros.

The bivariate convolution (3.3) furnishes the analogue of

the univariate expressions (2.2) and (2.5)–(2.7)

† Product by ði; jÞth power basis function

cðu; vÞ ¼ uivjbðu; vÞ! ~c ¼ shifti;jð ~bÞ:

† Degree-ðm; nÞ scaled coefficients 1m;n of the unit function

bðu; vÞ ¼ 1: If 1m; ð1nÞ’ are column and row vectors,

respectively, then

1m;n ¼ 1m p ð1nÞ’ ¼
m

i

 !
n

j

 !" #
i;j

† Transformation between standard b and scaled ~b

coefficients, via term-wise division

b ¼
~b

1m;n
:

† Arbitrary degree elevation ðm; nÞ! ðM;NÞ

~b
degreeðm;nÞ

! 1Dm;Dn p ~b
degreeðM;NÞ

;
Dm ¼ M 2 m . 0

Dn ¼ N 2 n . 0
:

The generalization to multivariate polynomials of an

arbitrary number k of variables is a straightforward exercise

with k-dimensional lists.

3.2. Polynomials over simplexes

Bivariate polynomials can also be defined in barycentric

coordinates u over a triangular domain

u ¼ ðu; v;wÞ;
u þ v þ w ¼ 1

u; v;w . 0

(
: ð3:4Þ

Using this simplified notation, a degree-n polynomial pðuÞ

in the Bernstein basis takes the form

pðuÞ ¼
X
lil¼n

piB
n
i ðuÞ;

i ¼ {i; j; k}; i; j; k . 0

lil ¼ i þ j þ k

(
; ð3:5Þ

where Bn
i ðuÞ denotes the Bernstein polynomials over

triangles

Bn
i ðuÞ ¼

n

i

 !
uivjwk

;
n

i

 !
¼

n!

i!j!k!
; ð3:6Þ

and the coefficients pi are arranged in a triangular fashion

p0n0

p0;n21;1 p1;n21;0

..

.

p0;0;n p1;0;n21 · · · pn21;0;1 pn;0;0

:

In the scaled representation, pðuÞ (3.5) is rewritten as

pðuÞ ¼
X
lil¼n

~pi
~Bn

i ðuÞ;
~pi ¼

n

i

 !
pi

~Bn
i ðuÞ ¼ uivjwk

8>><
>>: : ð3:7Þ

The product between two polynomials polynomials pðuÞ;

qðuÞ of degrees m; n; respectively, has degree m þ n and a

triangular matrix ~c of scaled coefficients obtained via a

triangular convolution

cðuÞ ¼ pðuÞqðuÞ ! ~c ¼ ~p p ~q ¼
X
lil¼m

shiftiðpiqÞ:

We initialize to zero a ðm þ nÞ-sized matrix c and add to it,

starting at the ith position, triangular submatrices piq

padded with zeroes. The degree-n representation of unit

function has now scaled coefficients

1n ¼ 1 p 1 p · · · p 1; 1 ¼
1

1 1
:

In consequence, formulae for the transformation between

standard p and scaled ~p coefficients and for arbitrary degree

elevation are exactly those (2.6),(2.7) of the univariate case

p ¼
~p

1n
; ~p

degree n

! 1N2n p ~p
degree N.n

: ð3:8Þ

Triangles are the simplexes in two-dimensional space.

We can generalize the framework to Bézier simplexes in 3D

(over tetrahedral domains) or in spaces of arbitrary

dimension, by defining general barycentric coordinates.

deBoor [7] coined the term B-forms to denote such Bézier

simplexes. Once again, expression (3.8) applies, which is

considerably simpler than the scheme by Trump and

Prautzsch [30] for arbitrary high degree elevation.

J. Sánchez-Reyes / Computer-Aided Design 35 (2003) 959–967 963

4. Examples of applications in geometry processing

The composition of polynomials is a fundamental tool in

many operations in geometry processing [9], such as

conversions between tensor-product and Bézier simplex

forms and computing exact Bézier representations of trim-

ming curvesor Bézier curvesand surfaces that have undergone

free-form Bézier deformations. The same three-step pro-

cedure described in Section 2.3 for the univariate case holds

for compositions involving Bézier rectangles bðu; vÞ or

triangles pðuÞ; as illustrated in this section.

4.1. Conversion from Bézier rectangle to Bézier triangles

We address now the conversion from a Bézier rectangle

bðu; vÞ (3.2) of degree ðm; nÞ to two degree-ðm þ nÞ triangles,

ðu þ vÞ # 1 and ðu þ vÞ $ 1 (Fig. 2). For instance, consider

the triangle ðu þ vÞ # 1: As a simpler alternative to the

conversion formula by Goldman and Filip [16], just rewrite

bðu; vÞ in barycentric coordinates u (3.4)

pðuÞ ¼
Xm
i¼0

Xn

j¼0

~bijcðuÞ
m2iuidðuÞn2jvj

;

cðuÞ ¼ 1 2 u ¼ v þ w

dðuÞ ¼ 1 2 v ¼ u þ w

(
:

The scaled coefficients ~p of the triangular representation are

hence given by

~p ¼
Xm
i¼0

Xn

j¼0

shifti;j;0ð~bijc
m2i p dn2jÞ;

c ¼
1

1 0
; d ¼

0

1 1
:

4.2. Conversion from Bézier triangles to Bézier rectangles

To convert a degree-n polynomial pðuÞ (3.7) over a

triangle to the tensor-product form (3.2) of degree ðn; nÞ;

simply rewrite pðuÞ as a bivariate polynomial bðu; vÞ :

bðu; vÞ ¼
X
lil¼n

~piu
ivjðwðu; vÞÞk;

wðu; vÞ ¼ ð1 2 u 2 vÞ;

ð4:1Þ

by expressing wðu; vÞ as a degree-(1,1) bivariate function.

Therefore, the scaled coefficients ~b are

~b ¼
X
lil¼n

~pi1
j;i p shifti;jðw

kÞ; w ¼
1 0

0 21

" #
;

where the unit 1i;j is needed to degree-elevate the terms

of the summation to the common degree ðn; nÞ:

The expression above is much more compact than the

formula by Brueckner [5] for each individual coefficient.

Note that, to keep the original triangular domain (3.4),

we must trim the rectangular domain ðu; vÞ to the region

ðu þ vÞ # 1:

An alternative method proposed by Hu [18], which

avoids trimming and its associated problems, is based on

splitting the original Bézier triangle pðuÞ into three

rectangles, in a star-like configuration (Fig. 3). We hence

choose an inner common corner point c for these three

rectangles and three additional corners cu¼0; cv¼0; cw¼0 on

the three edges, denoted by the subscript, of the triangular

domain. For instance, consider how to express in tensor-

product form bðs; tÞ; ðs; tÞ [½0; 1� £ ½0; 1�; the polynomial

over the quadrilateral with corners

O ¼ ð0; 0Þ; cu¼0 ¼ ð0; v0Þ

cv¼0 ¼ ðu0; 0Þ c ¼ ðu1; v1Þ
;

where we have employed coordinates ðu; vÞ: The key idea is

to parameterize the quadrilateral using the bilinear map

ðu; vÞ ¼ {1 2 s; s}
O cu¼0

cv¼0 c

" #
1 2 t

t

()
;

rewrite pðuÞ in tensor-product form and finally compute the

composition bðs; tÞ ¼ pðuðs; tÞ; vðs; tÞÞ: The resulting scaled

coefficients ~b are

~b ¼
X
lil¼n

~piu
i p vj p ð11;1 2 u 2 vÞk;

u ¼
0 0

u0 u1

" #
; v ¼

0 v0

0 v1

" #
:

The remaining two quadrilaterals would be handled

analogously.Fig. 2. Splitting a Bézier rectangle into two triangles.

J. Sánchez-Reyes / Computer-Aided Design 35 (2003) 959–967964

4.3. 3D expression of trimming curves

As sketched in Fig. 4, composition is needed to

obtain the 3D representation c3DðtÞ of a trimming curve

c2DðtÞ ¼ ðuðtÞ; vðtÞÞ: This 2D curve is defined on the domain

ðu; vÞ [½0; 1� £ ½0; 1� of a degree-ðm; nÞ rectangular Bézier

patch bðu; vÞ with control points bi;j :

bðu; vÞ ¼
Xm
i¼0

Xn

j¼0

bijB
m;n
i;j ðu; vÞ: ð4:2Þ

The 3D curve stems from the composition c3DðtÞ ¼

bðuðtÞ; vðtÞÞ and has degree ðm þ nÞp; where p denotes the

degree of the original curve c2DðtÞ: Hence, if c2DðtÞ is given

in scaled Bézier form, with components ð ~u; ~vÞ; c3DðtÞ has

scaled points

~c3D ¼
Xm
i¼0

Xn

j¼0

~bijð1
p 2 ~uÞm2i p ~ui p ð1p 2 ~vÞn2j p ~vj

:

Once again, observe the simplicity of the expression above,

compared with the formulae for each coefficient given by

Hoschek and Lasser [17] or Lasser and Bonneau [20].

4.4. Free-form deformations

Another remarkable application involving composition is

free-form deformation of curves and surfaces, a method first

introduced by Bézier [3]. If we apply a polynomial space

deformation to a region, those polynomial curves or

surfaces embedded in the region transform to new curves

or surfaces whose expressions are obtained by composition.

Suppose that the deformation dðx; y; zÞ is defined in

trivariate tensor-product Bézier form and, by choosing a

suitable coordinate system, in the unit cube

dðx; y; zÞ ¼
Xp

i¼0

Xq

j¼0

Xr

k¼0

dijB
p;q;r
i;j;k ðx; y; zÞ: ð4:3Þ

A tensor-product Bézier patch bðu; vÞ ¼

ðxðu; vÞ; yðu; vÞ; zðu; vÞÞ (4.2) transforms to a higher-degree

patch bFFDðu; vÞ obtained as the composition bFFDðu; vÞ ¼

dðbðu; vÞÞ: If bðu; vÞ has scaled components ð~x; ~y; ~zÞ;

the resulting scaled points of bFFDðu; vÞ are

~bFFD ¼
Xp

i¼0

Xq

j¼0

Xr

k¼0

~dijð1
m;n 2 ~xÞp2i p ~xi p ð1m;n 2 ~yÞq2j p ~yj

p ð1m;n 2 ~zÞr2k p ~zk
:

The simplicial case would be handled in a similar way.

5. Extension to other B-bases

5.1. The convolution nature of Bernstein polynomials

As Stefanus and Goldman [28] observed, the Bern-

stein basis (1.1) has a convolution nature, since the set of

Fig. 3. Splitting a Bézier triangle into three rectangles.

Fig. 4. Computing the 3D image c3DðtÞ of a trimming curve c2DðtÞ:

J. Sánchez-Reyes / Computer-Aided Design 35 (2003) 959–967 965

degree-n basis functions can be generated from the pair

of degree-1 functions {B1
0ðuÞ;B

1
1ðuÞ} by n-fold convolu-

tion (2.4)

{Bn
i ðuÞ}

n
i¼0 ¼ {B1

0;B
1
1}n ¼

n

i

 !
ðB1

0Þ
n2iðB1

1Þ
i

()n

i¼0

;

{B1
0;B

1
1} ¼ {1 2 u; u}:

This is tantamount to the well-known recursive formula

satisfied by Bernstein polynomials. The set of degree-n

Bernstein polynomials Bn
i ðuÞ (3.6) over triangles are

generated in a similar way from the degree-1 functions,

whereas the bivariate tensor-product Bernstein poly-

nomials Bm;n
i;j ðu; vÞ (3.1) are computed as the convolution

(3.3) between their univariate counterparts

Bm;n
0;0

· · ·

Bm;n
0;n

..

. ..
.

Bm;n
m;0 · · · Bm;n

m;n

2
666666666664

3
777777777775

¼

Bm
0

..

.

Bm
m

2
6664

3
7775 p ½Bn

0;…;Bn
n�:

5.2. Spaces of trigonometric and hyperbolic polynomials

The convolution structure of the Bernstein basis is

precisely what makes possible to express the product in the

scaled form in terms of convolutions. In consequence, the

framework developed for the Bernstein basis extends to

other spaces of functions provided that their B-bases are

generated similarly by repeated convolution.

A remarkable example is provided by the space of

degree-n trigonometric polynomials [15]

Tn ¼ span{sinn2iðtÞ cosiðtÞ}n
i¼0; t [½2D;D�; ð5:1Þ

which has dimension n: As demonstrated by the author [27],

if D , p=2 the space Tn admits the B-basis

An
i ðtÞ ¼

1

Sn

n

i

 !
sinn2iðD2 tÞsiniðDþ tÞ; S ¼ sinð2DÞ:

Analogously to the Bernstein basis, this family of functions

An
i ðtÞ is generated via n-fold convolution

{An
i ðuÞ}

n
i¼0 ¼ {A1

0;A
1
1}n

;

{A1
0;A

1
1} ¼

1

S
{sinðD2 tÞ; sinðDþ tÞ};

and we can define the corresponding scaled basis ~An
i ðtÞ

without binomial coefficients

~An
i ðtÞ ¼

1

Sn
sinn2iðD2 tÞsiniðDþ tÞ; S ¼ sinð2DÞ:

Thus, given two trigonometric polynomials of degrees m; n

and scaled coefficients ~a ¼ {~a0;…; ~am}; ~b ¼ {~b0;…; ~bn};

respectively, their product has degree m þ n and coefficients

~a p ~b:

The fundamental difference with respect to the space of

algebraic polynomials is that only for even degrees n the

space Tn (5.1) contains the unit function, whose quadratic

scaled coefficients are

~1 ¼ {1; 2C; 1}; C ¼ cosð2DÞ:

Hence, degree elevation n ! N is possible only if N 2 n is

an even number

~a
degreen

! ~1ðN2nÞ=2 p ~a
degree N.n

:

These results for the space Tn extend in a straightforward

manner to the space of degree-n hyperbolic polynomials

Hn ¼ span{sinhn2iðtÞ coshiðtÞ}n
i¼0; t [½2D;D�;

by replacing in the formulae above the trigonometric

functions sin t; cos t with their hyperbolic counterparts.

6. Conclusions

Standard techniques for algebraic manipulation of

polynomials in Bernstein form try to obtain closed form

expressions for a generic coefficient of the result for each

particular procedure. This approach leads to multiple

‘ad-hoc’ expressions, with summations that often require

non-trivial cycling through a set of indices, specially in

certain operations in geometry processing. Informally

speaking, it would be like trying to obtain a closed formula

for each coefficient of a result involving matrix algebra

(additions, products, exponentiation of matrices).

Obviously, we rather express the result in terms of basic

matrix operations.

Similarly, for algebraic manipulation of polynomials in

Bernstein form we should express a procedure in terms of

fundamental operations between lists of coefficients. This is

achieved if we employ the scaled Bernstein basis that does

not include binomial numbers, because in this basis the

product corresponds to convolution of lists, and compo-

sition and generalized degree-raising become trivial.

In consequence, given a formula involving polynomials,

we simply rewrite it replacing addition or products between

polynomials with addition or convolutions between lists,

performing degree elevation when adding terms of dissim-

ilar degrees.

We have not as goal optimal computation times, but

simplicity. In a software system supporting convolutions

and component-wise basic operations (addition, product,

division) between lists, all procedures reduce to a few lines

of code, and thus may run faster. An optimal runtime

analysis, as done by Liu and Mann [22] for composition, is

beyond the scope of this paper. In addition, this analysis

J. Sánchez-Reyes / Computer-Aided Design 35 (2003) 959–967966

would be highly depending on the hardware and compiler

available, since convolution involves addition of vectors

and multiplying them by scalars, thereby becoming a perfect

candidate for parallelization.

We have addressed in detail algebraic manipulation of

univariate polynomials. The results achieved carry over

easily to multivariate polynomials, by defining the corre-

sponding scaled form and generalizing the convolution to

multidimensional lists. Another feasible extension is from

the space of algebraic polynomials to other functional

spaces, such as the space of trigonometric polynomials,

whose basis share the convolution nature of Bernstein

polynomials.

This work can be also extended to piecewise polynomials

defined in the B-spline basis, following the idea by Piegl and

Tiller for degree-elevation [25] or products [26].

Simply convert the spline to the Bézier piecewise form,

perform the operation in Bézier form and finally obtain the

B-spline representation through knot-removal. Such a

strategy provides a practical alternative to the

explicit computation of products of B-spline functions via

blossoming [21].

Acknowledgements

This work is supported by the Spanish Ministerio de

Ciencia y Tecnologı́a, under research grant DPI2000-

0676.

References

[1] Barry PJ, Goldman RN. De Casteljau-type subdivision is peculiar to

Bézier curves. Comput-Aided Des 1988;20(3):114–6.

[2] Berchtold J, Bowyer A. Robust arithmetic for multivariate Bernstein-

form polynomials. Comput-Aided Des 2000;32:681–9.

[3] Bézier P. General distortion of an ensemble of biparametric surfaces.

Comput-Aided Des 1977;10(2):116–20.

[4] Bowyer A, Woodwark J. Computing with geometry. Winchester, UK:

Information Geometers; 1993.

[5] Brueckner I. Construction of Bézier points of quadrilaterals from

those of triangles. Comput-Aided Des 1980;12(1):21–4.

[6] Carnicer JM, Peña JM. Shape preserving representations and

optimality of the Bernstein basis. Adv Comput Math 1993;1:173–96.

[7] deBoor C. B-form basics. In: Farin G, editor. Geometric modeling:

algorithms and new trends. Philadelphia, PA: SIAM; 1987. p.

131–48.

[8] DeRose TD. Composing Bézier simplexes. ACM Trans Graph 1988;

7(3):198–221.

[9] DeRose TD, Goldman RN, Hagen H, Mann S. Functional composition

algorithms via blossoming. ACM Trans Graph 1993;12(2):113–35.

[10] Farin G, 5th ed. Curves and surfaces for computer aided geometric

design, Los Altos, CA: Morgan Kaufmann; 2001.

[11] Farouki RT, Rajan VT. On the numerical condition of polynomials in

Bernstein form. Comput-Aided Geomet Des 1987;4(3):191–216.

[12] Farouki RT, Rajan VT. Algorithms for polynomials in Bernstein form.

Comput-Aided Geomet Des 1988;5(1):1–26.

[13] Farouki RT. On the stability of transformations between power and

Bernstein polynomial forms. Comput-Aided Geomet Des 1991;8(1):

29–36.

[14] Farouki RT, Goodman TNT. On the optimal stability of the Bernstein

basis. Math Comput 1996;65:1553–66.

[15] Goodman TNT, Lee SL. B-spline on the circle and trigonometric B-

splines. In: Singh SP, editor. Approximation theory and spline

function. Reidel D. Publishing Company; 1984. p. 297–325.

[16] Goldman RN, Filip DJ. Conversion from Bézier rectangles to Bézier

triangles. Comput-Aided Des 1987;19(1):25–7.

[17] Hoschek J, Lasser D, Fundamentals of computer aided geometric

design, Wellesley, MA: AK Peters; 1993.

[18] Hu S-M. Conversion of a triangular Bézer patch into three

rectangular Bézier patches. Comput-Aided Geomet Des 1996;

13(3):219–26.

[19] Kim DS, Jang T, Shin H, Park JY. Rational Bézier form of hodographs

of rational Bézier curves and surfaces. Comput-Aided Des 2001;33:

321–30.

[20] Lasser D, Bonneau GP. Bézier representation of trim curves. In:

Hagen H, Farin G, Noltemeier H, editors. Geometric modelling,

Dagstuhl; 1993. p. 227–42. Springer, 1995.

[21] Lee ETY. Computing a chain of blossoms, with application to

products of splines. Comput-Aided Geomet Des 1994;11(6):

562–97.

[22] Liu W, Mann S. An optimal algorithm for expanding the composition

of polynomials. ACM Trans Graph 1993;16(2):155–78.

[23] Mainar E, Peña JM. Corner cutting algorithms associated with optimal

shape preserving representations. Comput-Aided Geomet Des 1999;

16(9):883–906.

[24] Peña JM. Stability and error analysis of shape preserving represen-

tations. In: Peña JM, editor. Shape preserving representations in

Computer-aided geometric design. New York: Nova Science; 1999. p.

85–97.

[25] Piegl L, Tiller W. The NURBS Book, 2nd ed. Springer; 1997.

[26] Piegl L, Tiller W. Algorithm for computing the product of two

B-splines. In: Méhaute A, Rabut C, Schumaker LL, editors. Curves

and surfaces with applications in CAGD. Vanderbilt University Press;

1997. p. 337–44.

[27] Sánchez-Reyes J. Harmonic rational Bézier curves, p-Bézier curves

and trigonometric polynomials. Comput-Aided Geomet Des 1998;

11(9):909–24.

[28] Stefanus Y, Goldman RN. Discrete convolutions schemes. In: Lyche

T, Schumaker LL, editors. Mathematical methods in computer aided

geometric design II. USA: Academic Press; 1992. p. 585–96.

[29] Tsay Y-F, Farouki RT. BPOLY: an object-oriented library of

numerical algorithms for polynomials in Bernstein form. ACM

Trans Math Software 2001;27(2):267–96.

[30] Trump W, Prautzsch H. Arbitrarily high degree elevation of Bézier

representations. Comput-Aided Geomet Des 1996;13(4):387–98.

[31] Wolfram S. The Mathematica book, 4th ed. Wolfram Media/

Cambridge University Press; 1999.

Javier Sánchez-Reyes is currently a professor

in the Department of Applied Mechanics,

University of Castilla-La Mancha (Spain). He

received his MS and PhD degrees in Mechan-

ical Engineering from the Polytechnic Univer-

sity of Catalonia (Spain) in 1985 and 1988,

respectively. In 1989, he worked as a visiting

scholar in the Department of Mechanical

Engineering, University of California, Berke-

ley, USA.His research interests include com-

puter graphics and computer-aided geometric design, with particular

emphasis on NURBS, trigonometric representations and geometry

processing.

J. Sánchez-Reyes / Computer-Aided Design 35 (2003) 959–967 967

	Algebraic manipulation in the Bernstein form made simple via convolutions
	Introduction
	The Bernstein basis
	The scaled Bernstein basis

	Basic operations in the scaled Bernstein basis
	Multiplication as convolution
	Elevation to the &f;k&/f;th power
	The unit function and generalized degree-elevation
	Composition
	Differentiation
	Conversion between power and Bernstein form

	Extension to multivariate polynomials
	Tensor-product polynomials
	Polynomials over simplexes

	Examples of applications in geometry processing
	Conversion from Bezier rectangle to Bezier triangles
	Conversion from Bezier triangles to Bezier rectangles
	3D expression of trimming curves
	Free-form deformations

	Extension to other B-bases
	The convolution nature of Bernstein polynomials
	Spaces of trigonometric and hyperbolic polynomials

	Conclusions
	Acknowledgements
	References

