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Abstract. An algorithm for the interpolation of a ‘mesh of points' in 3-space by a C? surface is developed. At
cach point, the surface normal can be specified. The surface is constructed locally and consists of cubic and
bicubic paiches to maich the underlying mesh facets. The surface construction is special in that it generates a
piecewise parametric surface such that the normal along paich boundaries varies linearly.
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1. Introduction

Fitling a smooth parametric piecewise polynomial surface to given data points is a well
studied problem. Because of its nonlinear nature and the advantages of a local construction,
different approaches have been centered around selecting geometrically meaningful variables
that can be fixed a priori (input or derived from data) so as to arrive at a sufficient and
consistent set of linear constraints on the remaining variables. ‘Blending’ approaches, for
example, prescribe a mesh of boundary curves and their transversal derivatives, while ‘splitting’
approaches expect at least the tangent vectors at the data points and sometimes the complete
boundary to be given. The algorithm presented here differs in that it constrains the normal
direction along the patch boundaries rather than the boundaries themselves. As such it is most
akin to a (nonlinear) method by Sabin [Sabin '68]. Our choice of boundary normals as weighted
linear blends of the normals at the data points leads to a linear local solution with patches of
low degree. This basic idea is independent of the number of sides of the patches and thus
naturally combines triangular and rectangular patches, While the simple character of the
surface normal is, on one hand, desirable to control shape, it imposes, on the other hand,
restrictions on the nature and distribution of the data. Employing only one patch per facet, the
method additionally encounters a version of the ‘compatibility problem’. The corresponding
restrictions on the data are less severe than those for blending methods, but still amount to one
additional constraint for each point that has an even number of neighbors. Since the reference
[Peters *89] shows how the compatibility problem is resolved by splitting facets, this paper
limits itself to the plain approach with one patch per facer.
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We use the Bernstein—Bézier form (BB form) to represent the polynomial patches, because
this form gives easy access to value and derivative information along the boundaries of a patch,
as well as geometric meaning to its coefficients (cf. (Farin '86], [de Boor '87]). To construct the
surface, we determine the coefficients. The coefficients are 3-vectors, i.e. the polynomial pieces
map {rom the unit square or triangle to 3-space. In our derivation and analysis, it will suffice to
look at derivatives evaluated at a boundary. Since our main algebraic work consists of
multiplying these univariate polynomials, it is advantageous to work with the modified
BB-form

d

pit— L (1 -1)" b (*)
j=0
and to write
p~{(b°..., 0%)

to indicate that p is given by (*). Thus p ~ (a°,...,(f)af,..., a?) in terms of its control points
a’. For example, raising the degree of the quadratic polynomial (a®, 24', a?) is expressed as

(1,1)(a% 24", a?} = (a° 2a' + a°, 24" + 4%, a?).

If nothing else, this avoids writing fractions. Abbreviating the scalar product of a and b as ab
keeps the notation simple, e.g.

(a® a')(n® n')=(a’®, a®"' +a'n®, a'n").
We follow the rule that superscripts distinguish vectors along a boundary, while subscripts
count the neighbors viewed from a given point. For example, the linear normal along the
boundary from P to its ith neighbor, P, is (N N'). Super- and subscripts are dropped,
whenever this is unambiguous. The counting is cyclic.

We can now be more precise. The data for the algorithm consist of a ‘mesh of points’ and
their normals. That is, each data point P knows its neighbors P, through P,, but no
connecting curve mesh is prescribed. The algorithm first constructs a cubic curve between any
two neighboring points in accordance with their normals and then fills in the interior of the
patches. Most of the effort, however, is spent in computing the tangent vectors at the data
points, and it is here where the constraints on the data come into play. Our basic assumption is
that the data allow for a linearly varying normal along the boundaries. This is explained in
more detail in Section 2. A second assumption is that the mesh facets are either three or four
sided, so that it can be covered by a cubic or bicubic patch. Finally, we make an assumption on
points with an even number of neighbors (which we call even-points for short). This insures
compatibility and, in the case of Assumption 1.3(a), guarantees that the surface is cusp-free at
the data points. For Assumption 1.3(a), we need the following definition, where the k, are
scalar (curvature) values and the £, are mutually perpendicular vectors (principal directions).
We say that the data at P are consistent with the second fundamental form Q := k.£,&[ + k,£,&; if

N =k, N, =k,, Noyi(Pyy—P)=N/(P,-P) foriE[],._.,k}.

Assumption 1.3(a) is a strong condition on the data and may only hold after splitting facets or
additional sampling. We list the three assumplions right here for easy reference.

Assumption 1.1 [Linear boundary normal). Let P! and P/ be neighbor data points with normals
N'and N’ Then

if pi _ pJ
NP =P o,
NI(Pi - PY)
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Assumption 1.2 [Mesh structure). (a) Al facets of the surface have either three or four sides.
(b} The data are well-distributed, i.e. at each mesh point the projections into the tangent plane
of any two edges belonging to the same facet span an angle of less than .

Assumption 1.3 [Compatibility). Either
(a) the data at each even-point are consistent with some second fundamental form; or
(b) 1) if D,==det(N, N,, N, )#0 fori = (1,..., k) and P is an even-point, then det(N, N,
No2)=0forie{l,... kY); else
(2) if D,=0 for some i< {1,..., k), then the data are either ‘cylindrical’ or *planar’ (see
Theorem 4.5).

Sections and content. Section 2 reviews the conditions for a C' match between two piecewise
polynomial patches. We specialize the conditions, which are different from [Farin 83], to the
BB setup and explain how our approach localizes and linearizes. Section 3 states the algorithm
and Section 4 discusses solvability and convexity. Section 5 analyzes the cusping problem and
leads to the use of ‘curvature weights' for the linear blend of the normals. Section 6 gives some
examples.

2. The C" conditions

We now review the C! conditions and specialize them to the BB setup. Consider two smooth
patches, p and g, that meet along a common boundary curve as depicted in Fig. 2.1. Patch p
has parameters u and v and its neighbor patch 4 has parameters # and w, We define

3 3 9
pu=ggP(u,0),  p=7gp(w,0) and g,=774q(u,0).

Then p and g regularly parametrize a C' surface if and only if the surface normal is
well-defined for both patches and agrees at every point of the boundary:

P XPy  _ _PuXu
ee el NP Xqull

[matching normal], (1)

P.%Xp,#0,  [non-vanishing normal]. (2)

Note that we were careful with the order in the vector products, that p, = ¢, and that p,, p,
and ¢, are univariate vector-valued polynomials. For our purposes, we rephrase the conditions
1o remove the denominator.

Fig. 2.1. Parametrization of abutting patches,
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Lemma 2.1 [C' matching conditions]. A match between two polynomial patches p(u, vy and
q(u,w) across a common boundary parametrized by u is C' if and only if

(p,xp.)q.,=0  [common tangent plane] (E)
and

((p,xp,)%p,)q,>0  [proper orientation]. (1)
Proof. We will use the identities (a X b)(c X d) = det((a X b), ¢, d) = {{a X b) X c)d. First we
show that (2) and (1) imply (I) and (E). To see that the equality (E) holds, we need only
multiply (1) by ¢, || p, X p, |I. The inequality (I) is implied by Py X p, # 0 together with (1) since

0<(p,xpXP.%q,)=((£,%p.)%p.)4q,.

To show the converse, we observe that
0<((p,%p) Xp,) g, =det((p, X p,), Pu» 4.) = det( p,, pu. (P, X q.)).

Thus p, X p, #0 and p, X g, # 0. Furthermore, (E) shows that 4.1 (p, %X p,) Hence (p, %X p,)
and { p, X g,,) are collinear. Finally, since 0 < (( p, X p,) X p,)q,, = (p, X p,X Py % G, ), we may
conclude that the normalized vectors are the same. O

The inequality (I) is a regularity condition. It implies the existence of a unique normal at
each point of the patch boundary. The equality (E) is a coplanarity condition. It expresses
perpendicularity of the normal of patch p to the tangent plane of g at the common boundary.,
Together the two constraints imply uniqueness of the normal across the boundary. Note that
the order of the terms in (I) is important since the direction of the inequality distinguishes the
C' match from a cusping match.

2.1, Facet separation

We now consider the C! conditions as they apply to cubic and bicubic paiches in BB form.
For mnemonic efficiency, we will denote the BB coefficients of p, and P, by u’ and v/. We
count the neighbors of a data point P clockwise: coefficients of the ith curve emanating from
P are subscripted by i, e.g. «? is the ith tangent vector at P. We define for triangular patches

(pu)i-'(u?v 21_‘:" u})’ (Pu)i-'(v?' 26:" U:)! (qw)i_(wiov ZWH wll)
and for rectangular patches

(Pu)l"(“?, 2u;, ".!); (Pu)f"(”?9 3”?1!3"}0’ v})’

(qw)i - (“’:‘0' 3“’:{"- 3“’:‘”» W:‘)-

This s illustrated in Fig. 2.2,

Fig. 2.2. Naming conventions for difference vectors.
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pi P

Fig. 2.3. Left data imply an inflection, the right data do not.

We focus on the equality constraints, ( p, X p,)g, = 0. These constraints involve interior
Bézier coefficients both along the patch boundaries and around the data points thus linking the
corresponding system of equations globally. To reduce it to local blocks we impose additional
constraints where the polynomial pieces meet. In particular, we prescribe the normal direction, n,
along each boundary to be the simplest fit to the data, ie. n~(N 0 N~1). With this, the
equality constraints (E) become

"(“)Pu=0’ (Eu)
"(u)pu=0v (Ev)
n(u) g, =0. (E.)

This linearizes and symmetrically separates the constraints along the boundaries, while
keeping the degree of np,, np, and nq,, as low as possible. However, it also imposes restrictions
on the nature and distribution of the data: the normal direction can only be linear if p(u, 0)
need not have a point of inflection in [0, 1], i.e. if

Ni(Pi_Pi)

NI(PT—P') >0. (3}

shape(i, j)=

If shape(i, j) <0, then n must be at least quadratic (see Fig. 2.3). Interpreting N'(P'— P/) < 0
as ‘concavity of the data’ at P/ and N'(P'— P/)> 0 as ‘convexity’, shape consistency at both
endpoints of a boundary, implies that the space curve p(u, 0) can stay strictly on one side of its
osculating plane. Note that, for AV =P/ — P/ v:=AY(N'X N/y and A= A7 - p(N'X NY),
NiAJ = NAi{. That is, A/ and the projection of A/ onto the plane spanned by N* and N/ form
the same angle with N'. Hence the planar sketches of Fig. 2.3 are justified.

2.2. Compatibility complication

We are almost ready to rewrite the equality constraints (E,), (E,) and (E,) explicitly in
terms of the Bézier coefficients. From experience, however, we are led to consider the ‘cross
derivative compatibility problem’ which occurs when smooth paiches are pieced together at a
vertex. For this, we concentrate on the boundaries connecting the data point P with its
neighbors P, and P,_, as shown in Fig. 2.4, Let u be the parameter of the th boundary and v

Pi_
)"‘/ i—1

Puv = Pou

Fig. 2.4. Cross derivative compatibility
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of the i — 1st. Define n_:= (3 /8u)n. Then, at P,
JN,-P,, = (nu)r‘pu = _vau = _Npuu = (nu)i--lpu = N}—IPH (C)

Compatibility, (C), imposes an additional constraint on the boundary coefficients of each
patch and connects the equations (E,) at the ith and (E,) at the i+ 1st boundary, thus
upsetling all our separation efforts. But we still have a “trick’ to offer, namely a transformation
of (E,) that takes advantage of the cubic nature of the boundary polynomial, This results in a
system of constraints localized around each data point as opposed to localized to facets.

2.3. Vertex separation

To be more precise, we list (E,) in terms of the Bézier coefficients:
(N N')(u® 2u, u') =0. (E,)

We leave off subscripts for now since the discussion is independent of any ordering around
data points. To obtain the constraints, we set the coefficients with respect to the BB basis of the
scalar product polynomial to zero:

0= N%° (EL)
0=2N%+ N'u®, (E2)
0=2N"u+ N, (E2)
0=Nul (E})

Our “trick’ is then contained in the following claim.

Claim 2.2. The collection of constraints (E), (E2), (E}) and (E2) is equivalent to (EL), (E¥) and
0=3(N+2N")(P' - P°) - N'4°, (EZ’)
0=3(N'+2N°)(P' - P%) ~ N (EY)

Proof. We use the fact that &= (P'— P*) - 4° — &', and hence
NG+ N'u® =2NO((P' = P) — u') + N'u°,
2N'G+ N = 2NV (P = PO) — u®) + N,

By adding two times (E2) to (E}) and two times (E2) to (E2) we obtain
0=(4N°+2N)(P' = P%) - 3NO,
0=(4N'+2N)(P' - P°) — 3N1O,

We divide by 3 (and exchange the second and the third equation) to get the result. 0

Thus we have a separate set of conditions for the tangent vectors al each data point.

2.4. Collecting constraints

We proceed by collecting all the constraints at the data point P with normal ¥ and
neighbors F,, i € (1,..., k }. We parametrize the boundary curves starting at P. For simplicity,
we leave oul the subscript i on the v/ terms, i.e. v/:= /. The derivative in the v direction
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evaluated at v =0, i.e. along the boundary, is a univariate cubic. Hence, for cubic patches, we
have

Ne® =0, (E})
2N+ N’ =0, (E2,)
2NG+ Nv' =0, (E4,)

Nv'=0 (E3)

and for bicubic patches
N’ =0, (E!)
3NV + N0 =0, (EZ,)
ING' + 3N =0, (E2s)
3N+ No' =0, (E3)
NJ' =0. (E?)

The equations for (E, ) are obtained by replacing v by w in the above, and the equations for
(E,) have already been listed and replaced by (E). Thus we only need to state the compatibil-
ity conditions:

MU?=N:‘—|"?‘ (C)

2.5. Tangent constraints

A first glance at the constraints seems to indicate that the tangent vectors are overde-
termined. However, since v? =u! | and w®=u?,,, enforcing (E}) for all boundaries implies
that (E2), (EL), (E2), (EL,) and (EJ ) hold. In the end, the constraints for the /th tangent vector
at the data point P are merely:

Nul=0  [vertex coplanarity], (EL)
Nu?=3(P'—~ P)(N+2N,) [boundary coplanarity], (E2)
N = Nu® =0  [compatibility]. (C)

We call this set of constraints the tangent constraints. The tangent constraints form a linear
system that is almost block diagonal and almost circulant. Section 4 has more on this.

2.6. Interior constraints

In many other surface interpolation schemes, the conditions on the inner Bézier coefficients
closest to the data points, sometimes called ‘twist coefficients’, are computationally the most
expensive (cf. e.g. [Sarraga '86]). Here, however, this work is comparatively small, the major
part being the enforcement of the tangent constraints. We observe that, by symmetry, (E,) at
one endpoint of a boundary is equivalent to (E,, ) at the other. Thus we need only enforce (EZ;)
and (Ej,) for cubic patches, and (EZ,), (Eﬁ‘,4 , and (E2,) for bicubic patches. Again the center
coefficient of the cubic seems overdetermined since there are two constraints imposed on it
from each of the three boundaries. The compaltibility conditions turn out to help.

VAvAY
S \

Fig. 2.5. Notation for Claim 2.3.
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Claim 2.3. If the tangent constraints are enforced, then (EL) at all data points implies (EX)),
where i € {3, 4).

Proof. Consider the setup of Fig. 2.5. Since np, is a cubic scalar-valued polynomial in # and
(E}), (E}) and (EZ,), resp. (EZ,), correspond to #np,(0) =np,(1)=0 and (np,),(0) =0, the
constraint (EJ;) is equivalent to (np,),(1) = 0. The tangent constraints further imply (np,} (1)
=0, and hence (np,) (1) = —(np,}_ (1), where w:= v — u. Finally, by compatibility, (np,) (1)
=(np,),(1)=0, ie. (E;,) follows from (E2) for the boundary parametrized by w and
emanating from P'. O

All in all, we derived the interior constraints:

2N%+NW’=0  [cubic], (E2,)
AN 4+ N%®=0  [bicubic], (EZ,)
IN®'? + 3N =0 [bicubic). (E2,)

The interior constraints and the tangent constraints together imply the C' equality constraints

(E).

3. The algorithm

The algorithm proceeds in two stages. The first stage determines the tangent vectors from
the tangent constraints. The second stage computes the interior coefficients from the interior
constraints. Solvability of the equations is discussed in Section 4 and shown to hold under the
assumptions listed in Section 1. In Section 5, we point out a slight but important improvement
of the basic algorithm presented below: by scaling the normals at the endpoints appropriately,
the surface construction is more resistant to cusping. For simplicity, we stale the algorithm
without ‘curvature weights'—the scaling is easily accounted for by replacing N, by w,N, in the
algorithm below.

Algorithm LINNOR

Step 1 [Tangent constraints]. Assemble the following system of equations NU = R at each data
point P with normal N and neighbors P, through P,:

0

N 0 0 0

AR ; PPN 2M)

0 N 0 0 0

6 M 0 0 uy }P,— P)(N+2N,)

0 N, =N, 0 L= 0 . (4)
: : : up
0 0 -N,_, 0

0 0 0 N 0

0 0 0 N, %(Pk_P)(N+2NA-)

-N, © 0 N, 0
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P Py

Fig. 3.1. Coefficients determined afier Step 1, Fig. 3.2. Naming conventions for Step 2.

Solve
min (|[U-U*|? (5)
NU=R

where (U*), = u* == 3((F,— P)~ vN) and v = (P,~ P)N.

Remarks. (a) The diagonal of N is lined with & —1 blocks of 3 X 3 matrices of the form
(N, N,,N,_|)". The kth block is ‘wrapped around'.

(b) The analysis of Section 4 will show that N is of full rank exactly if the diagonal blocks
are all invertible and £ is odd. Otherwise the data have to meet additional constraints and (4) is
underdetermined. We can use the additional degrees of freedom by solving (5), i.e. minimizing
the distance of the tangents to a set of ‘desirable’ vectors. In particular, we choose u* tobea
certain fraction of the projection of P,— P into the tangent plane at P, e.g. ur=1(P-P)-
»N). Another use of (5} is to fix the undetermined boundary coefficients of open surfaces as in
the ‘saddle’ of Fig. 6.2.

(c) Theorem 5.1 gives the weighted tangent constraints explicitly.

Al the end of Step 1, we have the situation illustrated by Fig. 3.1.

Step 2 (Inner constraints]. Denote the tangent vector at F, on the boundary to P; by u, ; and
the Bézier coefficient closest to P, on the boundary to P, by b, as shown in Fig. 3.2. The
interior (‘twist’) coefficients are denoted ¢, and T:= 75 PR

(a) Triangular patches: Solve the following 3 X 3 system for the center coefficient r:

N, NP - JI'NZ"IJ
Nyl 1= N, P, — Ny, |. (6)
N, N, Py — %M”Jz
(b) Rectangular patches: Solve
in |T~T*|32, 7
min | I (7)

where the components +* of T* are derived as the linear blend 1* == P + u

¢
i-1F o ns

N O 0 0 NP, = tNu,,
N, N 0 0 Noby, + Nyby,
0 N 0 0 Ny Py = S Nyuy,
M |0 M M 0] | Nyt Mot
0 0 N 0 Ny Py = IN;us,
0 0 N, N, N,by, + Nyb,,
0 0 0 N, NaPy— 1N yug,
N, 0 0 N, Nybyy + Nyby,
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Remark. Bicubic patches have 4 center coefficients to enforce 8 conditions. We can alterna-
tively break the resulting 8 X 12 system into 4 pieces of 3 equations by choosing constants ¢;:

N, NP, =N, b
N+1| o= Nobuar+e | forie(1,2,3,4). (7')
Ny Niaby+ey

4. Solvability analysis of the algorithm

In this ‘ technical’ section, we verify that the algorithm will succeed under the assumptions of
Section 1. We first look at the system (4), i.e. NU = R, and then at (6) and (7). Our main effort
will go into the analysis of (4).

4.1. Solvability of the tangent constraints

To simplify the analysis, we transform the coordinate system rigidly, preserving orientation
and angle, so that P is mapped into the origin, and N into (0, 0, 1). This allows vs to restrict
attention to the tangent plane. In particular, we can drop the constraints Nu] =0 and assume
that the third component of the tangent vectors is zero. Since the first two components
determine u° uniquely, we identify the u) with the 2-vectors that solve (4') below. Let n;
denote the tangential components of N,. Then the following 2k X 2k system is equivalent to

{4):

n, 0 0 0
n
"2 —‘ﬂl O 0 0
O HJ _nz 0 . 0 P
: : : : b (47)
. ; : . . 0 :
O 0 O e —Hk_, k 0
o 0 0 .. 9 ’(’;‘
_nk 0 0 - nl

where
=3P, — P)(N +2N').
The further analysis depends on the invertibility of the biocks on the diagonal. We say that a
triple of normals, {N, N,, N,,,}. is face-sharing if the corresponding data points lie in the

same facet and observe that such a triple is linearly independent if and only if D,:= det(n;n,.,)
+0.

4.1.a. Linearly independent normals
We first test N for invertibility.

Theorem 4.1 [No problem at odd-points). Let k be the number of neighbors of P. If
det(N, N, N, ) =0 fori=1,.... k, then (4) is of full rank if and only if k is odd.

Proof. The independence assumption implies that we can solve blockwise, i.e. there exist unique
scalars

D, B, det(n,_;n,
Yi==__£);l¢0 and Bf==ﬁ:=—_e(n'oin+l)

i

i
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such that

ny=Bnityn,, forie(l,... k). (8)
Using (8), we can apply block elimination, with multipliers B and v, £ — 1 times to (4’). Thus,
in the jth step, the last entry in the j + 1st column becomes =% - Y1, and hence, using the
identity y, -+ - y, = (=)'D,/D;, the final entry in the bottom row of the 2kth column is

k=1
M= =Y Yooy by = N+ 0.

The elimination leaves (4°) unchanged except for the lower right corner and the accumulated
contributions to the right-hand side which we denote by s:

mn 0 0 0 ,

ny, —m 0 0 0'

0 n 0 0 ud r

0 n, -—n 0 - 0 ' (4”)
5 5 : . : u." :

0 o 0 ... —n |'* 0

0 0 0 .. 9n K

0 0 0 m

Since the transformation from (4) to (4”) is rank preserving, we need only test the bottom 2 X 2
subsystem of (4”) for invertibility:

Ry
My = | (=)* u°.-«(’*). (9)
pagt 3 " ”k—|+"l & 5

M, is singular if and only if its rows are dependent, ie. (=) "'n, /Y + ny=wn, for some
constant » or, equivalently,

nk—luv(")k‘_lyk"k"'(")*'ﬁ-"l' (10
We compare this to the recurrence (8) with i = k. Since » is arbitrary we see that (4”) and thus
{4) is of full rank if and only if

(=) % *%, (11)
that is, if & is odd. O

If P has an even number of neighbors, we have to focus on the right-hand side terms r, and
s of (4”). We define

p— B' —— deL(N’ M_l, Ni+l)
““ DD, T da(N, N_,, N) det(N, N, N,

since this term will frequently appear in the subsequent analysis and is related to the curvature
of the surface.

Theorem 4.2 [Compatibility at even-points]. Ler k be the number of neighbors of P. If
deWN, N, N, )#=0 for i=1,....k and k is even, then (4) has (a l-dimensional set of )
solutions if and only if

Stim = 5 (=)em0. (12)
i=1
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Proof. Recall the elimination process of Theorem 4.1. At each step the bottom slot of the
right-hand side accumulates an additional term of the form By - - - ¥;-7; hence

s=Bn+Bmnt o FBom  Ye-alk-1s
or, since v, < -+ Y, = (= YD,/ D,,

k=1
s==D, L (=)'xm.
=1

Theorem 4.1 implies that the next elimination step creates a zero botiom row in the constraint
matrix. Hence the right-hand side must be zero, (00, if (4) is to have a solution. Since & is even,
(10) becomes n,_| = =¥y + Y- Comparing this with the recurrence relation (8), we find
that », and thus the multiplier of the last elimination step, is — B, /7. Hence, the final bottom
right-hand side entry is

k=1

B D, B,
5+ T—krk='= "ijgl (_)JKJ’}_ Dk_le = DkSk.
Since D, # 0, (12) follows. O
-
Corollary 4.3. If ;=0 forall i€ (1,....k} and k is even, then (4) has a 1-dimensional set of

solutions.

If the projeced normals of all odd-numbered neighbors are pairwise linearly dependent and
the projected normals of all even numbered neighbors are pairwise linearly dependent, than all
x, are zero. Here is an example.

Example 4.4. Consider six points equally distributed over a sphere with the normals of the
sphere. That is, the piecewise linear interpolant forms an octahedron. Then each of the 8
systems {4) has a 1-dimensional set of solutions. (See Fig. 4.1.) Example 4.4 is also a special
case of Theorem 5.1, which asserts solvability for the improved algorithm if the data are in
some sense CZ.

4.1.b. Linearly dependent normals

We now look at dependent triples {N i N4, N*} of face-sharing normals. There are (wo
types of dependencies:

(a) collinearity of a pair {N®, N®} c (N, N4, N*} of normals connected by an edge and

(b) coplanarity of the triple {N', N/, N kY of normals without collinearity in any of its
pairs.

We will refer to the system of type (4) at the data point P as (4') and say that a system (4')
is associated with the triple { N, N/, N*} il either the full triple of normals or two collinear

Fig. 4.1. The octahedron: a compalible even-point confliguration.
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ﬂ o Systams associated with -

Fig. 4.2, Associated equations. Fig. 4.3. A partially convex BB-pet,

normals of that triple appear in the system. Thus, if the dependency is of type (b), then exactly
(4'), (47), and (4*) are associated with {N', N/, N¥). If the dependency is of type (a), then
(4%) and (4#) are associated with {N', N/, N*} as is any (4') such that both & and B are
neighbors of / (e.g. v in Fig. 4.2), With this definition, we can capture all cases not treated in
Theorem 4.1 and Theorem 4.2,

Theorem 4.5 [Cylindrical and planar data). Let (N, N/, N*) be a triple of dependent
face-sharing normals. Let n' and n’ be the projections of N' and N/ into the tangent plane ar P*,
and let v/ # 0 be defined by n' = wnl. Then the systems associated with {N', N/, N*} are
solvable if and only if, for any pair {N®, N} c {N*, N7, N*Y with N® = N¥,

(P=— pﬁ)Na =0 [planar data] (13)
and for any triple with deN', N/, N¥) =0 and n' = 7’n’
(n"f)z(P‘ ~PX)(N*+2N) = (P! - PXY(N* +2N/) [cylindrical data]. (14)

Proof. We choose without loss of generality { N, ,, N} = (N, N/, N*¥) and (N, N} =
{ N, N#)}. First, we look at dependencies of type (a). If N and N, are linearly dependent, then
(E}) implies N,u? = 0 so that (EZ’) is equivalent to (13). Note that u =0 is a legitimate choice
enforcing (C) at P for pairs P, Py and P, P, since then, by symmetry, u, = (P,—P)LN. We
now look at dependencies of type (b) with 1y =my3n,. By (EZ), for the boundaries indexed 1
and 2, the compatibility condition, Ml — 1 /(Man,ud) =0, becomes {14).

Conversely, once (14) or (13) holds, we may drop the redundant constraint. Moving, for
example, (C) for the boundaries & and 1 into its place, leaves (4°) with a band of k — 1
matrices of size 2 X 2 along the diagonal, a 2-vector in the 24 — 1st row and no other terms in
the lower part of the matrix. Thus we can choose one tangent component freely and backsolve
by virtue of either (13), (14) or the invertibility of the 2 X 2 matrices on the diagonal. O

Example 4.6. Consider patches on a cylinder without lids. On such a cylinder, any 3
edge-adjacent normals lie in a plane. If we choose, for example, a triangular patch such that
two data points lie on one of the generating circles and the third is at equal distance from the
two points on a different generating circle, then (14) holds.

4.2. Solvability of the inner constraints

The analysis for the inner constraints is simple. The corresponding systems are solvable if
the tangent constraints can be enforced. We omit the cumbersome analysis for cylindrical data.

Theorem 4.7, If dey( Ny, Ny, N;)#0, then (7), for rectangular patches, is solvable and {6), for
triangular patches, is uniquely solvable. IfN'=Nifori+ Jr b J€{1, 2, 3), then (7} and (6) are
solvable if and only if the data are Planar, i.e. if (13) holds.
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Proof. If deyN,, N, N;)#0, then the corresponding system (6) or (7') is invertible for
arbitrary c,. If N, = N, then, for triangular patches,

N|b=N]P1 al‘ld N]b=N1P2'_%N3u-_:_|. (15)
Using the compatibility relation and the definition of a tangent vector Nyuy = Nyjgy = Nytiyy =
0, (15) is solvable exactly when the data are planar, i.e. Ny(P, = P)= 0. The reverse argument
shows that planar data yield a 1- or even 2-dimensional set of solutions. With the choice
;=N Py = Noabiin — IN,, (1,0 (77) differs from (6) merely by a factor. If Ny = N,,
then ¢, = N,,,P;,, and the analysis for the triangular patch applies. 0O

4.3. Convexity considerations

As Section 6 illustrates, the surface patches generated by LINNOR have few, if any,
inflections. Along the boundaries this is not surprising since we restrict the boundary normal.
However, with the notation of Fig. 3.2, il each tangent vector u,; does not deviate oo much
from its ‘desirable’ value uj, i.e. from the projection of P/~ P’ into the tangent plane at P!,
then we obtain additional ‘convexity’: all twist coefficients corresponding to P* lie on the same
side of the tangent plane as the curves emanating from P'. Put differently, the second layer of
the BB-net lies below the tangent plane as we traverse the BB-net from any data point to the
interior (Fig. 4.3). This is significant since a polynomial piece is convex if the corresponding
BB-net is.

Claim 4.8. Consider the notation of Fig. 3.2 and a patch with vertices Py, P, and P,. Let the data
be convex, i.e. N(P,— P)<0 and N(P,— P,) <0 for (i, jo kY= {0, 1,2} Ifu, (P, — P)=0,
then the boundary curves are convex. If additionally u (P, — P) =0, the second layer of the
BB-net lies below the tangent plane as the BB-net is traversed from any data point to the interior.

Proof. The first assumption, u,, (7, — )= 0, then implies N,u,; > 0 and hence the first claim
follows from (E2): since Nju= — 3Nu;; < 0, the boundary curve has to lie ‘below’ the tangent
plane at P Similarly, the second assumption implies Ny, >0 and hence the second claim
follows from (EZ,), resp. (EZ,). D

Thus the choice of U* and T* in Section 3 improves convexity. In fact, if U= U*, then
the first claim holds and the second claim holds, provided neighboring tangent vectors form
angles less than =/2.

5. An improvement: curvature weights

Like most other methods for local surface interpolation, LINNOR constructs surface
patches such that the versal and transversal derivatives are coplanar. This does not imply
proper orientation of the surface normal, however. As the following example illustrates, cusping
is an important issue.

Example 5.1 [Example 4.4 contd.]. We orient the octahedron so that one point lies at (0, 0, 1)
and another at (m/4, n/4,0). We bend the normal at (0,0, 1) towards (0, 1,0) and thus
generate three sets of data that illustrate how a cusp ‘develops’. Figs. 5.1-5.3 show the BB-net
of the lower front facet as it reacts to the change. In Fig. 5.3 the order of the tangent vectors is
reversed. That is, the surface has two cusps.

The precise statement of the cusping conditions for the algorithm is possible but somewhat
tedious and the general result unappealing. Only special cases, e.g. data equally distributed over
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a sphere, provide a simple characterization, We refer to [Peters '88] for a detailed discussion of
the cusping problem and the fac that cusping at data point P s «characterized by &
inequalities made up from the location and normal of the data point and all its neighbors,
Hence we cannot hope to remove cusps hy changing one or several normals since each change
alfects all the Systems at the neighbor points. Instead we improve our choice of 1. Since we
only have to interpolate 1o the normal direction and not its magnitude, we can choose

n{u)~ (N, wN'),
where w is g positive weight. Changes in o alfect only the Systems at the end points of the
boundary. The weight, w, prescribes the rate at which the boundary normal turns from N0 (o
N'. While it js Possible to fine-tune the surface with (he help of curvature weights, we stick with
the simple g Priori choice /= shape(i, j). Example 5.2 demonstrates that this choice is
adequate,

Example 5.2 [Example 4.4 contd.]. The top of the regular octzhedron of Fig. 4.1 s depressed, so
that the point {0, 0, 1) moves 1o (0, 0, 0.5). The normals remain N, = p /) F AN

Fig. 5.4 shows the cusping match without curvature weights, Fig, 5.5 the C! match with
w" = shape(i, j). The surface remains C' until (he data are no longer convex, i.e. until the top
is pushed below the plane spanned by its four neighbors,

The choice o'/ = shape(i, ) has some Justification as a ‘mean value’ between the extremes
@'/ = shape(/, J)*2 and o' = shape(i, j)/2 which generate a cusp-free [bijlinear interpolant
and as a valye that reduces the boundary curve to 4 quadratic (cf. [Peters '88]). Another
Justification is jts role in Theorem 5.1 below.,

Theorem 5.1 [C? data]. If the data at P gre consistent with some second Jundamenial Jorm and
w" = shape(/, J). then (8) has g solution and the resulting surface is cusp-free ar P,

Proof. Let 4, := F, ~ P. We first observe that (EZ’) simplifies to

Nuf= 14N (55”)
for w'/ = shape(;, /). Furthermore, (C) becomes
NA, N4,
0 i+1 =N 0 i w
Mt R By = Mo )
Since N¢, = &, and N& =k, for all i, we may replace N, by N,, | in (E3*) to obtain
NA, NA.
2 i+1 =2 —i
Ay = M

which in tum simplifies to N = NA,, the third condition on the data, Hence, we may set
uf = 8,7, for some vecior T, in the langent plane and enforce the constraint (E2“) by proper

choice of §,. In Particular, we are free (o choose 7, as the Projection of 4, into the tangent

¥Y¥ v

Fig. 5.1, Early stage. Fig. 5.2. Almost 2 cusp. Fig. 5.3. Two cusps,
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Fig. 5.4. *Squashed’ octahedron without curvature Fig. 5.5. *Squashed’ octahedron with curvature weights.
weights.

plane. The tangent vectors, u?, are then ordered like the neighbor points, and, by Assumption
1.2, satisfy

o ((py X pu) X Pu) 4 (0, 0) = (a0, % ul) ] )ules >0

for some positive constant #. O

Table 1
Approximating the unit sphere

points volume max. curvature
4 1.558 1.323
6 1,102 1.030
8 1.161 1.152
12 1.043 1.059
6. Examples

This section shows some surfaces generated by LINNOR. Table 1 summerizes the results for
approximating the unit sphere. The data points are evenly spaced and the volume is measured
relative to the volume of the unit sphere.

Fig. 6.1 shows the 12-point interpolant. The checker pattern of the left view emphasizes
isoparametric lines and patch distribution. The isoclines on the right give the change in the

Fig. 6.1. 12-point interpolant (ikosahedron mesh).
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Fig. 6.3. A smooth surface of genus 2,

normal. Fig. 6.2 gives a side view and a top view with isoclines of a four-patch saddle. The last
set of 50 data points (Fig. 6.3) was suggested by M.A. Sabin: three ‘handles’ meet smoothly at
2n/3,
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