UNIVERSITY OF WISCONSIN-MADISON
CENTER FOR THE MATHEMATICAL SCIENCES

LOCAL PIECEWISE CUBIC C! SURFACE INTERPOLANTS FOR
RECTANGULAR AND TRIANGULAR TESSELLATIONS

by
Jorg Peters

Technical Summary Report # 89-10
September 1988

Abstract

Consider points in 3-space equipped with normals and an ordered list of neighbors
such that the corresponding piecewise [bi]linear interpolant to the data consists of 3- or
4-sided facets. This paper describes an algorithm which, for appropriate data, constructs
a piecewise cubic C! surface interpolant with one patch per 3- or 4-sided facet. The
interpolating surface depends continuously on local data and its construction only requires
the solution of linear systems of equations.

AMS (MOS) Subject Classifications: 41A15, 41A10, 41A05
Key words: Bernstein-Bézierform, C 1 gurface, interpolation, cusping, shape control

This research was supported by NSF DMS-8701275

1. Introduction

Consider points in 3-space equipped with normals and an ordered list of neighbors
such that the corresponding piecewise [bi]linear interpolant to the data consists of 3- or
4-sided facets. This paper describes an algorithm which, under certain conditions on the
data, constructs a piecewise cubic surface interpolant whose normal changes continuously.
The interpolating surface is well behaved as a function of the data: it depends continuously
on the data and only on local data. The construction is efficient: the polynomial pieces
are of low degree (cubic, resp. bicubic) and there is exactly one polynomial piece per facet.
Only linear systems of equations have to be solved. In fact, the scheme is linear in the
normal data and linear in the data points.

The algorithm has two problems. The input data at adjacent points of the tessella-
tion must allow for a linearly changing normal direction along the connecting boundary.
This may be achieved by either adding points or choosing the normals at the data points
appropriately. But, at present, no satisfactory strategy for either type of improvement is
known. Cusping is another problem of the algorithm. Although this paper derives explicit
(necessary and sufficient) conditions on the data under which the surface is cusp-free, the
conditions are complicated. Again the choice of normals plays a crucial role.

We classify the algorithm as “f[3,4]p1d3cl” since it associates each 3- or 4-sided facet
with one polynomial patch and constructs, for appropriate data, a piecewise cubic C?
surface.

We use the Bernstein-Bézier representation for the polynomial pieces, because this
form gives easy access to value and derivative information along the edges of a patch.
See [Farin '86] or [de Boor ’87| for an overview on polynomials in the Bernstein-Bézier
form. Determining the surface thus corresponds to computing the Bézier coefficients each
of which is a 3-vector. Since we look at the product of polynomials in the BB-form, we
find it advantageous to use the abbreviation '

{g,...,ﬁ,...ﬁ}
i+1 terms

to stand for the polynomial
u ol —u) +...+ 81 —)t Tud + et

In Section 2, we outline the character of the problem in more detail and introduce
the idea behind f[3,4]p1d3cl. Section 3 presents and analyzes the algorithm. Section 4
shows what conditions on the data guarantee cusp-free surfaces. Section 5 introduces
curvature weights as an important improvement over the basic algorithm and Section.6

gives examples.

2. Dissecting the problem

. First, we resolve some minor issues. With each facet we associate one Bézier patch

such that the corner coefficients match the respective data points. Then we ensure a
C? match between the patches: any two patches sharing two data points must share a
common boundary polynomial. We may then use the parametrization of any adjacent pair
of boundary curves of a patch to parametrize that patch.

Figure 2: Abutting patches.

Consider a patch s parametrized by u and v and its neighbor patch ¢ parametrized by u
and w. We use subscripts to denote partial derivatives, e.g. s, 1= %s(u,v). Our goal is
to construct a surface that is C! across the common boundary, i.e. a surface whose normal
is uniquely defined at every point of the boundary (and changes continuously across):

Sy X 8y £ 0, (1)
Sy X Sy _ Su X L2 @)
fso x sull — llsu X tu’ B

at each point of the boundary. Note that we were careful with the order in the vector
products.
Thus our task is, in general,
¢ nonlinear,
s global,
e involves inequalities as well as equality constraints.
We can rephrase the conditions to dispense with the normalization.

Lemma 2.1. A match between two polynomial patches s(u,v) and t(u,w) across a com-
mon boundary parametrized by u is C! if and only if

((su(1,0) x su(w,0)) X 8u(u,0))tw(u,0) >0 (3)

and
(so(,0) x su(u,0))ty(u,0} =0. (4)

3

Proof: We will use the identities (a x b)(c x d) = det((a x b),¢,d) = ((a x b) x ¢)d
throughout. First we show that (1) and (2) imply (3) and (4). To see that (4) holds we
. need only multiply (2) by tw(|$» X su|- The inequality (3) is implied by sy X sy # 0 together
with (2) since 0 < (sy X 5u)(Su X tw) = (($v X Su) X Su)tuw.

To show the converse, we observe that 0 < ((sy X 84) X Su)tw = det({sy X su), Su, tw) =
det(sy,Su, (Su X tw)). Thus sy X su # 0 and s, X ty # 0. Furthermore, (4) shows
that ¢, L (Sy X 8u). Hence (sy X tw) and (85 X sy4) are collinear. Finally, since 0 <
((8y X 5u) X Su)tw = (sv % 3u)(Su X tw), we may conclude that the normalized vectors are
the same.

The inequality (3) is a regularity condition. It implies the existence of a unique normal
on each patch. Equation (4) expresses perpendicularity of the normal of patch s to the
tangent plane of ¢ at each point of the boundary. Together the two conditions imply
uniqueness of the normal across the boundary. Note that the order of the terms in (3)
is important. The direction of the inequality distinguishes the C! match from a cusping

match.
We observe that the C! conditions, (3) and (4), link interior Bézier coefficients both

along the patch boundaries and around the data points. The resulting system of equations
is therefore indeed not block diagonal but globally connected.

The central idea, which allows us to overcome these difficulties, is to impose additional
conditions where the polynomial pieces meet and thus dissect some of the linking equations.
In particular, we resolve all nonlinearity and global connectedness arising from (4) by
prescribing a normal direction n along the boundaries. A similar idea, motivating this
approach, was proposed in [Sabin68]. With u the parameter along the common boundary,

the equality constraints (4) for patch s now read:

n(u)sy(u,0) =0, (5)
n(u)sy(u,0) = 0. (6)

To be consistent, the normal directions which we choose must agree at the data points.
We use N to denote the corresponding normalized vector at the data point P*, e.g. N J
is the normal of the constructed surface at Pi. Since we want n to fit into the polynomial
frame work, we choose n as a (rational) polynomial. To minimize the number of conditions
in (5) and (6) the degree of the polynomial should be as low as possible. We find the
minimal degree of n by looking at two adjacent points P¢ and Pj and their difference,

§ii .= PP — P,

If Ni§ii < 0 (> 0) we say the P/ neighborhood of Pi is concave (convex). If the
shapes of the neighborhoods at Pi and PJ agree, that is if

i Nigl
012=W2) (7)

then s(u,0) need not have a point of inflection in [0,1], and we can choose n to be linear.
If '/ < 0, however, n must be at least quadratic (due to the inflection). We are now ready

to derive the algorithm.

3. The algorithm

. In the following we consider only data that allow for a linear normal direction along
the boundaries. That is, we make the

Assumption 3.1. &’/ > 0.

3.0. The input

The input to the algorithm consists minimally of the data points and an ordered list of
neighbors for each data point such that the resulting surface tesselation consists of pieces
with 3 or 4 vertices. If the normal at the data points is part of the input, it must satisfy
the restrictions of Assumption 3.1 as well as of Convention 3.2 below. If the normal is not
prescribed, it is derived from the data, with the orientation given by

Convention 3.2. In the neighbor list of any point P the neighbors are ordered clockwise
when viewed from “above”, i.e. when viewed in the direction opposite to the normal

direction at P.

Since only the relative order of the neighbors is of importance, all indez computations
for the neighbor list are modulo the number of neighbors of the date poini. We will use
the letter k& for the number of neighbors of a data point. To obtain the patch structure
from the input data, let ¢, be the index of point p in the neighborlist of ¢ (and p, the
index of ¢ in the list of p). Further, we use the notation structure.component. A face f,
for example, has components fype, vertez, etc., with vertez an array of pointers to data
points. Similarly the data points (p and ¢ below) have an array component paiches with
pointers to faces. (The data structures reflect the two stages of the algorithm as will be
clear at the end of Section 3). The following algorithm associates patches and vertices:

for each data point ¢
for each neighbor j of ¢
if ; has not yet been visited from :
f = new face;
pr=1; ¢:=J;
bdy := 0;
do /*walk counter-clockwise along the patch boundaries™*/
f.vertex[bdy] := p;
p.patch[p, — 1] := f;
Pi=g;

¢ := neighbor (g, + 1) of g; /*i.e. q := q.nbrfg, + 1] */
bdy := bdy + 1;

until p==1;

if bdy ¢ {3,4)} error; /*not a 3- or 4-sided facet*/

f.type := bdy;

3.1 Derivation of the equality constraints

5

In the following we restrict our attention to cubic polynomial patches. Recall the
abbreviation {a,..., (;.)ﬁ, ... v} for the polynomial u — a(l—u)+.. .+ (;)ﬂ(l—u)‘-iui_].
. ..+~u!. In particular, the quadratic polynomial }sy(u,0) =: d°(1—u)?+2d(1—u)u+d'u?
is abbreviated {d°,2d,d'} and the linear interpolant, n, to the normal directions at u = 0
and u = 1 is chosen to be

n(u) := {n% n'} := {N°, N},

We ignore for now the inequality constraints (3) associated with the general problem.
That is, the scheme need not be able to distinguish between a C! and a cusping match.
We are then left to enforce conditions (5) and (6) along the edges. Equation (5} is satisfied
for a particular edge if all coefficients of {d°,2d, d' }{n% n'} are zero, i.e. iff

{(n*d,2n%d + n'd%, 2n'd + n%d',n’d'} = 0. (8)

Thus we have a list of conditions for the boundary coefficients.
Similarly, with {°,3E°, 3E",e!} := Ls,(u,0) for a bicubic patch, equation (6) re-
quires in general that all coefficients of {e*,3E,3E", el }{n%,n!} be zero, i.e.

{n®e%,3n°E® + nle®,3n°E! 4+ 3n*E%,3n' B! + nlel,nlel} =0. (9)

This yields a second list of conditions. We refer to the individual equations of each list by
equation number and subscript, e.g.

(%1) 3n'E? +nle’ =0.

Note that enforcing (80) and (83) for all edges of the tessellation also enforces (99) and
(94).

In the case of a bicubic patch it is now tempting to proceed as follows. First, enforce
(80) through (8;) for all edges. Since the two interior boundary coeflicients offer six
degrees of freedom, we can specify the tangent direction of the boundary curve and satisfy
conditions (8;) and (82) by adjusting the lengths of the tangent vectors.

We then choose the 4 interior Bézier coefficients so that equations (91) through (93)
hold for each of the four sides of the patch. Unfortunately, the corresponding 12 x 12
system has rank at most 8 in this setting and in general no solution, as we shall now show.
Let the two adjacent edges that connect the data point P with the points P* and P7 be
parametrized by u and v respectively. Then the system of equations is contradictory unless

nis, =n's, atP. (10)

This follows from equations (9;) and (8¢) for the edge parametrized by u, and from (9;) and
(83) for the edge parametrized by v and the smoothness (twice continuous differentiability)

of the patch parametrized by u and v:
n'sy = nysy, = —ns
v uJvy vy at P.

= —ns-u” = nusn = nJSu

6

Note that condition {(10) depends entirely on the boundary coefficients of the patch.

. Thus we have to add (10) to the list of equations for the boundary coefficients. How-
ever, once (10) is enforced, one equation of each pair of equations (9,) and (9;) is redundant
and we may drop it from the second list.

The same argument holds in the case of a triangular patch. That is, we need to enforce
(10) and (8) for the boundary coefficients. To obtain

{e%,2¢,e' }{n®,n'} = {n%",2n%e + n'e®,2n'e + n%e!,n'e’} = 0. (11)

It then suffices to enforce (11;).

3.2. Computing the boundary polynomials

The equations of type (10) glue the boundary curves together at the data points.
Fortunately, we can reduce the system again to a local system by observing the following.
Once (80) and (83) hold, (81) and (8;) along the boundary connecting P! to PJ are
equivalent to

nld® = ;é'ij(no +2n1),

nld! = ;—6’.'.(111 +2n0%).

This separation leaves us with a linear system of equations for each data point with 3
equations for each neighbor. The first of these equations corresponds to (8) and forces
the tangent coefficients d* to lie in the tangent plane. The second equation, corresponding
to (11), forces the boundary curve to be perpendicular to the prescribed normal direction.
The third equation, corresponding to (10), enforces the smoothness condition at the data

point.

We display the system at some data point P with normal N and neighbors P! through
P%_ All boundary curves are parametrized so as to start at P. In particular, n corresponds
to n(0) = N and n' to the normal at P fori € {1,...,k}. The tangent vector at P of the
boundary curve connecting P to P' is denoted by d'. 3 x 3 blocks of the form

line the diagonal of the matrix which has almost, but not quite, circulant structure:

n 0 0 0 0
(n! 0 0 0 \ (3-51(n+2n1)\
n? -—n 0 0 0
0 n 0 0 0
0 n? O 0 d! 252(n +2n?)
: : : : d* :
0 0 0 —nk-1 0
0 0 0 . n 0
0 0 0 ... nf 25%(n + 2n*)
K -nfF 0 o ... n?) \ 0 }

We will refer to the system of type (12) at the data point P! as (12%).

Under what conditions is (12) solvable? To simplify the analysis, we transform
the coordinate system rigidly, preserving orientation and angle, so that P is mapped into
the origin, and n into (0, 0, 1). By (80), the third component of d' in the new coordinate
system must be zero, i.e. the first two components of d¢ determine di uniquely. We will
therefore use d' also to denote the 2-vector solving the restriction of (12) to the tangent
plane, i.e. (12') below. Also by (8¢), we may restrict attention to the first two components
of the projections of the weighted normals n! into the tangent plane at P. We denote the
9-vector corresponding to these first two components by m'.
Thus we arrive at the equivalent “reduced” 2k x 2k system

S INEn B T T bl
m —m 0
0 mz 0 g 4t %62 (n + 21’7.2)
(12) o om . | 0
: : : : & :
0 0 1 —mk-1 d 0
0 0 0 mk \ 25k(n + 2n*)
\cmt 0 0 mt) 0)

We say that a triple of normals is edge-
are connected by two boundary curves. With this definition,

under

Assumption 3.2. Any 3 edge-adjacent normals are linearly independent.

Assumption 3.2 implies that there exist unique scalars v* # 0 and B such that

+1 for i€ {1,...,k}.

In terms of

m:’-—l — ﬁimi + 7£m£

8

B’ := det(m'™ m**1) and D' := det(mim**1) #0

adjacent if the corresponding data points
we first check solvability

(13)

these scalars can be determined as

i=1 i

D_Di and f'= -g—: (14)
We now use equation (13) to eliminate the only term below the diagonal band of invertible
2 x 2 matrices in (12'), i.e. we block eliminate. Since, in general, 2 new term appears in the
bottom row of the column to the right, we apply (13) ¥ — 1 times. At each step the right
hand side of the last equation accumulates an additional term of the form fiq! ... 4J—15J,
and the entry in the bottom row of the j 4+ 1°* column is transformed into —+! - - - v¥m/,

The final entry on the bottom of the right hand side is

sim Bt 4 B e BRI,

7= -

where e ‘
rt o= gﬁg(n + 2n').
The final entry in the bottom row of the 2k* column is
L B P Y
Since 4! - -+ 4 = (~)'D* /D", we can write more shortly

. . . Bi : .
i1, =1 ¢ Ni—1lnk = (=)"1 kot
)6 7 Y () D Di—1Di () D%c
The ¢! play an important role in the further analysis. They can be interpreted as
P
Vol =4 Vol "+’

with Vol¥/ ;= det(N, n*,n?). The expressions for s and 7 simplify to:

k=1 -
s =-D* Z(—-)jcjrj and m= (_)2 : m*=1 4 m!, (15)
= 7

We now have the block upper triangular system

1 0 1
(2 i 0 ‘' ")
0 m? 0 0 r?
0 3 —m? 0 . 0
(12") . ™o N I
0 0 0 .. —mrr | N ok
0 0 0 ... mr rk
\0 0 0 m } \s}

which allows us to show the following theorem.

9

Theorem 3.1. Under Assumption 3.2, (12) is of full rank if and only if P has an odd
number of neighbors.

' Proof: Since (12) is invertible if and only if (12') is, and since the transformation from
(12') to (12") is rank preserving, we can concentrate on the bottom 2 x 2 subsystemn,

()= (%)

of (12"). By Assumption 3.2, the matrix in (12") has full rank if and only if

k
e

has full rank. M> is singular if and only if

———(—)k_l m*=! + m! = vmF (17)
7’:
or, equivalently,
mF-1 = (_)k—l ’ykumk + (_)k,rkml. (18)
Comparing this to (13) with i = k, we see that (12") and thus (12) is of full rank if and
only if
()" #4 (19)
or, equivalently, k is odd. 'Y '

If P has an even number of neighbors, we focus on the right hand side of (16).

Theorem 3.2. If Assumption 3.2 holds and P has an even number of neighbors, then
(12) has (a 1-dimensional set of) solutions if and only if

k
§k:= =) (-)ri=0. (20)
i=1
Proof: Since k is even, (18) takes the form
mkl = —pyy¥m* 4 yml.
Thus v = —f%/7*. Applying the last step of Gaussian elimination (with multiplier
~B¥/9*) to (16), we find that the left hand side of the last row is zero:
k
5+ @ka — ik(__mk-l +*ml + BEmb) = 0.
T v
Hence the right hand side must be zero, too, to have solvability. The right hand side equals
k k=1 k nk
s+ g—,?rk = Dt Z(—-)’c-’ - -—B—D-—r" = D*sk,

Dk Dk-1
j=1

Since D* # 0, this completes the proof. ®
Remark: Since k is even, S* does not change if we choose a different neighbor to be first
in the neighbor list. This is not true when k is odd!

As a special case, we have

10

Corollary 3.2. If 3 =0 for alli € {1,...,k}, k even, then (12) has a 1-dimensional set
of solutions.

‘Proof: ¢! = gi(r!/Di-1). &

For example, if the projected normals of all odd-numbered neighbors are pairwise
linearly dependent and the projected normals of all even numbered neighbors are pairwise
linearly dependent, then all A° are 0. In particular, consider the
Example: If the data are six equally distributed points on a sphere, i.e. such that the
C? interpolant is an octahedron, then each of the 8 systems (12) has a 1-dimensional set
of solutions.

We now dispense with Assumption 3.2 and look at dependent triples { N, Ni, N¥} of
edge-adjacent normals. We discern two types of dependencies:
(a) collinearity of a pair {N®,Nf} C {Ni{,N7,N*} of normals connected by an edge
and '
(b) coplanarity of the triple {N¢, N7, N*¥} of normals without collinearity in any of its
pairs.
We say that a system (12) is associated with the triple {N?, N/, N*¥} of dependent
edge-adjacent normals if either the full triple of normals or two collinear normals of
that triple appear in the system.

systems associated with]

Figure 3.a: Associated equations.

Thus, if the dependency is of type (b), then exactly (127), (127), and (12*) are as-
sociated with {N*, N7, N*}. If the dependency is of type (a), then (12%) and (129) are
associated with {N, N7, N*} as is any (12') such that both P* and P are neighbors of
P,

With this definition, we can capture all cases not treated in Theorem 3.1 and Theorem
3.2,

Theorem 3.3. Let {N?,N7,N*} be a triple of dependent edge-adjacent normals. Let m?
and m7 be the projections of n' and n’ into the tangent plane at P*, and let n' # 0 be
defined by m! =: n’imJ. Then the systems associated with {Ni,NJ N¥} are solvable if

11

and only if
(") 6% (n* + 2n') = §5i(n* + 2n7) (21)

and, for any pair {N®,N#}, {a,B} C {i,j,k}, of edge-adjacent collinear normals,

§%ne =0. (22)

Proof: First, we look at dependencies of type (a). Let N* and N # be linearly dependent
normals. Then the projection of n into the tangent plane at P? is the zero vector and the
corresponding equation of type (11) in (12*) is equivalent to (22).

To establish (21), consider (12'%). We may assume that P* is the first and PJ is the
second neighbor of P*. Then (21) is implied by the first three equations of (12'F).

Conversely, once (21) holds, the second equation of (12’ k) is redundant. Thus we may
drop the second equation and move the last equation of (12'*%) into its place to obtain a
matrix of size 2k — 1 x 2k with no terms below the diagonal band of (k —1) 2 x 2 matrices
or the single entry on the diagonal in the 2k — 1*t row. We can now backsolve by virtue
of either (22), (21) or the invertibility of the 2 x 2 matrices on the diagonal.)

A typical case of the situation analyzed in Theorem 3.3 is captured in the following
Example: Consider patches on a cylinder without lids. On such a cylinder any 3 edge-
adjacent normals lie in a plane. If we choose, for example, a triangular patch such that
two data points lie on one of the generating circles and the third is at equal distance from
the two points on a different generating circle, then (21) holds.

Remark: If neither of the above conditions on the data are met, the algorithm has to
either perturb normals or request additional information.

3.3. Computing the center coeflicients

Having ensured that (10) and (8¢) hold at all patch corners, we only have to enforce
(11;) for triangular and (9,), (92) for rectangular patches to fulfill all requirements of the
equality constraints, (4). We denote the middle Bézier coefficients of the boundary curve
from P* to PJ by b/ and b¥, with b’/ the Bézier coeflicient closer to pi,

For triangular patches this means solving the following 3 X 3 system for the center
coefficient b:

nl nlpl — gnz(bm _Pl)
n? | b= | n2P% — in3(3% - P?)]. (23)
n3 n3pP3 — Enl(bsz — P3)

The rectangular patches have 4 center coefficients available for the enforcement of
the remaining 8 conditions. We can break the resulting 8 x 12 system into 4 pieces of 3
equations by choosing constants x': '

ni niPi — %n“’l (b:‘i—l - P:‘)
nitl | p= nitlpiitl o i for i€ {1,2,3,4} (24)
ni=1 ni—1pii=1 4 gi-1

12

Theorem 3.4. The system (24), for recta.ngul’ar patches, is always solvable. If Assumption
3.2 holds, then (23) is uniquely solvable. If n* = n/, then (23) is solvable if and only if the
*data are planar along the edge ij, ie. §'in’ = 6‘3n3 =0.

Proof: First, we look at (23). If Assumption 3.2 holds then the left hand matrix has an
inverse. If n = nJ then the difference of the right hand sides of equations i and j must be
Zero, i.e.

nigii — %(n*(b*k — Pi) —nk(p = Py =0, (25)

where k # 7 and k # j. By (10)
nF(b7t — P7) = ni(b/* — P9, (26)
Since (8¢) implies that n!(4'* — P!) = 0, (25) is equivalent to §/n’ = §'in = 0. The

reverse argument shows that planar data yields a 1- or even 2-dimensional set of solutions.
With the choice x* = —3ni+2(i+1 —.P"“) (24) is solvable under the same conditions

as (23). But, since we may choose the «* freely, (24) is in fact always solvable by adjusting
the right hand side appropriately. [)

13

4. Cusps and Curvature

, We now analyze under what conditions on the data the inequalities (3) hold. That
is, given that (12) is solvable, we ask under what conditions the scheme is also cusp-free.

First, we look at the data poinis.

4.1. Cusps at the data points
At any data point P, (3) is equivalent to
det(d'd""*)>0 forall le{l,...,k}. (27)

(Recall from Section 3.1 that df is the restriction of the ith tangent vector at P to the
tangent plane.) We will reformulate and express (27) in terms of the data. As in Section
3, the neighbors of a data point are numbered 1 through k and superscripts ¢ not in the
range {1,...,k} will be interpreted accordingly.

We continue the analysis from Theorem 3.1 to prove

Theorem 4.1. If (12) is invertible, then the match between the patches abutting along
boundary curve I is C! at P if and only if

1

1 _._ -
F((EDI 1554 =) >0, (28)

. _ '_1 - . - k . -
where the notation S.:'»dq = (=) .1 (=i(=)eri - 2j=,(—)1c1f1) is consistent with (20)
except for the modulo-induced sign change.

Proof: We continue the proof of Theorem 3.1 by backsolving. Using (12"} we can compute
di-1 in terms of d* for: € {2,...,k} as

. 1 mi —mi™! pi-l
I 1 -1 . .
C Di—1 (—m{; my~?) (m"ld‘) ’ (29)
This allows us to rewrite the left hand side expression in (27) as

((mi—l di)z _ riri—l) (30)

i gie 1 i1 i i iy im 1
det(d'd'™1) = F((m 141y — (m*d*) ~1) = o
We now need only d* in terms of the data to be able to express all d' and all conditions
(27) in terms of the data. To compute d*, we recall that 4! ... 4% = —1if (12) is invertible
(Theorem 3.1), and thus i = m*~1 /4* + m!. We now solve (16) for d*:

e 1 m —mi‘ rk
d" = 2Dk (—ﬁ%o m§ S ()
and obtain
k L= Lo
mhordt = Lomn, —prn) (7)) = S8t 4 he) = FDRI R 4 (V)
1

(32)

14

Thus (30) yields

. 1) . -
det(d*d* 1) = B';T(('z"Dk 15k) —rkrk—1y, (33)
By (odd number of neighbors) symmetry, we arrive at the results for I # k. (Note that
Sl = gi+1 o 2(_)161.’.1.) 'y

Corollary 4.1. If D'7! > 0 and r'r!-! < 0 for all | € {1,...,k} and k odd, then the
match is cusp-free at the data point.

D' > 0 is not a very natural condition though, since it implies that the order of
projected neighbor normals is counter-clockwise, i.e. opposite to the order of the neighbors.

We call the neighborhood of P convex if D' < 0 forallz € {1,...,k}. For convex
neighborhoods we have

Corollary 4.2. If¢irf = ¢ird foralli,j € {1,...,k} and k odd, and the neighborhood of
P is convex, then (28) is equivalent to

(ﬁl)zrl < 4rl—-l .

We apply the Corollary in the important
Example: Consider points equally distributed on a sphere, such that each point has an
odd number of neighbors. By symmetry ¢! = ¢/ and r* = r/ for the neighbors ¢ and j of
a point P. The surface is cusp-free since r* > 0 and det(mi~1,m*+!) < det(m'~!,m') +
det(m?, mi*1) = 2det(mi, mi+1). o

If P has an even number of neighbors and (12) is solvable, we may impose an additional
condition, for example on d*. This idea leads to

Corollary 4.3. Let Assumption 3.2 hold. If P has an even number of neighbors and the
system (12) corresponding to P is solvable, then the match between the patches abutting
along the boundary curve connecting P with P' is C! at P if and only if

1
D1

(D'-1sky? = rlri-1) >0, (34)

where S := Zi;,l (=) cird + 7 and r is freely choosable.

Proof: Since (12') has a 1-dimensional set of solutions we may set m*d* = rD*=1 in the
last equation of (12'). Taking T to the right hand side, we find, since Assumption 3.2 holds,
that the system is uniquely solvable for 7. (28) yields the recurrence

dimi=1 = firt 4 i (d*1mf) = DY (cirf — $(midi+1)_

We use the recurrence together with (30) to derive (34) by induction on i starting with
S= [)

Finally, given that (12) is solvable, each linearly dependent pair or triple of edge-
adjacent normals allows us to add an additional constraint. If D* # 0, we can add the
constraint d'm*~! = 7¢ in the spirit of Corollary 4.2.

15

More directly (cf. Section 3.1), with N the normal at P, (¥ x)d' = 0 is a consistent
choice for an additional equation, forcing d' to lie on the projection of §* into the tangent
- plane at P. This condition is also appropriate for reproducing a flat surface.

4.2 Cusping not at the data points

Little beyond (3) can be said about cusping in the interior of the boundary curve. In
our experience, cusping does not occur if (27) is satisfied with a good margin.

Note that the following approach to measuring cusping at the boundary is flawed.
Consider three adjacent boundary curves that are consecutive in the neighbor list of the
data point they share. Let the first be s(v), the second s(u) and the third #(w) as in
Section 2. Then (3) for triangular patches is in general not equivalent to

(n x s4)tw > 0.

This is because the size of n plays a crucial role in the inequality and the size of n is not
necessarily equal to the size of s, X s4.

16

5. Curvature weights

Theorem 4.1 shows that cusping at a data point depends in general on the locations
and normals of that data point and all its neighbors. We could change the normal at a
data point. But this affects not only the k& inequalities at the data point, but also all
systems of equations asociated with the neighbors.

It turns out, though, that our choice of n in Section 3 was unnecessarily restrictive.
Since we only have to interpolate to the normal direction at the data points, we may choose

n as
n(u) = {n% n'} := {N?,wN},

where w is a positive weight (that influences the curvature). Changes in the weight of a
boundary curve affect only the systems of equations at either end.

We determine the weight w'/ for the boundary curve from P? to P7 in dependence
on the data before computing any of the Bézier coefficients. That is, we prescribe the
normal direction, just as in Section 3, and avoid global nonlinear equations. First we
argue that w'/ = a'/ is a reasonable default value. Then we alter w'/ to influence the
cusping behavior. '

We can compute the tangent vectors d* in (12) as perturbations of the {bi]linear
interpolant. The [bx]lmear interpolant (equivalent to a cubic with d* = 0 for all z) does not
cusp (but is, of course, in general not Cl) Thus we want the perturbation from d* =0 to
be small, i.e. the right hand side terms r* of (12) to be as close to 0 as possible. Setting
ri =0 at P, we get w'/ = ;-a” Setting r = 0 at P7, we get wii = 24", Thus w'/ = o/
seems a na.tural comprormise.

For a second argument, we consider fitting a guadratic boundary curve {P#,2b, P7}
with derivative {d®,d!} to the data. It turns out that w’/ = @'/ is a necessary condition

for
NSy = {nodo,nodl + ﬂldo,nldl} = 0, (35)

since (359), (35;) and (352) imply
n®Pl —nl'P’ =n —nlb=n"P% —n'pP!
or, equivalently,
NO&IO = wOl Nl 501 .

We note that the choice wi’ = a7 simplifies ri: ri = ——5 ‘N.

Next we show how an increase of w! by some p051t1ve factor Al affects the cusping
conditions. We mark the perturbed quantities with a A, Then ¢, = ¢* and ri =ri for
i # I, while ¢! and r! become

1 B! 2 :
CIA = (E)z ﬁ and T'A = gﬁl(N + 2A N')
Since D'~ and D! increase by A/, the new inequalities in place of (28) read:

(28,) D._l((SDITTAISEY i picl) > 0 fordie {1,141},

17

(285) D—}_T((%Df—lsg)z —riri1) >0 forig {I-1,1},

k i—1
Sk = (<) S (=Yeird + (=)ichrh = D (=Y Ir).
F=i+l1 j=1

The effect is thus concentrated on the four inequalities associated with the boundary I.

18

6. Examples

Having laboured through three sections of algebra it is time to reap the harvest. The
“first 4 examples displayed below were generated with n := {N°, N1}. All other examples
use w = « unless mentioned otherwise. Occasionally, parts of the coordinate axes are
visible in the rendered images.
The first sequence of examples aims at approximating a sphere. 4,6,8 and 12 points,
evenly distributed on a sphere, form the input sequence for Figures 6.a to 6.d. We will
refer to the data by the shape of their piecewise linear interpolant.

Figure 6.a: Tetrahedron (4 points). Figure 6.b: Cube (6 points).

Figure 6.c: Octahedron (8 points). Figure 6.d: Dodecahedron (12 points).

19

The ratio of the volumes enclosed by the approximate spheres to that of a perfect
sphere with the same radius are 1.558, 1.102, 1.161 and 1.043 respectively. The maximal
. curvatures are (approximately) 1.323, 1.03, 1.152 and 1.059. The cube consists entirely of
rectangular patches, whereas the other data objects have a triangulated surface.

Next, we show two surfaces that combine rectangular and triangular patches.

Figure 6.f: 3 semi-doughnuts meeting
Figure 6.e: Pyramid (5 points). twice at 120°. (50 points).

Finally, we present an open surface. The saddle consists of 4 triangular patches.

Figure 6.g: Saddle (5 points).

20

We demonstrate the effect of the curvature weights on the shape (and prevention of
cusps) in Figures 6.h and 6.i. The top of the regular octahedron (Figure 6.c) is pushed in.
. The left hand side shows the cusping match without curvature weights, the right hand side
the C! match with w = a. The surface remains C? until the data are no longer convex,

i.e. until the top is pushed below the plane spanned by its four neighbors.

ﬁ _

e,

Figure 6.h: “Squashed” octahedron with- Figure 6.i: ... with curvature weights.
out curvature weights.

To illustrate Section 4 and show the effect of perturbations of the normal, the next
sequence shows the evolution of a cusp. The Bezier net (twice refined) corresponds to one
of the 8 octahedron patches. We slant the normal at the top of the patch in the direction
of the two other data points until the order of the tangent vectors at those data points is
reversed (Figure 6.1). The normal directions are (.3,0,1), (.4,0,1) and (.5,0,1), respectively,
with the data points at (0,0,1) (top), (.707,.707,0) and (.707,-.707,0).

Figure 6.j: early stage. Figure 6.k: almost a cusp. Figure 6.1: 2 cusps.
The damage can be repaired by adjusting the weights along the boundaries. The

result is the skewed octahedron in Figure 6.m below.
We conclude with a detail of the BB-net of Figure 6.f.

21

Figure 6.i: A BB-net detail of
Figure 6.m: Skewed octahedron. Figure 6.f. (5 patches)

7. Conclusions

The paper leaves several questions unresolved.

o Is there a grid refinement or a strategy to choose normals such that Assumption 3.1
holds , i.e. such that the shapes of the neighborhoods at adjacent points Pi and PJ
always agree?

e What would be a more intuitive (sufficient) characterization of the cusping conditions
of Theorem 4.17 In particular, what is the relationship between the data-implied
curvature and the quantities ¢!r!?

Other approaches have been looked at.

e A cubic scheme with a quadratic normal leads to nonlinear systems of equations.
Sabin’s cubic scheme for rectangular patches [Sabin68], for example, introduces small
local nonlinear systems of equations by prescribing the curvature at the data points.
The conditions for which these systems are solvable have not been clearly characterized

in terms of the data.
e An analogous quartic scheme with a data-dependent quadratic boundary normal leads

to a global system of equations for the middle term of n.

Acknowledgements: I thank Carl de Boor for his many helpful comments.

References
de Boor, Carl (1987), B-form basics, Geometric Modeling, G. Farin ed., SIAM.
Farin, Gerald (1986), Triangular Bernstein-Bézier patches, Computer Aided Geomelric

Design 3.
Sabin, M.A. (1968), Conditions for continuity of surface normal between adjacent para-

metric surfaces, Tech. Rep., British Aircraft Corporation Lid. .

22

