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Abstract

If Computer Aided Geometric Design is to deliver on its promise to rationalize and
speed up the process of designing physical objects, it must master the construction of
free-form surfaces. A key challenge is to control smoothness while matching given data
and keeping the surface representation simple. This thesis both derives and applies new
techniques to meet the competing requirements.

In particular, the thesis develops several equivalent notions of first- and second-order
smoothness between patches, based on geometric invariants and of higher-order smooth-
ness, based on the chain rule. Further, it exhibits the necessary and sufficient constraints
on the data that allow enclosing a vertex by a C l.complex of patches, or, for the symmetric
case, by a C*-complex of patches, and derives four techniques to overcome the enclosure
problem. By classifying techniques for smoothly connecting patches and for enclosing ver-
tices, a large number of algorithms in the literature are characterized. Variations of five
new, implemented algorithms are described, each representing a different approach to sup-
plying levels of smoothness for different types of data. For example, a method employing
triangular cubic patches is shown to interpolate a mesh of curves with regular oriented
tangent plane continuity and a surface assembled from tensor product patches of degree
2k + 2 yields ktN_order smoothness while matching data of the same order along patch
boundaries.
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Abstract If Computer Aided Geowetric Design is to deliver on its promise
to rationalize and speed up the process of designing physical olrjects, it must
mnster the construetion of frev-form surfaces. A key challeuge i to control
smwaothiess while mateling gives datn s keeping the surfuee represeatition
simple. This thesis buth derives and applics wew techuigues to et the
comprling requirements.

In particular, the thesis develops severnl equivalent notions of first- and
aecond-oeder smouthtiess between patehes, based on geowmnetric invarinnts and
of higher-order smoothness, based on the chain rule. Further, it exhibits
the necessury amd sufficient constraints on the data that allow enclosing n
vertex by n C'-complex of patrhes, or, for the symmetric case, by a c*.
complex of patehes, and derives fone techniques to overcome the enclosure
problem. By classilving techniques for smoothly connecting patches aml
for enclosing vertices, a large nmber of algoriths in the literature are

characterized. Variations of Bve new, implemented algorithins are described,

each repres g 2 different approach to supplying levels of simoothness for
different types of data. Fur example, a method employing triangular cubic

patehes is showa 1o interpolate i mesh of curves with regulir oriented thogent

ni

plane continuity and a surface assembled from tensor product patches of
degree 2k + 2 yiclds E'M_order smoothness while matching data of the same

order along patch boundaries.
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Chapter One

Introduction

If Computer Aided Geometric Design is to deliver on its promise to
rationalize and spevd up the process of designing physical objects, it must
master the constenction of free-fornt surfnces; that ia, of suclaces that do
not necessarily arise as the geaph of o function over the plane, but that
are allowed to be closel and bent to suit the application. & key challetyge
for peactical use is ta control smoothaiess while mateling given dutn and,

ut U sione tiwe, keeping the sacfwe tepresentation sitnple. Suothness

of certnin parts is vt just s aesthetie consideration bt often dictated by
functionnlity, c.g. to improve flnid How, Generalizing Trom functions over
a fixed, planr dommin to frec-formn surfaces or mafolds eatails a nntural
generalization of the notion of smoothness between surface pivces (patches) to
& nonlinear constraint whose special linearized version agrees with familiar
notions of derivative continnity for bivariate functions. Underlying is the

fact that o surfce wevd only loeally be represented (paviunctnized) by a

function, and that this parsmetrization changes ns the suface is traversed.
Smouthness conpetes with interpolation requirements in a subtle fashion
that becomes appacent when many patches abut and encluse a vertex. For
example, not every mesh of curves meeting at a vertex can be integpolnted by
a regulnr smuoth putch comnplex. Smoothness® clnsh with simplicity becomes
apparent when snnthing a gewlesic dome o o sphere: ench patch has to

be uble to llex and is oo longer a simple, hanear image of a Hut domain,
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This theais both derives and applies new techniques to meet the compet-
ing requirements: amoothuess, simplicity, confinement of features {localness)
and interpolation. In particular, the thesis derives severnl equivalent notions
of first- and second-order smouthness between patches based on geometric
invariants and of higher-order smoothness hased on the chain rule. it cham-
pions the notion of regular oriented tangent plane continuly for first-order
continuity by showing that existence and uniqueness of a nocinal along a
conunion boundary curve between two patches ia equivalent to the match-
ing of the first-order transversal derivatives afier suitable reparametrization.
Specinl attention is given to proper orientation of the tangent plane, to avoid
cusps sk uther singularities, E:_. to the ‘weight' functions that arise from the
reparmnetnization. Sinee the first and sccond fundumental fortn exhnust the
geometric invariants in three dimensions, and since continuity ean be equally
characterized by applying reparnetrization atl the cliain rule, the nnalysis
of higher-urder continuity relies on this churucterization. Connecting-maps,
i.e. smooth, invertilile maps that relate the domains of two patches, play a
major role in this, since they allow tracing a directional derivative from one
patch across the common houndasy into the neighboring patch. The thesis

shows how the topalogy of the data restricts the choice of connecting-maps.

Enclosing n common vertex by several smouthly counceted putchesisa
nonteivial task: not every mesh of curves with a welldefined tangent plane at
the mesh points has a smouth regularly parametrized piecewise polynotmial
interpolnnt with one patch per mesh facet, For frst-order smoothness, this
is the resullt of propugation of second-order information across C? patches
compounded with rank deficicucy of the corresponding constraint matrix
at vertices with an even number of aeighbors (see Chapter 3). A detailed

analysis yields four technigues to overcome the problem: forcing the curve
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mesh to meet second-order data, using two or more patches between each
pair of curve segments (splitting), using rational patches with singularities at
the vertex (Gregory's technique), or parametrizing curve segments singularly
at the vertex. From this and the analysis of the vertex enclosure problem for
8 natural bilinear connecting-map and K order smoothness (Chapter 8},
it becomes apparent that the 2-direction (rectangular) mesh is a fortuitous
singularity among all topological configurations: by separating constrainta,
it allows for n solution of lower degree than can be expected in general. This
explains both the elegance of the construction and the difficulty in extending
methods like [Gurdon '69) to arbitrary topulogies.

Rother than overwhclning the reader with the literature that has ac-
cumnlatal over the fast three decndes, this thesis offers o clussifieation of
some 20 algoriths for the constmction of smooth, interpoliating surfices
with piccewise polyuominls: Clingter 4 chutneterizis the methuds by their
combrinition of techmigues for conneeting two patehes and reolving the ver-
tex enclusire problem. Also underrepresented in this thesis are the authors'
efforts in implementing a test bed for algorithins that takes care of such te-
dious tasks as assembly of patclies of arbitrary degree and in an arbitrary
topology, evnluation, rendering and interrogation. The test bed is available
to students of the area.

Despite the genernl analysis, the ultimate goal of this thesis is the gener-
ation of algorithms that are sufficiently robust and Bexible and are optimal
with respeet to smoothiess, simplicity and localness so that they can be
included into u design packnge. Each of the five algorithims presented in
Section 5 shows a differeat approach to supplying levels of smoothness for
different 1ypes of data, For example, a robust method employing triangulac

cubic patclies is shown to interpolate a mesh of curves with regular orieoted

tangent plane continuity, and a surface assembled from tensor-prnluet pat
ches of degree 2k + 2 yields £th.order smoothness while matcling data of the

same order slong patch boundaries.

1.2 Notation

The input data to the surface construction algorithms 19 a mesh of data,
i.e., consists of lwo components: information on connectedness (combina.
torind structure) amel numerical data (geometric detail]l. A mesh of data
cousists minimally of ypoints in 3-space, also called data point or mesh point
or verfez, ntul (logical) links between then. A j-point is a deta point with 3
neighbors andd an even-point is a data point with an even number of neigh.
bors. A mesh curve is a curve (seginent) between two data points; it consiats
generically of just onc {polynumial) piece. ‘Tu each minimal ciccuit (hole] in
the mesh of logical links corresponds a facet of the mesh. A facet can be
covered by one or more patches. A pateh is a bivariate vector-valued map
froms the unit trinngle or square to IR? that s k times continuonsly differ-
entinble, where k depends on the applieation; in the following, patches are
typically polynomial. Since the number of angles of the domain distinguishes
total-degree from tensor-product patches, one customarily confuses domain
and range and refees also to the patches as tnangular and rectangular. Facets
are bowruled by edges, patches by boundaries, and surfaces by a rim (if any).

Any boundary is the imnge of & straight line.

A polynomial patch of fotal degree d is represented in Bernstein-Bézier



-forus (BB form) as

== T tter (£)eta

where a 1= [ay,a1,03), [o] := a1+ a3 +a3, c{a) are the {vector) coefficients,

and the 3 linear polynomials (barycentric weight functions) £, are defined hy
60,0} + ap{1,0) + Ep{0,1) = p  for all p with degp < 1.

Analogously, the bivarinte tensor.product patch of degree (d, e) is defined by

(erasn = 52 5 etz (3) (C)en,

Hl=diaf=¢
where 2= (4, ) 1 0= (11,72), umed £ is defined by
HP0)+&p(l) =p, for all p with degp < 1. (1.1)

The DB-form is the representation of chaice, since this form gives the geo-
metnc weaning of *cottrol points® (o its coefficients and ensy access to value
and derivative information along patch boundarics. Since [Frrin °86) and [de
Buour °87] already give a detaited account of the propertics of the BB-form,
only the salient points for the purpose of this thesis will be developed with
the materinl.

It 35 goud to keep in mind that parametric surfaces in 3-space are con-
strueted by detenmining the vector coefficients of their polynomial pieces.
Each picce maps from the unit square or unit triangle to 3-space. For the
annlysis of smouthness ucross boundaries, it will suffice to look at univariate

polynomials, namely the derivatives of the patches along a boundary. Since

the main algebraie work consists of multiplying these univariate polynomials,

it is advantageous to work with the modified BB-form

d
Pites Y 01— a)dmip (1.2
=0
and to write

P85

to indicate that p is given by (1.2}, Thus

[ | T Yo B s,
b=

where be is the sealae product of b ail c,and p~ [a®, ..., AUQ. w29, in
terns of its control pointy w!. Fur exumple, raising the degree of the quadratic
polynomial with control points a°, a' and a? is expressed as [1,1)[a?, 24!, a?)
= [u" 20" + 0% 20" +a?, 0. If nothing else, the use of the modified BB-
forn aveids writing fractions and gives the k-fold degree-raising polynomial
the stmple form [1, :-. Greek letters are reserved for scalar polynomials, Su-
prescripts number the coefficients and subscripts count the curves emanating
from a given point. The counting is cyclic modulo the nmnber of neighbors,

D, denotes the partial derivative in the direction of the th unit vector i,.

The (Fréchet-} derivative is denoted by D, ie. D .= (By, D;). We abbreviate

Pui= Dipypug) o= Dapjugy qui= Didiwnp

and write

o= D} Dy
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for the 1-fold derivative with respect to the first and the j-fold derivative with
respect to the second argument of the bivasiate map p. Note that p,, p, and
g Bre univariste polynomials. To distinguish definitions from identities, *: =’
atl ‘=" are used judiciously, e.g. *=:" defines terms of the right hand side by

thuse on the left.

1.3 Overview

Chapter 2 develops the notion of tegular oriented tangeat plane con-
tinuity by giving several equaivalent chinracterizations.  Au example shows
that the prevaleat chavactetization of first-order simonthness in the liter-
ture is manecessarily resteietivie. Tl deseription of second-order simoothness
is Dol on the second fundamental form.

Chapter 3 puints out that fitting polynomial patches smouthly to n
mesh of curves, ns is customary in many applications, is, in gencral, not a
well-posed prolem regurdless of the degree {and shape) of the patches used.
Not every tnesh that allows for a tangent plane at the mesh points has a
smoath regularly parametrized interpolant with one patch per mesh facet.
The prablem arises when a vertex is enclosed by a Ehopder continuows
complex of &k + 13 -order continuous patches, Several techniques are shown
to avercome the problem: use of rational patches with base points, of singular
{sucumietrizations, of split or wacro patches, or of curves that match second-
order data at the mesh points.

Chinpter 4 classifies sowme algorithms in the literature that coustruct
smouth, interpolating surfuces with polynomial pieces. Tlie criteria wre: gen-

veality of the interpolation comlitions, Aexibility in the nuniber of edges a

]

facet may have, degree of the polynomial pieces and type of reparametriza-
tion functions.

Chapter 5 gives a short description of the algorithms in {Peters "88a
"BBL/"00a "80b '80d] and deacribes improvements to remedy shorteomings of
[Peters *B8n *89d]. In particulac, the algorithm in [Peters *88a) for C* surface
interpolation with linearly varying bowndary normel is improved by using
singular quintic and biquartic patches in place of |bijcubics in order to resolve
the vertex enclosure problem. The algorithin in {Peters '89d) which creates 4-
sided patches over a triangulation is improved by forcing the equiparametsic
‘dingonal' of the 4-sided patches to closely approximate a mesh of curves.
The algorithn in |[Peters '80), which uses a single patch per facet, gives
oceasion to analyze the transition of an algorithm from general to special
mput datu that allow for a simpler, lower degree interpolant.

Cliapter 6 gives a definition of higher-order continuity based on the
chiain rule and shows how symmetries in the construction restrict the choice
of the maps that connect the patch dowmnains, For a bilinear connecting-
map that reflects the change of topology from a 4-point to en n-point, a C*

interpolating construction with pelynomials of degree 2k + 2 ia developed.



Chapter Two

First-order continuity between
two patches

This section derives the first-order continuity constraints enforeed by
the algorithins of Chapter 5. In particular, first-order continuity between
parametric piccewise polynomial patches is charncterized as regular onented
tangent plane confinuity. Stmoothness based on the second fundatnental fuein
i% diseussed at the end of the chapter and higher-order continmity in Chnpter

6.

w
{2.1) Figure: Purametrization of abutting patches.

In the following, we consider two patches, p and ¢, abutting along a
romnon boundnry curve. The patclies are differentiable; in particular, the
definition of the univarinte polynomials p,, p, and g, in Section 1.2 makes
NMSe.

(2.2) Lemun, [first-order continuity] Consider two polynonial pat-

ches, p aud g, that share 8 common bowndary with parameter u, Then the

1
following are equivalent.
(i) The surface normal of p is welldefined and agrees with the aormal of ¢
at each point of the boundary:

Er XPe _ PuX 4w [matching normal) (2.3)

flpe % pull = flpe = gull’

Pe x py # 0. [non-vanishing normal| (24)
(i) The tangent planes are coplanar and the orientation agrees at each pont
of the bowmdary:
(re x pulgu =0 [common tangent plane] (2.e)
and
(e % pu) X padgu >0 [proper orientation| 24

(1) There exist sealar-valucd functions A, jy and v fof u) such that, at each

puint of the boundary,

Apu = ppe +vqe  Jommon tangent plane] (2.E)
Pexpu #0, pv>0. [proper orientation) (2.1
Proof, We will use the identities

{a x b){c x d) = detf{a x o), e d] = ((a x b) x ¢)d.

()==(ii}: Muliply (2.3) by qullpe % puf| to see that {2.2) holda. Since

pu(u) and p(1) ore lnearly independent for any u, (2.3) implies thae

G <(pe xpad(pu % gu) = ({Pu % pu} % pulge.
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(ii)==>{iii): Since det[p,,pu,gu] = 0, there exist scalar-valued functions
A, p and ¥ such that {2.E) holds. Since py(u) and p,(u) ase linearly indepen-
dent for any u, we may assume that v > 0 on the interval [0, 1]. Substituting
(2.E) into (2.i} yields

0 < u((ps % pe) % Pu)ge = ((Pe X Pu) X Pu)(APs = pps) = mllpe x pulf?.

Hence also g > 0.

(iii)=>(i): Taking the cross product of (2.E) with p., we find that
{pr % po) and (p. x g.) ace parallel. Their orientation agroes by {2.1).

&
Remarks
1 Equation {2} can be fonud eg. in [Farin '82, p.272], equation {2.E}
i [Lin *BG 1r.437], [Bevker '86 p. 225], [Piper 1227, (4.1) '87), |Pe-ters °88],
[Degen '89 p.10], sl [Lin, Hoschek *89 Thi1|.
2 As Corollary 3.14 and Algorithm 5.1 will show, it can be wseful to relax
the regulanty assumption at patch eorners. Regulasity of the parmmetriza.
Liun ensures that the smoothness of the pasametrization inplies smoothness
of the surfave (e.g. [do Carmo '76 Prop. 3, p. 63}). Checking smooth-
tiess at singnlar points is more complicated as the examples ¢ — (£2,1%) and
{ — (0, 17} show: both parunetrizations are stooth ad singular at 0; how
ever., the first enrve is not first-order continuvus at 0, while the seeond is.
Henee differentinl geometry restricts its attention to C* manifulds based on
regular parasmetrizations {{do Carmo '76 p.52][Klingenberg 83, 3.1.1]).
3  Requiring that the patches are polynomial when paramwtrized by the

pasameter of & common houndary curve is eonvenient, since it keeps the

smnber of constraints on the polynomial coefficients aml hence the degree

low. Iu general, oue can nhways reparametrize the patches to match the

lowest regular polynomial parametrization of the boundaries,

4 For use in CAGD it is important that the orientation of the patches 1s
controlled since improper orientation allows two patches to join with a cusp;
that is, the patches meet in a shacp edge.

5 If p and ¢ are polynomials, then, up to a common factor, 5o are A, p and

v. (Sec [Liu 86} for & similar claini.) Here are the details,

(2.5) Corollary. [polynomial weight functions]  If p and ¢ are polynomi-
aly, then, up to a common factor, A, p and v in Lenuna 2.2 are polyno-
mials in ¢ of degree no larger than deg{p.) + deg{qu ), deg{pe) + deglqu ),
deg(p. ) + deglg,) respectively.

Prool. Apply Conmer’s cule to

A
c.r.uhc_—lnh_ = Vu (2E)

nlong the hoandary to obitain the {formal) solution

A B — A
- ==
ng

lf
my (26)
v ng
for some polynomminls !, mg and ny. Since pg and p, map inte R, detp., pe]

Lth ith th

is not welldefined. However, dropping the and retaimng the £ and

coordinute, exteacts the polynomial p't ; m? — M? frum p. Hence
o= detfgt, =pf] my = detlpl,ql]  ng = det]p)?, Y}

ace welldefined. Since, by (2.1), po{u) and p,{u) are linearly independent
for any u, there exists a & such that ag is a nontrivial polynomial. I each

zero uy of ng is olso 8 zero of Iy and my so that the common factors can be
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canceled, then the first two equations of (2.6) are welldefined and not just a
furmal solution, By (2.I) there exiats a &' # k such that y{ug) # 0. Hence
& formula like (2.6) with k replaced by &' liolds in some neighborhoad of u.
This implies that li/ng and myfny are polynomials and that their degree
is bounded by the degree of the numerator. The third equation is trivial.

&

6  Interms of the BB-cocfficients, the C! common tangent plane constraints
amount to setting the coefficients of the function {p, x p.)q,, resp. Ap, —

HPy = Py, Lo 2ero,

T The advintage of formmlating (2.E) with three weight functions is sym-

wetry. Often the C' comditions for abutting polynemial patehes are stated

i the foem

Qw = apu + fip, (2.7)

where o and § are polynomials [Bezier *72 p178], [Bezier '86 p42 (163)),
[Bevker '86 p226], [DeRose 85 p50), [Farin 82 p277], {Farin '83 150,57], [Faein
'B8 248,250, [Faux, Prutt *79 p216], [Hahn '87 pl4), [Hollig '86 pli], [Jones
‘88 pa29], |Lin, Hoschek *89 Table 1), (Sabin ‘77 185), [Sarragn 86 ps|, [van
Wijk "84 pd|, {Veron, Ris, Musse *79 p269], [Yumaguchi "85 p224]. Huwever,
Leonna 2.2 and Corollary 2.5 make clear that o and i are, in geneeal, rationnsl
functions {even after removing a common factor), i.e. a polynominl divided
Ly a polynumial. Stipulating that o and g be polynomials is equivalent to

restricting either ;1 or v to be constant.

(2.8) Example The boundary and first off-boundary Inyer of DB coeffi-

rients of p and g are given by

I4
1 23/6 6
1 13/12 1 firut layer of patch p
0 0 2 0 4 ! (i
0 0 [1] 0 common boundary
0
1 ¢ 7/3 ! 5 !
=1 =11/12 -1/2 first layer of patch g
0 1 1

(2.8) Figure: Data along a cubic bouniary.
Computing the derivatives as differences between coefficients (with u =

v = w = 0 corresponding to the zero cocfficient) one finds that

] )

— 1 _ /3 1
qu~[|-1].2]-1012{, | =1/2]]
0 1 0

_. _3-?.—

[ ]
com
[ — )
—

and checks that
A=[3/2,1), pi=[3/2,0/2), vi=(3/2, 1]

salisfy Ape = pup, + vy, None of the weight functions is of the form {1, :___.
i.e. noue just raises the degree of py, p, or gy, and @ = AMe=land g = pfv
ig not a pulynomial proving that a pulysomiality wssumption for (2.7) is too

restrictive. As an aside, we note that det[p..po,qu] = 0 but

2] [ 11/6 1/3

dal| o], | 13512, | =13712 _um
1 0 1

i.e. the cross boundary quadrilaterals of BB-coefficients are not all coplanar.
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muo

.—u-

(2.10) Figure: The twa cubic patches of {2.8) mevt in o nonconstant
C! mateh along PYPY. The 104+10-4 coefficients of p (left) amb g (right} are
connerted to form the joint BD-net. The shading i compated for each of

the small tringles.

The polygonal shading in Fignre 2.10 reveals a well-hehaved surfaee

whase only interesting feature are the curved isoparametric lines. &

[Liu ‘86 p438] propnses constant coefficient matches for the surface con-
struction, but additionally gives an example of a surface continuating based
on non-constant weight functions. Non-constant consttuctions appear in
{Clayokura, Kinmra ‘83 p295], [Piper '86 p227) and [Peters "86b|. Using the
untation introduced in [Peters '88b], C' matches can be churacterized by the
triple {degree of A, degree of i, degree of v). Piper’s construction is a (2,1.1)-
watch, and Chiyokura and Kitnura achieve a {1,1,1)-match by restricting the

transversal derivatives to guadeatics.

16

2.1 Second-order continuity between two
patches

Assume that p and ¢ meet C'. Then p and g form a C? surfoce if and
only if, at cach point of the boundary, the derivative of the normal map of p
ia welldefined and agrees with the derivative of the normal mep of g [cf. do
Carmo 76 pl36). Since

0= D(ND,p) = (D,N)D,p) + N(D,D,p)  for 1,5 € {1,2},

and since D, is a linear map with D,N L N, thisis equivalent to the existence
of a synunetric bilinear map I7 from the tangent plane into itsell such that,

at cach point of the boundary,
~N(D,D,p) = (DM I(D,p) and - N(D,D,q) = (D) I(D,q)

foe t, 5 € {1,2}.

{2.11) Lemma. Two patches p and g that share & common boundary curve
with parameter u and meet C with weight functions A, ju and v form a C7

surface if wad only if, at each point of the boundury,
N{v*quw — Avgqua) = NP pow = Appac). (212)
Proof. Assume [f is defined by the patch g, i.e. by
“Ngwu =qullge, —Ngew =a0llgu, —Ngew =quliqu.
Since the match is %, p(u,0) = g{u,0), and hence

~Npua = pulips-
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Since Np, = Ng, = Np, = 0 and since the match is C!
0= N{ppe + v — Au)s
= Nupye ~vquliqu + Mg 114,
= Nppuo + ppo I 1p,,
ie. —Np,, = p,IIp,. Thus only =Np,, = polIp, has to be enforced. This
constraint can be rewritten with the help of the C* and the C' constrajnts:
=#'Npuw = (up M i{pp.)
= (—rquw + Aq M I(~rqu + Aqu)
= (v M) = (vge ) LA ) + (Aqu M E(pp,)
= 1" Nguw + WN¥gew — At pas.
&

(2.13) Corollary. Two patrhes p and 4 that shace a common boundary
curve with parameter u and meet C' with weight functions A, g and v form
a C? surface if and only i, there exist scalar valued weight functions o, g, 4

and & # 0 (of ©) such that at eacl poiert of the boundary,
§( 9w — Mue) = (1pey = Appua)) = apu + pe — 190 (2.14)

{2.15) Example Consider a polynomial sucfuce p subdivided along v =0
into two patchies pg and piy, where ois the unit square with parameters u
and v and A is an abutting unit triangle with parameters ¢ and w. Then

the C' coustraints, Apy = pp, + vpy. imply that An = po + v and hence

9w — Ay = 12Pyet APuy

p‘utsﬂ = VPw uetew = _-utu-. + 8Pyt v e

~¥fiPue + ppue = 0.

]
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Chapter Three

The vertex enclosure problem

Fitting polynomial patches smoothly to a mesh of curvesis not in general
a well-posed problem regardless of the degree (and shape) of the patches used:
nat every mesh with a welldefined tangent plane at the mesh points has a
amooth regularly parametrized inferpolant with one patch per mesh facet. This
chapter derives the necessary and sufficient verler enclosure constraint on a
nesh of polynomial eurves thiat guarantees the existence of a regular smooth
interpolunt and offers o saofficient constreaint that can easily be checked: if all
mesh cirves mikch the same second-order datn at the mesh pointy, then a
smooth interpolut exists (see Theosrem 3.6).

For blended interpolnnts, it is well known that the existence of a wellde-
fined tangent plane at the data points does not guarantee the existence of
a C' mesh interpolant (see e.g. [Gregory '74], |Nielson *79]). In pasrticular,
since the blending approach reguires knowledge of normal derivatives along
the boundaries, p,, and Peu are given independently ot any point P. Thus,
if the ptches are polywomials and P has n ncighbors, the data must satisfy
n additionsl vector constraints (= 3n coustraints) of the type p., = p,. at
P. However, as [Surrnga '86) ol [Watkins '8B) puint out, curve meshes by
thensselves nevd only satisfy one vector consteaint per even-point and none at
odd-points to permit solving for the mixed derivatives. Due to its circulant
structure, the corresponding matrix is slways invertible at odd-points, but
rank-ceficient at even-points. (A similar patity phenomenon has also trou.

bled the schemes of [van Wijk '83] and [Peters *88a).) For 4-points, Sarraga
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exhibits a sufficient constraint, Constraint 3.1(a} below, (see also [Bezier "86
(187)]) that forces the right hand side into the range of the rank-deficient
matrix. Unfortunately, the analysis and construction apply only to 4-points.

This is where Lemma 3.4 comes into play. [t applies the analysis of
Sareaga and Watkins lo arbitrary combinations of total degree and tensor
product patches of possibly differing degree. The central Theorem 3.6 then
gives the precise necessary and sufficient constraint that guarantees that a
smooth regularly parametrized surface with one patch per mesh facet can be

fit to a mesh of curvea.

{3.1) Coustraint. [sutficient vertex enclosure consteaints) At every

even-poind P either of the following holils,

{n) [collinenrity constrmnt] Al odd-nunbered and il cven-mmmbered
curves cmaiating from P have colfinenr taugent vectors; thit 1y, the
tangent vectors form an "X,

(b)  [cucvature constraint] The mesh curves emanating from P are com-

patible with some second fundamental form at P.

Constraint 3.1{a) applirs ouly to 4-points and is due to [Bezier *86 p.47]
and [Surraga ‘87]. Coustraiut 3.1(b) is valid more generally. It regnires
that the maxinsl and the minimal enrvatuee s one principal disection are
welldefined at P, Note that both constraints are satisfied by o segular { tensor
product} mesh. Examiple 3.10 shows that Constraint 3.1 is sufficient, but not
necessary. Even though the analysis is carried out in the BB-representation,
it applies to any patehes that ure twice continuous differentiable ot the vertex.

The chapter also offers three techniques to enclose a vertex if the data
do not satisfy the vertex enclosure constraint,

1  Use of rational patchies whose desominator vanishes at oll data points,

2 Use of the splitting-amd-averaging construction.

3 Singular parametrization of the boundary curves at the vertex.

3.1 Derivation of the mixed-derivative
constraints

By Lemma 2.2 and Corollary 2.5, the C?! coustraints can he expressed

Slu):= Ape — pp —vg, =0

where A, g and v are, without loss of generality, polynomials. The gist of

the vertex enclosure problem enn be captured by looking at f'(0) = 0, j.e.
HPuy + Vifew = \_:_Il + A\,'m.u = fPuly = p\lﬂ.-.v AMMI~

at a datu point P. Tl dota are admisnble, i.e. the vertex enclosure con-
straint is met, if the system of constraints that arises from collecting (2.E, )
for cach mesh enrve emanating from P is solvable,

We look at (2.E,) in more detas),  For mnemonic efficiency, the BB-

cocflicients ol py, p, il g are denoted by o', v* and w'. That is, o', o
Pur P q Y "

anel 10* are difference vectors of Be

3.2

t contrul points as sketched in Figuce

Thus the relevant terms of {2.E) for the analysis of (2.E, ) are 5

[ LA i LN | YL LIPLI [

X P .
(2.E')
[T i TR | (VY L"LI IR 1P L PL IS | CTA od LI
» P [ Tw
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{3.2) Figure: Notation for the enclosure problem: the difference vec-
tors of a tensor product mul of a total degree patch along the shared edge

(left) and the BB-cocfficicnts Iabeled nround the data paint P (right).

where d +d* = dF +d* = i 4 d™. We need aot woery abont the wweanning of
the A, ut, p!, ete. for degree zeco polynominls, since they d® = d* = ., =0,
The C'-constenints wre obtained by selting encl cooffieient {with respect to

thiee BD-basis} W zero, This vields the langent constraimts
Au® = %0 4" {2.Eq)
and the {unst constraints
d 2% + A = e dP ' 4 A ! 4 d e 0O, (2.E))

Now consider the nmesh curves emanating from P with patehes and curves

labeled elockwise nud cyclicutly. If we set A? := a,n;, 22 = ok, aand 0 =
a,{l = &) with & > 0 (to comply with (2.1}), then i and &, are nuiquely

deteriimed by

(2E)

_._.:..- = -....."h +(1 IFUEW i€ :.....

Since the boundary carves are given, u?, v and w? are fixed (nned copla-
nar), and the u} are fixed (bt need not lie in the same plane). Ouly the

vectors v] and w} and the sealurs a,, A!, p! and v} are off-hand still free,

13
L

{3.3) Figure: Gewmetric meaning of L% and k.

Remarks

1 We say ‘of-had” since the degree of the weight functions may be so
loww that A}, 4! and »! are already fxed by the tangent constraints at the
neighlar point £, Similaly, if the degree of p, or g, is Jow, then v* and !

o be pitned down or shieal by overlapping twist constesints as in the case

of tatal degree cubies. Hewve, wee assume in the following that the patches
are at least bicubic or quartic, so thit the twist constraints nre separated.

2 We avaid aotational problems that arise, e.g in the analysis of cubic-by-
sextic patches, by raising the degree of any two ndjacent boundary curves, p,
and p,4 to the smne value d, := max{deg(p, ), degip,411). Cubic-by-sextic
putches thus become bisextic patches, and the interior Bézier coefficient of

the b..._

' pateh and clusest tw P is now welldefined. This cuefficient is called
the tunst coefficrent (for historical reasons) and is denoted by ¢, {see Figure
3.2).

The comparison of the degrees of freedom with the number of equations
then suggests the following approach: fix the scalar vaciables, Al u!, and
v}, by some rule and satisfy the i constraints with the n twist cocfficients.

That is, solve

H..&-I._.l. + :. = h..u.h.a. =y Am.m.-v
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where
@iy o= (d*A0u! + dif Al 4
#3(dyoy B + (dicy — d])el) — dipivl +
VB, + (d, - d7Ywl) = dyulw])
and 8, := ¢+ P as shown in Figure 3.2. {Note that r; simplifies consilerably

if all patches have the same degeee at the outset.) The canstraints ot P form

one n by n system for cach coordinate, namnely

KT=R"R, {3.T}
where
&-h._ -?ﬁ._ |_F._”_ Ter O O
0 dyky 0 0
K=| P o 0 !
0 0 vie dncikao .&..A—Ib. lau_
&—A— I.F.-w Q o Q -h.-ﬁ.:

1 L
T:= ~ _ and R:= | :
In n

Unfortunately, as Lemma 3.3 below shows, (3.T) is not alwnys solvalile: since
the contribution of the u' terns in [ is arbitrary and AP # 0 in general {ef.
alsw Claim 6.7).

(3.4) Lemma.  [the parity phenomenon) The matrix in {3.T) is of full

cank if and ondy if P is an add-point. Otherwise its rank is deficient by one.

Proof.  The first n — } rows and columns of K form an upper trinn-
gular matrix with now-zero diagonal. Hence the rank is at Jeast n = 1. For

any n-vector (£, )izi1,...n € kee K

Loty 4 (1 = ki)Mopatyy = 0,

24
neeel Lhna

" kg )
=iy ) = .

sl

Looking at the u? as 2-vectors in the tangent plane, (2.E;) inplies for the

1 edge (with eyelic count)

detfu?,u?, ]
detfu?, =_._+. —uy_,l

k=

and lience

- r.nm.. . e~
.—.l— thy = o =(=)"

That is, {=1)"t = t for every clement ¢ of the beroel of K. Hence the keenel

19 nontrivinl of amd only if 4 s even. &
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3.2 The vertex enclosure constraint

Lemma 3.4 makes clear that the only hope for solving (2.E,) at even-
Points is to adjust the parametrization, i.e. to sdjust the scalar weight couf-
ficients so that the right land side lies in the range of ). The net effect of
treating the scalnr cocfficicnts ny sdditional varinbles (and insisting un reg-
ulority) ia a reduction from one vector constraint (Lemma 3.4) to one scalar
constraint. While the precise consteaint is not very appealing, Constraint 3.1
is sufficient and can eusily be checked. Note that even though Theorem 3.6 is
only concerned with the ezistence of u regularly parametrized twice continu-
ously slifereutinble inteepotnt, the prouf is constructive pravided the degree

of the weight functions nd patclies is sufficicntly high.

(3.8) Theorem. [sutlicieacy of C* data| At any even-point P, the nor-
wal curvatnee of the mesh curves ciianating from P st be constrained
to adlow for an irterpolating C' sucface with one regulasly paramctyized €
pateh pec mesh facet. Either condition of Constraint 3.1 guarantees solahil-
ity.

Proof.  We first restrict attention to the Al terms, ie. the deriva-
tive of the versal weight hanction, and show later that the analysis remaing
unchanged if all weight functions are allowed to vary. Let uf be the fiest com-
ponent of w9, (1) the first cotnponent of (r, = ...|..~w>._=_.__. L the mvector

corresponding ta the A, d* > 0, and

A
Im__..:~ 0 0
0 LW 0
uri= et . . {3.7)
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Then {2.E, ) becoines
oo o v [T e
0 K 0 Ur ™= Rv . (3.T')
0 0 K Ut L e

We show that (3.T') is not alwnys solvable. To simplify the anslysis, the
coordinate system is transformed rigidly and orientation preserving so that
P is mapped to the origin and the normal N at P to {0, 0, 1). This leaves

the basic Lluck structure of (3.1) unchanged:

K 0 o v w.._ I
0 K: 0 Upf|t]=n]. (3.1")
f 0 K, 0 m Ity

Stace all the uf lie in the snwe angent plane, the transformation creates
a O-matrix in the lower right il corner. On the other hand, the partinl
system corresponding to the first 2n equations is of full rank since there are
exactly two linearly independent vectors among the u? and we may choose
the degree of A large cnough so that A' can be varied freely, Hence, we
need ouly consider 3Ty = Ry, The only contributions to Ry come from the
nontangential componcnt, »a:._u [ef. {2.E ). All other vectors lie the tangent
plane ancl henee appenr only in B, and Ry, Since K5 s of rank n - 1,(3.T")
is solvable exactly when Ry is in the span of the fiest 0 — 1 columus of Ky;

that is, if and ouly if, the following vertex enclosure constraint holds:

diky  da(l = &y) 0 ul,
0 daky 0 EHEN
dot ; : i 0 5 =0. {3.8)
0 0 coo dpabnay AR _jud
1 = k) 0 ] Anuly
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Coustraint 3.1{a) implies (3.8) by stipulating that all A? be zero. To see the
sufficiency of Constraint 3.1{b), we look at the nontangential component of
{2.E.). Since the mesh curves match second-order data at P, there exists a
symnetric matrix J7 of rank two such that Npuw = —pullps, nanely the
second fundamental form (see e.g. [Faux,Pratt *79]). Hence, the nontangen-

tial component of (2.E,) at u=01is
—ApulIps = pNpuy + ¥Nguu. (2.EY)

By choosing the normal components of the t, so that all p,, satisly Np,, =
—py[{p., and hence Nqyw = —gullq = —qufIpy, at the data point, cqua-

tion (2.E¥) reduces to
(Mpra = pipe = v ) ps =0 at u=10.

But this is slready imgplicd by tie tangent constraints (2.Ey).

Including all scalar varinbles of (2.E) ) into the analysis will not chinge
the result, since the correspouding vectors u?, v and w? alf Tie in the same
(tangent) planc. &

To ubtain meshes that satisfy the vertex enclosure constraint, consider

the standard cnse dy = ... = d, and rewrite (3.8) as

n-1 i X
Aubs = S =P - -%-_ A ul,. (3.8
=l (£]]

Since a is restricted in sign, any change in the A or &, has to come from
petturbation of the tangent vectors, and hence will affect suany other terms.
Huwever, there are a number of strategies for perturbing a given mesh of

curves to satisfy (J.8).
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1 Adjust one of the mesh curve, e.g. chomse uly to satisfy (3.8°). Desides
lack of synemetcy, any change in ul, has also an impact on the equations at
P, if the degree of the boundary parametrization is no arger than three.

2 Ewlorce Constraint 3.1(b) locatly and symunetrieally by locally interpo-
lating positional, normal and curvature data. The references [Sabin 'G8}, [de
Boor, Hillig, Sabin '87] and [Peters 88¢] show under what conditions loca
Herwite interpolation by cubic space curves is possible.

3 If the mesh of data ia regular, use global cubie spline intecpolation. This
enforees both Constraint 3.1(a) and 3.1{b).

4 Use mesh curves of higher degree.

The second issue of interest is whether Constraint .1 is, at least for
4-puints, necessary. For thiy, recall that the second fundamcatal form IF
at a data point P consists of three pieces of information, namely the two
extremal curvatures and o principal direction. [I, at a 4-point, at. least one
of the two pairs of opposing tangents is not collinear, then three of the mesh
curves can be used to define [1, while the fourth curve has to satisly a single
scalar constraint. Sugprisingly, even though this constraint implies the vertex
enclosure constraint (3.8} and acts on the same variables as (3.8), it is not

equivaleat to (3.8).

(3.9) Claimn. The existence of a solution to the compatibility problem at a

4-point does not imply Constreaint 3.1 .

We prove the claim by exhibiting data that can be extended to a set
of admissible data, but setisfy neither the collinearity nor the curvature

condition of Constraint 3.1.

(3.10) Example Consider the four quadratic curve segments emanating
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from 0 with frst differences

o0 11
—:._.. uf):=|1 0f, [u3, =w_ =11 4,
01 D0
1 1 -1 =1
[wfouil=1-1 -1, [Whell:=|0 of.
0 o 0 1

z-courdinnte =
« 0
ol

{3.11} Figure: Four eurve segments.

The normnl at P s N = (0,0,1). Constraint 3.1{n) does not hold. For

Constraint 3.1{h) to hold there must exist

a b 0
=15 ¢ 0
001

such that Nu) = —u®F1u® for ¢ € (1,2,3,4). However,
L] L] L]
Nuf=Nel=1, NulsnNel=o,

and this implies that 6 = ¢ = ~1 and b = 2 and b = =2, Hence Constraint

3.1(b) doey not hold. The vertex enclosure constraint (3.8}, however, is

kii]

satisfied since

det

- -
[=J -0 S
=N ]
S e

3.3 Implications of the vertex enclosure
constraint

The proofs of Lenimn 3.4 and Theoeewm 3.6 do not depend on the pateh

type.

{3.12) Curollary. linelependence of puteh type] The vertex enclosure

problem exists for any combination of 3- or 4-sided or even n-sided patches,

Rational patches of the form Rfr, where R is a vector-valued and r a
sealar-valued polynominl, help (only) if they destroy second-order smooth-

ness of the patchies at the data points.

{3.13) Corollary. [rutiounl patches] The vertex enclosure problem ex-
ists for rational polynomsial patches unless the polynomial in the denominator

vanishes at all data points.

Proal.  Gregory's patches (ef. [Gregory '], [Chiyokura "83)) are
rational with vanishing denominator and match arbitrary cross derivatives
at the data points. Conversely, rational patches are only useful if r must

vanishes at the dnta points. Fur, if #{0) # 0, une may assume, after scaling
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and shifting, that r{0) = 1 and {0) = 0, after which the commun-tangent-
plane constraint (2.E) reads

>m~|_. .”....m
r

:-.....Tﬂcﬁ Qta._.ain l_.c
B ) - P =0.

Differentiation with respect to u yields
Rer+1,R

A=

-2r,

Rour +2r Ry +ruu R m..w..._..kv
r? r

+A(

= AR+ A, =

padt, + t.ﬁh!. +r,0t, —r ) + E_lD! + -,AOI. + guil, - rou ),

L.c.

ulee + ¥Quu = Alua + (tangent vectors)

This is, however, the same setup discussed in Lemma 2.2 and Theorem 3.6,

&

A second look at (2.E) for rational potches shows that the high degree
of the polynomials in the numerator and denominator is inherent in the
construction. (Gregory's 4-sided patches are biseptic over biyuartic and his
3-sided patches ate septic over cubic.) If, for example, the weight functions p
and v are constant, then the number of veclor constraints increases to 2R dr
us opposed to d® in the palynominl case since the degree of the numeratar
is d® 4 d* — 1. Yet there are only d” additional scalar degrees of {reedom.

So far, we assumed that the boundary curves are regularly parnmetrized.
However, as Algorithm 5.11 demonsteates, singularly parametrized surfaces
¢an be can smooth and well-behaved and the following Corollary is worth

noting.
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(3.14) Corallary. [singular parametrizations] The vertex enclosure
problem can be avoided by parametrizing the boundary curves singularly

at the verlex,

Proof.  Denote the kB derivative of p along the edge corresponding

to the ith boundary curve by D¥p. Reparametrize the boundary by po ¢ so
that

Dipodlo=0 and Um:..e Sljo = Duppo

Then the new tangent coefficients have the same coordinates as the vertex
and hence the 'tangent constraints’ (2.Eq) are satisfied for any choice of A2,
In particular, A? = 0 and ¢; = P solve (2.E,). The tangent plane is now
defined by the second-difference vectora and these are in agreement with the
first-difference vectors of the original regular parametrization. 4

Cortollary 3.14 was motivated by the following example. (3.158) Exam-
ple  Consider the data displayed in Figure 3.16. The parabaln ¢t} .=
{0,1,#?) with normal {0, —=2¢,1} and the straight line ca(2) := (s,,0} with
normal {0,0, 1) are to be interpolated by a smooth surflace. Sinee

2 v0,0) = 0,-2,0) = ~2(De1)(0.0),

mze.s =(0,0,0) = 0{Dc;)(0,0),
the principal directions of sy interpolating patch coincide ot the origin with
the tangents of the boundary curves. Since the principal directions, (0,1,0)
and (1,1,0), are not perpendicular, while the principal curvatures, -2 and
0, are not equal, no interpolating patch can be a part of a € manifold

{Klingenberg '83, 3.5.]. Looking at the data as a variation of the curve data
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of Example 3.10 with u} :=(~1,0,0), the vertex enclosure constraint reads

det =250

- -
00N -
LR — ]
200 -

Huwever, the approach of [Bajaj,lhmsung '89] yiclds the implicitly defined

family of singular surfaces Fz,y, ) = 0, where
Flz,p.2) = —e22® + cap®z — capz + caz’z + (3cz + ¢y Je2/2

terr’ ~ (3 + e )rn? /2 4 e’y - (o — e2)s? /2.

The clwice ¢; = —¢; = €3 = ¢; = | shows that a smooth interpolant exists,
even though it cannot be regularly parnmetrized in the pvrnaneters of the

boundary eueve, [

(3.17) Figure: Data that cannot not be €' interpolated by 2 €2 patch.
B I ¥

H

B),,
.
- .

P
e .

(3.18} Figure: Notation for splitting-and-averaging.

Covering an n-sided domain by n non-averlapping patches, i.e. splitting
the domain into i trinngles, and computing the additional boundary curves
by nveraging, is another teelmique thit resulves the comnpatibility problem -
even though it creates eveu-points. A partial explanation is provided by ob-
serving that the splitting-and-averaging technique generates the coeflicients
of the new interior boundarics based on the twist coefficients rather than
vice versa (cf. [Furin '83), [Piper ‘87), [Shinnan, Séquin '87}, [Peters "88h)).
The other ingredient is the syminetry of the averaging construction; that js,
of the rules

B} — avg(P,B)_,, B, 8d:(],))

h.u - u<m— Nw...n.l.‘n.-ua—uaﬁ.wu.
where avg(pl, p2,p3,i) := pl + L(p2 + p3 - 2pi), A := 2(1 - cos(22)) and

sds( .} is the number of edges of the ith ariginal facet (ef. Section 5). Note

that if sds(f,} = 3, as in the Clough-Tocher split, then X = 3 and hence

B! =(P+B., +8B,,)/3
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(3.18) Corollary. [splitting-and-averaging| Splitting-and-averaging

leads to admissible data.

Proof. Assume, without loss of generality, that the degree of all
patches is the same, say d. Since the twist coefficients, ¢;, can be chosen to
enforce (2.E;) at each original (second) edge, it is sufficient to cherk that
(2.E1),

dkd,—y +d{l = k)i =7, (2.E1)

holds for fixed t, and t,_.; at each new (splitting) boundary. By the averaging
construction, k, = 1~k = 1/2,a =1, p = v = 1/2, hence =gt =d* =0

and

2r, »..-:“ +m=._

fur any new bondary. Ou substituting tas into (2.E, ) and dividing by /2,

the constraint hecomes
tioy 44, = A0u) +28]). (2E})

But this is implied by the construction B? — avg(B!, t,_y, ti,sds(f,))- &
We nute that rational patclies and splitting-and-averaging work because

they generically destroy second-order stnoothness at the dnta points.
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Chapter Four

Local Smooth Surface
Interpolation: a Classification

The table below classifies some algorithms in the literature that con-
struct smooth, interpolating surfaces with piecewise polynemaly, i.e. algo-
rithms that convert a ‘inesh of 3D dnata’ into the cocfficients of a piecewise
polynominl representation, The *data’ column describes the intecpolation
conditions in mare detail: npper case letters indiente the highest-order data
mikchwd by the interpolant; lower case letters signal anportant restrictions
on the dutn. The tedges’ colum specifies how many edges a facet of the mesh
may have; if the entry is &, an arhiteary number of edges can be handled
by the algotithm. Tensor-praduct patches are prefixed *bi’ in the 'degree’
coluttin. The degree of a denvminatur polynomial (if any) is preceded by a
1*. The ‘weights' column, finally, details how the algorithms sew the poly-
nomial patches into a sinuoth quilt. All entries are explained in more detail
below. The algorithms are grouped into blocks according to the three ma-
jor approaches to the interpolation problem: the single patch appreach, the
bletuling approach, and the splitting approach.

A regulnc parnmetric piccewise polynomial surface is smoath or C' (=
G' = GC' = V! = VC') ifits pieces {patches) join with ariented tangent
plane continuity; that is, if the surface normals of abutting patches are
uniquely defined and agree at every point of the boundary. C'-smvothuess
for (bivarinte) hinctions differs from C'-amoothness for surfaces, since the

former is an attribute of one map from the plane to 1-space while the latter
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is a property of the imnge of several maps from the unit square o trinngle

to 3-space.
data  edges degree weights reference
Pr 4 bi4 1,0,0 Bee "86
M 4 bi6 4,3,0 Déz '79
Sar '86
M 3.4 4,bid 3.1, 10r2,1,0 Pet '8%a
IIr 4 bid PulNog x N} Sab '6G8
Ne 3,4 3,1l (1 =)Np + 1N, Pet '88a
Dic 4 bil Cou 67
Df 3 2(3+3) {111} Bar '73
DI 4 bi4/1 Gre "4
M 4 bid/1 L1,1 Chi '83
M 3 1+2 [/20L 1,1 Her '85
De 5 342 [6/61(1/1) Clin '84
Ke k 3+4/8 [B(k = 2)/3(k = 2)(1/1)  Gre 'BY
D 3 3+3 12721001 Nie '86
K 3 745 4741171 Hay '59
T 3 3 0,0,0 Clo '65
T 3 2 0,0,0 Pow '77
N 3 4 1,0,0 Far '83
T 3 4 2,1,1 Pip 87
M 3.4 4 1,11 Sha '87
M 3,4 3 2,1,1 Pet "88b
L1 Pet "881
M k>4 4 3,2,2 Pet *9a
1,1,1 Pet "D0a
N k 5 1,0,0 Jon ‘88
N dis bid 1,0,0 Pet "800

(4.1) Table: Local Smooth Surface Interpolation with Piecewise

Polynomials
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(4.1) Table ctd.: P = data point, N = nonnal, T = tangent, Il = curva-
ture, M = curve mesh, D = transversal derivative on mesh, K = transversal
curvatuce on mesh (surface is €%), (K= D= M=% T== N = P). {
~ cannot model closed susfaces, ¢ ~ compatibility assumed, r ~ N or Il is

restricted, y 3 ~ 1.5 patches per facet, g~6 or 12 patches per {ocet.

To appreciate the twofold role of interpolation conditions and the mean.
ing of the ‘¢’ entriey in the first column, assume for the moment that no a.:v.
other than the locntion of the mesh nodes (data poimts) are prescribed. Then
{2.E) andl (2.1), Apy = up, + vgu, po % pu # 0 and pv > 0, form a nonlin.
ear systewe of equahty and inegualily constraints in the cvefficients of j. AR
Ay pad w Eg. if the putches are represented in BO-form, the first layers
of the BB-net along the pateh baundaries and around each dnta point are
comnrcted vin a global aystem. Hence, an smportant feature of any surface
construction is the selection of (geometrically meaningful] coefficients to be
fixeal 2 priors {input or detived Irom the data), s0 as to arrive at a sufficient
and consistent sequence of local and linear constrains. Such input can range
frow preseribing a pateh complex around the P to be coustructed {|Gregory,
Halin 89]), i.e. prescribing q in (2.E), to Jjuat fixing the tangent plane at the
data points. While additinal interpolation requirements can reduce the al-
gebiraie complexity of the task, such data must be both available {or ensy to
geneeate] aml consistent with the polynomisl representation, Consistency is
a major problew, since each mesh curve, whether input or constructed as a
part of the algocithm, carries second-order data in the nontangential cern-
ponent of its second derivative. At the data (mesh) points such data from
different curves come together and thus give rise to the vertex enclosure
problem {cf. Chapter 3). If the data puint has an odd gumber of neighbors,

then the dnta can be dealt with (o certain circulant matrix las full rank);
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but if the number of ncighbors is even and the impinging patches are at
least second-order smooth, then the data have to be constrained (now the
aforementioned malrix ia rank-deficient). This amounts to oue scalar con-
straint per data point and can be enforced by making the mesh curves mateh
second-order data at the point. If tranaversal derivatives are prescribed in
addition to the mesh curves as in the blending approach, then each patch
boundary prescribes the mixed derivative at the data point independently,
thus leading to 3k constraints per point {one vector constraant for each patch
corner). Each of the three major approaches below offers a different solution
to the vertex enclosure problew.

An algorithin that censtracts just one polynominl patch per mesh ficet
fulluws the single patch approach. This amouuts to interpolation at the
mesh nodes, followed by o consistent construction of the nwesh capves. For
[Sabin '68] atul {Peters '88a) the charncterization of the weight fuwction s
replaced Ly the definition of the normal direction 1 along the mesh cur-
ves, since both algorithuns are based ou the following, slightly diffccent, but
equivalent scalar reformulation of [2.E): npe = np, = agy = 0. Once n is
preseribed, the corresponding constraint systen becomes linear and local.

The blending approach constructs k polynoinial picces for a k-sided
mush facet. Ench pivee matches a part of the data, so that a convex combi-
patiot interpolates the combined data of the facet. The blendfing) functions,
i.e. the weights of the convex combination, limit the influence of the pieces
to these edges where they match the data. Compared to the single patch
approach, this buys simpler pieces af the cost of more pieces. Since surfaces
genernted by the blending approach typically interpolate a transversal deriva-
tive along with the mesh curves, the blend functions play an additional role:

they introduce a discontinuity in the second derivative at the data point,
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so that the mixed derivatives need not agree. A typical blend funetion is
b.b, /(68 & brby + byby) where by, by and by are the barycentric coordinates
of & domain triangle (cf. [Niclson '86]). Discontinuities in higher-order data
can be introduced by taking powers of the products bib,,. This means, how-
ever, that consistency of lower-oriler data lias to be enforced by some other
means (cf. [Hagen, Pottmann '89]). The degree of blended interpolants is
ditficult to eapture. The table lists, in the ‘degtee’ column, both the degree
of the datn polynominls, ¢, and the degree of the (possibly rational) partial
interpolant {separated by a *+'), and, in the ‘weights’ column, the degree of
the blend functions {in brackets) and the degree of the rational parameters
in terms of the wrigingl covrdinntes (in parentheses).

Ouly the third, the splitting appronch, alters the original mesh of
neighborhom] relutionships.  Following the example of the Clough-Tocher
split, k sos-overlapping picees are used to cover o k-sided mesh facet, The
object is to reduee the degree of the snterpolant at the cost of more picces.
Even though the splitting approach ereates pointa with nn even number of
neighbiors, it can interpolate {original) boundary curves. This ia possible
because the additional boundacies created by splitting create discontinuities
in the higher derivatives just like the rational blend functions nbove.

Fixing the weight functions o priors as in [Goodinon "89] or [Hiltig "89)

i3 yet another way of removing the nonlinearity in {2.E). This approach

and approaches based on an implicit representation ([Sederberg '85), [Da-
jaj.Jhmsung "89], [Duhmen "89]} have not been included in the table. The
reader should be wary that smeoth sucfaces construeted by any of the al.
goritluns listed in the table ean be a far ery from the tout, convex surface
its designer may have in mind; thie degree of the interpolants is only a first

indicator.
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Chapter Five

Algorithms for interpolation by
C1 surfaces

This chapter reviews the ideas underlying the algorithng in [Peters '88a
"BBb '8%a 'B9b, lists shortcomings and restrictions in the original algorithins
and gives fixes, To unify the statement of the algorithims nwl to be specific,
some simple functions are defined below,

* iy the veetor prnlucet, x the crusy product.

nbrs(k) - returns the sumber of neighlors of point k.

nbr{ka) - returns the ith neighbor of poiat k.

sds(k.i} - returns the number of edges of the ith facct attached to point k.
ads(f} - returns the number of edges of the facet 1.

avg(pl,p2, p3,i) - returns the vector pl + w?w + pd — 2pl), where X :=
21 - cos(1F)).

cs{vl,v2) - retuens the scalar (01 « v2)/(v) » 1), (Almost, but not guite
cos(vl, #2)).

tanproj(r,n) - returns (v~ v+ n)n, the vectar component of v perpendicular
to n, This is used to project a direction into the tangent plane.

Only one postscript image is displayed in this section since the graph-
ics workstation and corresponding software were unavailable during the last

seven mouths of this thesis wark. More surfaces are shown in [Peters *B8u

'88h "80a "891).

5.1 Algorithm I: Linearly varying normal
along patch boundaries

Iden Dy prescribing the normal direction, n{u), along the patch boupd-
aries the constraint (2.¢) of Lemma 2.2(ii) becomes the local Yinear set of

constraints

n{u)pu(n,0) =0, {2e,)
n{u}p,(u,0) = 0, (Ze,)
n(u)gu(u,0) =0, 2e,)

for u € [0..1]. IF puints P, and their normals ¥, are given such that

L

|~.<n?ﬁ=lhu_u
= N} >0 {5.1)

then the boumdary curve connecting two points needs not to have a point of
iuflection and 1 ean be cliessen s a linenc it crpulant to the normol dicections

at the points [Peters "88al:
alu):= [N9,wiNY),

Problem T enforce (2.¢,), (2.e,) and (2.¢. ) with [bijenbic patches, it is

sufficient to solve the systemn {N) of equations at cach data peint and then
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compute the interior BB-coefficient(s).
[ n 0 0o ... [ I 1] ]
ny 0 0 ... 0 HP' — Pyn + 20")
ny -TH) 0 ane 0 1]
0 n | B 0 0
0 n; 0 ... 0 u} P - P)(n + 20?)
] n =-Ffl3 .. 0 : = Q .
m m m R m .._.” .
0 0 0 ... —myy 0
0 0 0 ... n 0
0 0 0 ... ng m:.* — P)(n +2n*)
L—Hg 0 0 e m L 0 E
{5.2)

Here w := a{P), n, = n(P,), i.e. [u,n;,n4q] is o 3 x 3 subanatrix on the
dingoun] mad the w? are the first BB difference vectors. Solving the system
is problauatic sinee its cocfficient mnteix is tnuk-deficient at even-points.

A Nix  The problem is an instanee of the vertex enclosne problem (nod
disappears if the datu are ‘second-order consistent” [Peters '88a Theorem
5.1]}. It is here solved by using parmmetrizations that are singular in the
patch corners {see Cocollary 3.14) and otherwise deviate least from cubic
patehes. That is,

P =B, = By =C.

The approprinte degree of the patches turns ont to be
quintic if the facet has J edges, or

biquartic if the facet has 4 edges.

Algoritlhm 5.1
Input A mesh of data points and their normals. The facets all have 3 or
4 edges.

Output A tuintic or biquartic C' surface that interpolates the mesh.
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P

w\ Dy, b‘_p

Up
U..— =P, Ca=PF u..__

£ .m..___. =R b.ﬂ Bw. P,

{5.3) Figure: BB-coefficicuts lor a singular quintic parametrization.

for ¢ = L:points
for m = L:bes(i)
t=nbr(s,m); [eg. [ = jorl =]
B!, — P.; Cy — P, [singnlunty at 1|
[construct the remamng boundary}
A=D=Pia=N+ A
if quintic then
t — tanproj{A, M) [n vector in the tangent plane]
a w— Jaf(50 « NiJ;
ifla<O
error [no linear n possible];
B — P, +at; [force the second difference into the tangent plane]
else {biquartic patch]
m e N% x NVt —m x N9
a +— gf{mem);

By — P +at;
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for { = 1:faces [construct the D)
fori=1:sds(f)
m; — N; x N,y
=, = Pt o(m, x N}{|lm?)
solve the sds(f} x sds(f) system

2miem,y, ~m, + LT N PRI PR TYRL, P

=(2 =5y — L) e, (54)

for i =1:sds(f)
D, — 2, +qm,;
ifsds(f) ==

biepunrtic center corfficicnt = nvernge of (e surronnding corfficients

Correclness of the algorithm  We first consider o quintic trinngular

patch. Since

np, ~ —::.:.:..n.._:“.a-.a.k...u.c._

""—EQ.EE_:@.—.—_ O au...:u.u; C G._L.E_Q.w. - hw.u._-..:ﬁ.“. - bsu. —.Nvu - mu_._

is a palynowmial of degren five and the setup is symmetric, it suffices to show

that the first three coctficients of np,,
:..:o. n'y® + .__:e_h_. 4n'y! + n:auu.

ase zero. By choosing BYy = P, and forcing B, 1o lie in the tangent plane,

eg. B% = P, +at, where t is the projection of Fy = P, into the tangent plane

A0

at P, the first two coefficients vanish and the beundary curve is indeed

perpendicular to the normal. It remaing to show that
6u?n® +du'n! =0 and 4u’n?® +6u’n' = 0.
Sinee 1? = (P' —= PY)—u' — u® =: A - u' — &%, we obtain
6u*nd + du'n' = GAR® - Gu?n® +4u'n?
Bun'i + 4utn® = GAn' - 6u'n' 4 1u'n?
or, equivalently,
Su'n! = 3A(20" + Ia')
5u'n® = A3 + 2"y,
Henere, the third cocfRcient vanishes if

o= 3A(2° + 3n') _GAN"fw +9AN! _ -GAN' oA N? L

Stnt St St TR

The analysis of the biguartic ease is simpler. Again, choosing B, = P, sets

to zero the first and the lust entry in
gy ~fn®, 0" )[u®, 3u', 302, %)
H“—Ea.ﬂz._—ﬁ.ﬂ - B3 B... - hw..L.u_:.-..". - hw..__u._n.h - hws_._.

Furcing the micdle coeficient of the boundary, 8.y, to lie on the intersection

of the tangent lanes at P, and P, sets to zero the second nd fouerth entry;
n'(B,, - B,)=0= qn.ahc.. - 8,).
The remaining termn is zero by elwice of w:

n®(B), - B,)+u!(B,, - 8!) = (n° +n') B, - BL) = (N +wN A =0.
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The coefficient B,, is underdetermined, since it needa only to satisly
NO(B;,-P)=0 s=nd NYB,;~-P)=0
The above version of the algorithm adds the ad Aec additional conatraint
(N° x N')(B,, = P) = 0.

By setting D, 41 = P, and Cy = P, the first two cocfficients of np,
vanish. Noting that, in botl the quintic and the biquartic cnse, np, is a
quintic univaciate polynomial, it suffices to enforce for each boundnry in the
quintic case

{Dy - b.n_uz. =0 und (D - BN =0, (5.5)
respectively in the biquartie ense
{(Dy = BN, =0 and { Dy = Byl = 0,

where Dy is the middle coefficient of the first off-boundary lnyer of coef-

ficicuts. Since the problem is underdetermined, one can e.g. minimize the

devintion of the quintic from a cubic patch. That is, sinee a cubic patch
hos just eue intecior coctficient, one can minimize the distanee af the three
Dy from ench other subject to the 3 « 2 constraints of type (5.5). Then

{4y D1 Duy) are the salution of

.1
win = (I1D,, - Dull? + 1D = Dud® + |1 D = D,|I*) (5.6}

st. nD, = =_h.u. 1€ (1,234t #£5.

Oue can avoid calling a winimization subroutine by first computing a paint

2., on the tangent planes of P, amd P, and then minimizing in the direction
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mn,, perpendienlar to N, and N, The solition of
z.nh.._ = hu.u =0
Nz, -P)=0
(Nix N}z, = P}=0
yiclds a suitable z,;, namely
2= Pt ET:: x N,), whetem,; := N, =« N,.
llen sl
Henee
Dy =1, +v,my
for scalars 5, that minimize
. 1
min Y glza —2) + (rama - BTy (5.6

RT3 (TR AT ]

Since (5.6'} is an unconstrained minimization problem, the q,; can be deter-
mined explicitly as the solution of the diagonally dominant system (5.4) that

arises when setting to zero the derivative of the function te be mininized.

The detivation and formulas for minimizing the deviation of a biquartic from
a biquadratic patch are analogous.

Since the second ring of coefficients nround a vertex falls into the tangent
plane while the first ring coincides with the data point, the tangent plane of
the surfnce is welldefined at the vertex. For display, the normal at the patch

vertices has to be provided explicitly, e.g. from the input data, since it is not

available from the first differences of the parametrization.
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5.2 Algorithm II: Quadrangulation with
diagonal fitting

Idea By splitting each triangle into three subtriangles and combining any
two subtriangles across an original edge, one can convert & triaugulnr pattern
into a pattern of quadrilaterals (see Figure 5.7). The surface construction

obtained by salving (2.E) for bicubic patches with weight functions
k"—»e.w—- p=v=1,

even allows for a free choice of the mixed derivatives at the original vertices.

(5.7) Figure: From a triangulation to a quadrangulation.

A box indicates a data point, no bux a splitting point.

Problemn  None of the twist estimates tried in |Peters 89d] effectively con-
trols ‘buckling’ of the patcles. Additionally, one wants to find a good default

for the length of tangent veetors at the data points.

30

A fix  The free parameters can be fixed 30 rs to minimize the distance
between the dingonal ¥ = v of the tensor product patch and some desirable

cubic curve

b:=[B°,38',28%, B

that connects the data points B® and B3,

Pap® - g

(5.8) Figure: Nutation for Algorithun 5.11.

Algorithm 5.11

Input A mesh of cubic eurves b= (8%, 30,387, BY).

Output A piecewise bicubic C' surlace (cf. Figure 5.8) that interpolates
the cubic cucve mesh at the data points and approximates it otherwise.

slep 0 Set §:=2x/n, c:= 2eos, 1:=1/(2c0s(0/2)) and C:= 2+ ¢.
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step 1 Set P® = P and

PP =P+2y) Bicos((l - k+1/2)8).

k=

step 2 Set 3r,:=e(B? + 3B} + P)- 2P +(T-e)}{ P + P!,). Determine

the twist t, := P!! from the n x n system of equations
tie2+2Ct +(2 4 quu. + wﬁ.?.?. +hir =5+ Cey+ 2,41-

Set
PO iz PY g 1 (cu® £ 3(tey - P = PM))
[~

step 3 Sct §:= P = (b + by + b3)/3 anil

M 1 1 -1 1 Gy + 2euel + 20}
n|=5 1 1 -1 66y + 2ene} + %l .
2 -1 1

1
51 1 6b; + 2eul + 2u}

Correctness of the algorithmm  The cocficients of the u = v section of

s patch

] 3
P} =Y 3 PO - u)e® (L - v

el p=0

arce
Tceo.ummuo_ .—.Hu_.n_.u.:uau +uw:+~uuau.~usu+03_u +m=u.... +m._ue.

3PV 4+3P% 4 PY), Y PP + P), PV,

This is to be compared with the degree-raised cubic

b=[8°%D0" + B°), 3B +3B' + B°),B* +9B° + 08" + I,

&
2

B 430 + D0Y),3B + B*), I’}
To enloree (2.E) with the choice

A = 2¢c:=2c0s8, where8:= m:H

and n is the number of neighbors at the data point P 1= P" = 0% the
coeflicients of
Ape ~ ppe = v =
(26, 1][u°, 26", u?] = [v°, 30', 307, 0%] — (0", Jw?, Due?, ]
are set to zero. To set the first corefficient to zero, the tangents u? 1= P - P

at [ are determined so as to ninimize the distance between the diagonal

1 = v of the tensor product patch

(P" 4+ P2 - Pl 02,
aml thie tangent vector
(B'+0°)2-P=8'-P

of given cubic b := [B®,38', 387, B?]. That is, one solves the quadratic least

snares problem

min M.HJ\ fJu? +udy, ~(B) - Py

iml
st ul, -2’ 40d, =0 fori=1,...,n (5.9}

{Since the normal does not explicitly appenar in the constraints, the minimiza-
tion can change the tangent plane.) The nullspace of the circulnnt constraint

matrix of ench coordinate is spanned by

A—LJ»“..: N anid A...ulkv_wn-_... n'



a3

where w is the nt? root of unity. Hence
ul = Auw* + Bu=' for some A, B e I?
and (5.9) is equivalent to
" 8.0 bz —(kH1/3) ! 2
u....ﬁ..Ml. It nouamx..pc + Buw )-8l - P
which has the same sclution as the § x 6 system

L n
YA+ nB =Y (B - PrAT
k=1

PR Eaail) I g M:ﬁ - Pt

km] k=)

where 3 := 1/{2cos(8/2)). Sinee T, w*! = 0 and pIATRLLLTLLEY 18

we can read off
f n
A=) Bl D gL Y glten
k=) ke

and henee

n n
ul = iM BlamtH1ia M EEIS.&
k=) kmt

=21 Blcos({l - k4 1/2)8).

k=)

The second coefficient of Ap, ~ p, = g, vanishes if

Pl=pP"+ WT& +3(ter = P 40, - P

for ¢, := P'". The ¢, are chosen to minimize

NPT 43¢, + P)— (B2 + 38! + P)?

or, equivalently, as the solution of

minY " foms + (24 )y + gy - 17, (5.10)

(111
where 3z, := o(B} + 38! + P) = 2P 4 (T - c)(P™ + P?,). The system
tia +2C8_ + (2 .—.ﬁ.u!. +2Ct4 +thyz =iy +Cr 4 Tytl

with C := 24 ¢ has the sane salution ns (5.10). It is not dingonally dominant
aml mivy luve to be solved by Jeast squares.
The: fourth coefficient of Ap, — p, - g vanishes il the splitting point is

chosen as the avernge of the surrounding coefficients PV, since then
4 )

= vt + w’.
With the splitting point fixed, the third coefficient of Apy — Py — g ia forced
to zero by computing the twists coefficients 3y, 33, and 53 at the splitting
point from

2eu® +2u' = 3(s, — PO 4 5,4, — PO,

Conclusion  An obvious extension of the approach is to allow initial tes-
seletions with n-sided facets, The facets are split into triangles and then

recombined leading to n-points aa splitting vertices.



5.3 Algorithm III: Splitting-and-Averaging

Idea Covering an n-sided domain by n non-overlapping patches, i.e. split-
ting the domnin into n triangles, and computing the additional boundary
curves by sveraging, solves simultaneously the vertex enclosure problem and
generstes encugh degrees of freedom to do so with a low degree (total degree
cubic!) interpolant (cf. Corellary 3.19). In fact, all coefficicats of the interpo-
lating surface ean be computed as averages of the data. As a side-cffect, the
interpolating surface ia parnmetrically smooth across the splitting cusves. A
full anulysis of the algorithon and its implementation for arbitrary topologies
can be found in {Peters 88a/00a]. The following describes ouly the generic
construction for 3- aul -sidded facets and quadratic bomdiny erves,
Algorithm 11 Given s mesh of cubic curves, SplAv (for Splitting mul
Averaging) determines the coetficients from the wesh enrves inwarnd towanrds
the splitting point. That is (see Figure 5.11), with the cocflicicnts labeled P
and D given, the algorithm first deterinines all cocfficients A, then @, then
B and fivally M. N* is the normal at P*.

Algoritlum SplAv [special case: quadratic bonndarie)|

Input A mesh of quadratic curves (with derivative @ := [u",u']} with 3-
or 4-sided faccts.

Output A cubic € surfece that interpolates the mesh.

A — avg(P*, D_,, DY, sds(k, i});
W DE-PH oyl PL-D
e AF P — A -D)

ud = N® xa% ul = N xul;

E]

U_—

=T

* & ;o
Ay, Ou.+. = R1=n
Figure 5.11: Notation for the cubic patehes with quadratic boundary.

Qi — D+ (e, 0"l + es{u’ vt )ul + os(u® v’ + cs(ut, v' Ju)/2;
hu.— e =<Wﬁ..p.n.Ow.l-.ow..m-—m:...-=n
M — avg(B}. BY, BE sds{ ));

The resulting surface has no cusps along the curve mesh.
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(5.12) Figure: Three semi-doughnuts meet at an angle of in

5.4 Algorithm IV: One biquartic per facet

Certain geometric input data allow for simpler, lower degree interpolunts
than is possible in general. For example, a cubic 2-direction mesh with a
welldefined normal &t the mesh points can be interpolated and smoothly
covered by bicubic patches [Gordon '69]. Underlying is the fact that seine
data allow for particularly simple weight functions (connecting-maps) in the
surface construction, e.§. A =0, g = v = 1 in the nbove case.

Problem A general surface fitting method must work for general data and
must therefore provide high-degree weight functions and patches. However,
the algorithm should take advantage of special features in the data and apply
lower-degree weight functions and patches whenever pussible. The transition
from generic to special data should be continuuus, i.e. the surface should

change gradunlly when the data are perturbed and lose their special features.

58

It is not obvious that this can always be achieved, since special data often
give rise to numerical singularities (yee below).

A fix  Averaging, in particular degree-raising, is a useful technique to deal
with rank deficiencies induced by special geometric data, That is, the generic
consteuction (weight function and patch) will degenerate to the degree-raised
solution of the special construction as the data approach the special data.
This guarantces continuity of the transition and is illustrated by an algorithm
from [Peters '80h] whose aim is to find a single (triangular or rectangular)
patch to cover a mesh facet while interpolating cubic boundary curves. In
particular, we look at the construction for two abutting tensor-product pat-

ches or 4-4 configuration,

e
E-

P
.._“_..._ 2]

] m.+__

L d
s

ul

H]
_L,_...

&
=t — Ty
g ——

w
)

{5.13} Figure: Diffcrence veeturs (left) and DB-cocfficients at P {right).

Algorithm 5.1V: Interpolation of a cubic mesh without splitting
spuciul cnse: 4-4 confignration
The algorithm determines the BD-coefficients proceeding from the data
points to the interior.
Input A mesh of cubic curves that allows for & solution of the vertex

enclosure constraint and has only 4-sided facets.
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Output A biquartic £ surface that interpolates the mesh of curves with
one patch per facet.

step 1  |Determine the tangent ratios| For each data paint, set
Nz, ple=k li=1-k

with &; nnd 5; defined by n,u? = ku? 4 (1 - &)w?.
step 2  [Determine the twists] For each data point P, set n := nbrs(P),
* := (2M0) + A(1))/3, and assemble the matrix

ky 1-4L ... 0 [1]

[] ka 0 0

K= P 0 0

1] 1] oy k:l_ —a..h.:l_
1-ky 0 e 0 ky
anl the vector

R:= (30%) + 300l 448, = pyof = vjwl) _,, . nodd
= (3)%) +48, - plo? -4} E"J () n even

If the number of incident eilges is odd, set A} := A* and salve
KT(k) = R(k)

for each coordinate k € {1,2,3]. If the number of incident edges is even,
the constraint systen is underdetermined. Choose t° as a desirable choice of

twist vector and solve the quadratic least squares problem

I -l H cln N
.w..m.om:_‘ sl° + w.___> A5

G
. T(z)
st w M. M nﬁww T | HJ (5.14)
L. : T(z) | = vy,
0 0 K U] |} R(z)
where L := A\’:.I— wmy T2
0
0
U(r) := - . : .
:e_“”ﬂv..

step 3 [Determine the interior coefficients| Let k° be the weight, deter-
mined in step 1, correspouding to the Jeft end point of the curve segment
and &' the one corresponding to the right end point, If |k® — &'| >TOL,

compute the midile cocthivients of the first Inyer from

alo (1 =" = wa»s.... +6A%G6 + A% — '™ — 40 ")
{5.15)
plot(l - )= lﬁ;.:: +62"6 + A'u® — 4% — $0%0'0),

Otherwise set
Gr® = 4™ 4 40™0 = (60 + '), B = 4w® +40" — (v + ')
| and solve the quadratic least squares problem
min W:_e. = all* + " = @)
st A® 4 4ha + A% = pE e (5.16}

The central corflicient ja free and can be chosen, e.g. as an avernge of the

surronnding coeflicients.

Discussion  We focus on step J of the algorithm in which the degree-raising

principle is used twice.
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(5.17) Theorem. As k° — k', the surface construction {weight function
and patch} converges to the (degree-raised) construction of 1% = k' if (5.14)
can be solved for A} = A*, Otherwise the deviation from the degree-raised

construction is minimal,
Proof.  Consider the constraints A = p¥ + vis where
i~ [u®, 2,0
¥~ v, 40,60, 40", 0]
@ ~ [u®, 4™, 6w, dw'®, w'].

Since the ratios 771 — £°) and /(1 ~ L') computedd in step 1 of (he

ut lenst

algorithun ace not aceessarily cqual, poand o tst o general |
linear. The choice A ~ [A%, 345 3010 A, 5~ [, '), v ~ [19,001] Lenls 00
the C' constraints

Ayt o 2 & ® {2.Ey)
Iy 4 20% = 4200 4 et 4w g 'O (2.Ey)
30T 462G 4 A% = "o 4 6% + ' u® + 6% (2.E;)

B! 4 6A%G 4 A = 400 4 645 + 460" 4 o'

3N+ 200 = 4 4O 4 '™ WO

At =ptet 4 uty?

Step 1 and step 2 of the algorithm enforce all constraints of type (2.E,) and
(2.E,) and thercby determine all coeflicients, except for 5 and & which are
computed from the constraints (5.15). If &% £ L7, ie. in the generic case,
one can solve for # and . I, however, &% = &1, (5.15) is only salvable if the

right-hund sides agree. The freedom in the choice of A" and A" gives hope
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that this can be achieved. If £* = k! the simplest choice of weight functions

i3 A ~ [A%, 24, A1), ji ~ [u] and v ~ [v]. This leads to the constraints

A% = e 4 b (2.Eq)
20u® +20% = $pu™ 4 4™ (2.E])
Ae® + 438 4+ A% = pi +vo (2.E})

23”4+ 20% = 4p0®" 4 wu®

Ml = o' vt

Again, step 1 and step 2 of the algorithm enforce all constraints of type
(2.Eg) and (2.E,), and & and w are computed in step 1. Raising the degree

of the weiglit functions in {2.E') by one gives
A L[ 23,41 = (A%, 28 4 27,23 4 A% 01,

s L[ = ls) and v~ 100} = [u,0).

The new set of constraints is equivalent to the constraints for the case £? £ K
exactly if
I =284+ 0% and  JAC =284 040, (5.18)

H=p'=p and "= =p (5.19}

Henee, if (5.18) holds in the Fmit as 4% ~ I, the construction according to
(2.E) degrnerates to the construetion by solving (2.E').

T step 2, (5.18) is explicitly enforced if the number of incident curves
at the current datn point is odd. If the number is even, the deviation from
(5.18) is minimized by the choice of A*. In particular, if the vertex enclosure
problem (5.44) is solvable for A = A*, e.g. when the collinearity constraint

(3.6.a) hobds, then the teansition is smooth. 4
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(5.20) Theorem. [fL° = &' and A = 0, then the construction becomes the

construction of a degree-raised bicubic patch.

Prool. If A =0, then (5.16) becomes
0=pv+rvw

which, by (2.E,), is satisfied by & = 4v®' + 40" = (0" + ¢!} and 1 = 4u™ +

41" — (w° + w'). Raising the degree of the cubic [a®, 32", 3a'%,a'] yields
?e.no +3a®",3a"" + 3a'%,a' + 30'%,a").

Henee, if

a¥ = o® anl o 4 3" = $0,

then v is the midille coctlicient of w degree eased eabic I

Go = 65* = 3a™ 4 30" = 4(+® + 0'?) = (v* + ")
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Chapter Six

Higher-order continuity

Since the first and second fundamental forms exhaust the geometric
invariants in three dimensions (e.g. |Klingenberg Prop. 3.5.6]), the charac-
terization of higher-order continuity ia based on reparametrization and the
chain rule. Since [Halin '89] alrcady gives a detailed exposition of C* conti-

nuity, ouly the salient points for the purpose of this thesis are developed and

extemdedd below. In particular, the following definitions paraphrase (Hahn

'89, Definition 2.1 and 3.1).

(6.1) Deflnition. Two CF putches py : 1, — R? and py : 1 = R join
with C* continuity across the domnin edges Ey, Ey if there exists a C*

connecting-map ¢ with ¢(E,) = Ey such that
I puen = I Prega © 7 iy

for s €{0..1]. Here a C* patch iy a k-times continuously differentiable map
p 1§ = M, whose domain, 2, is a closed, polygoual subset of R? and a C*
connecting-map is an invertible Ct map that maps interior points of Q,
to exterior points of 3. The k-jet of p at X is the sequence of derivatives of
order < k at X: JEpx := (DIp)x )y=0,..- The composition of jets J*f|x,
h_nm: i3 defined by .—.E—\ o hn.ﬁ_.... = JYg o flix. provided f(X) =Y. If
¢ = id in the above, then p, and p; are said to join with parametric C*

continuity.

From Chapter 2, we recall that one has to be careful in restricting the

class of connecting-maps when the definition is unsymmetric as it is here,
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i.e. when only one side of the continuity constraiut is a compusite map; for
example il ¢ is polynomial, one obtains only a sufficient, but not necessary
constraint for C* continuity. Hahn requires additionally that any C* patch
be regular, i.e. that rank Dp = 2. While regularity of the patch is not neces-
sary for C* continuity of the tesulting surface, regularity implies that Jtp, ¢

ia left-invertible, i.e. that there exista a H.a_-._.’._ such that

appxro agx = Jhidy.

This is the erucial observation for ubtaining the following necessnry condition

at an enclused vertex,

(6.2) Theorewn. [Hitws *89, Theorem 7.0] Lot (pr,)ym1, 0 be regular
patehes with p(C)) = € and ._q_—_..._.‘... = hu1.+__n..+_ a h»o.+_.._n... where

$ig1, e connecting-miaps with $,41,(C.) = Copq. Then

h»%-.:_ﬂ: oJ*

n=1{Cpn_y o...ohrtu.:ﬁ. = H..m..__h...

Prool. By substitution

I'p1ic, © I b1.aice © S bn-ric,_, -0 Sbauic, = Ipuyc, -

The resolt follows from the regularity of py, the assaciativity of jet composi-
tion and the neutrality of iy, &

We apply the theory to the problem of *Rlling an n-sided hole within
a C* parauetric continuous patch complex with n non-oveclapping patehes®
treated e.g. in [Gregory, Hahn '89) and [Hahn '89n). Consider Figure 6.3. The
patches g/ are given and join with parametric C* coutinuity. The patches
P are sought to form a C* surface with the surcounding complex of patches

a... Any construction has to satisfy the coustraints of Theorem 6.2 at L,, M,

GG

Figure 8.3: Covering a 5-sided hole with § 'rectangulus” patches.

anrd S. Huhn's construction, [Haln '89a), uses two types of connecting-maps:

across any bonwmdary between a given and a new patch
ﬁh.—_. =il
while between dom p, and domp, 4y
st

M) = (1 + 1)ala)t = t,3 + Aa(s)t).

Here, the superscript AB indicates that ¢48(0) is the preimage of A and

#42(1) is the preimage of B, a is a C™~'-function satisfying

a{0) = 1,a(1) =0,a{s) > D for s € [0, 1],
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a'(0)=...=a™'0)=0, o'(l)=...=a*(l)=0

o ...+_ siné, v _TigL sind;
Aii= Ancue +cosdi_y Eaa....v.t. T T Tr sinfg

ri := || Bypi( 5)||, and &; is the angle hetween Dy pi(S5) and Dap;_((5). Ifall r;

#%A is chosen of so high

are equal, then §; = & := 2x /3. The connecting-map
a degree that the vertex enclosure problems at § and the M, do not interfere.
In fact, the k-jet at § is independent of the given data gf and is obtained by
a heuristic; 5 is connected to the patch contplex by {unsymmetric) Hermite
interpolation. While this approach avoids the difficulties of vertex enclosure
with prescribed daota, it unsymunetrically creates a surface of bivicinte degree
5k. In coutrast, the following sketelies a symmetric construction of degren
2k + 2. The connceting-maps are

M5 y) = —HH .nl“_ and  ¢"M(s.p) = —=+:...|n55mh._ .

where ¢ 1=

cwn(®). The idea here is to have a bilinear chinnge of topelagy

&mnfﬁq

Input A complex of rectangular patches joining with P order parawetric

from the 4-points, L, to the n-point, 5.

Algorithm 6.V:

coutionity and surronnding an n-sided hole.

Qutput  n patches, each of degree 2k + 2 by 2k + 2, that join with the
rectangular patch complex and with the neighbor patches to form a C*
surface.
step 1 For ench patch p; (see Figure 6.3), determiine the first & transversal

derivatives, [ Dip);=), .1, along the original boundaries as

4
Djp~ ) D}”'Diqlazy (1 +az)’

=l

ﬁb ol Bruo

Ay *~m+\/ o_a,._u
Oﬁomltv w
\ﬂND.w - Avb PQ

...
p 58 &
2y

/. ..SLA@&& eu&

s J + ﬂ i.m A@ &1-~ D nrv b2 D7 A@g i @w&wvr.f..ff,f; ...,. 5 q mo >

| tea) N

a0l O..__F.dm.

¢ ./ @

Y ANERESY

¥z, p}

CHeCK
%R\u?
{6.4) Figure: The bilinear conncction-map $.

where a = cf(l =€), ¢ 1= cos(2xfa), and 3 the number of edges of the
polygonal hole. Raise the degree of DE~'p by i +2

Remark  Since deg{ Dip) = deg(y) + j, degree-raising is used to give the
Aual surfice the uniform degree 2k + 2

step 2 Fur cach splitting point S, abtain the first & + t derivatives at .w\s
2

by salving the s(k? + k) system

T = MMpisrodds, DE'D(p - per o dids =0, Sk, (65)
[yl —y)e2e >0
éifr.y) = ﬁ - ﬁ - -
0,0} i = (A0~ ¥D)
in the a(k + 1)? unknowns _u...mu.

Dy DV pys, (aym)<{k+1,k+1)e{l,...,a}

Remark The system is underdetermined. The standard techunigue is to

solve it s the least deviation from a simpler surface with desirable shape
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propertics [Grandine "B7}). If s i3 odd, then a smaller system will do (<f.
Lemma 6.7).

Correciness  With ¢ := ¢*M, p:= p; and q:= q! or g := q!,,, we have

1+ ay

A {6.6)

b.an— _ and buﬁn—

ar
1+az|’

and hence

Dip=Diqo¢ =D"g(Ds¢,..., Dad) = 3 D}~ Diglaz)™~'(1 + ax)’.

n iferms =t

An argument that is not detailed here shows that the welldefinedness of
the C* construction together with the validity of Theorem 6.2 at L, (M,)
imply that theee is o uniogue k-jet at L, (AL}, This, in turn, implics that the
extension across the rim of the polygonal hole is welldefined. The connection-
map ¢ for the edge L,M, and the connection-map ¢ for the edge M,., L,
are refated by

o1
¢ :=G¢GC where G:= 1 a_.

The constraints of Theorem 6.2 are
JEg10 0 Itidyg 0 JHGP ' Gl = JHidly

or, equivalently,
4Gl = GI*ép

which, in turn, is equivalent to

.19_._ = ...Jeum.:e.

One chiecks that ¢,(0,0) = 1 = &0, 0},
a
a

Dé:(0,0) = E = D(#:GX0,0), D*:(0,0) = _“ _uueun:pe,

and higher derivatives vamish. Sinilarly, et Af,, the following disgram has to

comnute

oMS
down py; 2 dom p,4y
__. JM — AL
¥ 4l
G
dom g, —_ domg,4y

where p, and p,yy ere patches constructed to fill the polygoual hole, ¢, and

@i+1 are abutting rectangular patches,

M2, u) = Mz, y) = ¢M (o, y) = —H.*. Hne_ .

y —exy

dM5(z,p) = — w _ and G:= —lc— m_ .

y = yler
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Since higher derivatives vanish, it suffices to show that

Go¥ 100
"—a.ﬁ_—.
=¢lrooM jam
D, GMEyoa
_[-11_[ o][-!
o]0 1 0
=DM (oM )D, M5 0.0y = Didlit 0 M7 o)

D,GoM 00)
_[ol _fr o0]fu
1] T o 1 1
=DMt o ¢ any
D.D,GME 00
- - 0
2] =[7]+ (%]
D oM E(6M5)(DyeM 5, D, 415} + Dol (¢} °)D. D, M°

= Unb-ﬁ“-.““. = 3-:&. 1to.0}

Here D and D, arc used rather than Dy aud Dy to aveid ambiguities when
differentiating composite maps by stressing that the differcatintion is with
respect to a direction in the domain of p;.

Ta show that step 2 is also welldefined, one proves the fullowing Claim

by Fourier analysis.

{8.7) Claim. [vertex enclosure] To be able to solve the sk? constraints

&»P_m = 5 pr 0 s, forie{1,...,s} (6.5)

=4
LI~

in the sk? unknows
pr™ = D Upis, (mom) < (k k), i€ (1,...,9), \

{kf2], ifsisodd,
it is necessary that higher derivatives satisfy { k, if s is even and s £ 4
0, ifa=4

additional constraints. It is sufficient to add either
E41,m ! no :
P, amsk-1, o pCk+lEn<2k, forie(l,...,s} (C.8)

as unknowns to be abie to solve (6.5).

Remark  If the surrounding potcl complex crn be moidified, eg. by im-
posing comlitions at the ritn of the cectangulnr patch complex, then the al-
gorithm will succeed with patches of degree 28 + 1. Alternatively, one could

h.-.—.

generalize Gregory®s approach and wse eational patches that are -order

smooth but nat & + 1%t.urder smooth at S.

ile Pnn.crn..ﬁv
Lomlicabeck -

-7
[Pix, ca6t
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Chapter Seven
Outlook

This thesis presented 2 number of algorithms for Rtting smooth sur-
faces to 3D data. Additional criteria, besides simplicity and sinoothness,
will decide on their value in practice. In any case, it is uscful to establish
some basic array of techmiques and methods for mathematically welldefined
problems before teying to tackle illdefined coneepts like ‘shape’ or ‘tantness’,
While the engineer mny not be interested in C*-surfaces for L > 2, the stuely
of higher urder smoathness cliifies the undeclying algebraic structure. This
i in particular true for the characterization of the £ order vertox enchsure
problem.

The restriction, in Algorithm 6.V, that the surrounding complex be
parametrically continuous, can be removed. Ouce the *hole-filling’ construe-
tion is understood, one has actually o general construction wiiere the input
consists of a mesh of ‘k-jets’ and the output is an interpolating surface. This
and the proof of Lemmua 6.7, currently formulated in the "intermediate level
langunge of (total) derivatives™ rather than the "high level Innguage of &-jets™

[Halin ‘89, Section 6}, need to be made precise in a fortheoming report.
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