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Abstract

The zero set of a trivariate spline is used to blend ba-
sic CSG surfaces of algebraic degree up to four. The
resulting volume-bounded blend surface is generically
curvature continuous, and piecewise of algebraic degree
four itself, independent of the number of surfaces joined.
The algorithm consists of two parts: representing each
of the n basic surfaces within the blend volume as a
trivariate (box-)spline, and combining the information
from the n 3D arrays of spline coefficients into one that
represents a new spline. The zero set of this new spline
defines the blend surface. It is traced using approxima-
tion by subdivision.

1 Introduction

The blending of surfaces that smoothly join primary
surfaces has motivated extensive research both on para-
metrically and implicitly defined surfaces (see e.g. the
surveys [27], [26]). This paper suggests a new implicit
approach based on the zero set of the average of box
splines. The approach may be used to smoothly join an
arbitrary number of low-degree primary surfaces and
results in a blend that is itself of a fixed low algebraic
degree and consists of the zero set of a fixed number
of polynomial pieces. Specifically, the blend surface has
the following properties:

e The blend surface is curvature continuous.

e The blend surface joins C? with input surfaces of
algebraic degree three (and some of degree four)
that are separate outside the blend volume or join
C? outside the blend volume.

e The approximation order to general smooth sur-
faces is O(h*).

e The algebraic degree of the blend surface is four,
independent of the number of input surfaces.

e The blend surfaces can be rendered stably and
moderately fast.

e The representation is compatible with set-theoretic
representations; e.g. point classification (set mem-
bership determination) is supported.

e The surface representation has volume elements
associated with it.

e The blend is volume bounded.

Related literature. Starting with [8], box splines have
been developed during the last decade. With the no-
table exception of [24], [2], [4], and [10], most results on
non-tensor-product box-splines have been published in
journals on approximation theory and seem to not have
entered the standard repertoire of CAD. This is unfor-
tunate since the representation combines smoothness,
efficient evaluation and high approximation order [9] as
summarized in the appendix.

Besides the well-known implicit blending construc-
tions of [12], [13], [15], [14], there are currently two main
approaches to defining the individual pieces of a func-
tion whose zero set represents a surface. The first is
to generate an approximate triangulation of the surface
and then erect a shell-like structure of trivariate polyno-
mial pieces over this parametrization [25], [6], [11], [5],
[1], [16]. The second is to define a function on a regular,
global lattice, for example, a piecewise triquadratic, C*
tensor-product spline [17]. The regular lattice has the
advantage that non-rectilinear features of the surface do
not require special treatment and that no parametriza-
tion other than the lattice structure is imposed. The
algorithm defined below is of the second kind. It can
alternatively be viewed as a systematic way of creating
a field in the spirit of ‘blobby objects’ used in animation
[28] or as approximate version of constructive geometry
in the sense of Ricci [23].

The paper is structured as follows. Section 2 explains
the basic idea, discrete blending in coefficient space, the
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Figure 1: The grid of dots represents the array of coefficients that weigh shifts of the positive, symmetric function
depicted in Figure 12(bottom). Darker dots correspond to negative array entries. The array is initialized as the
maximum of two arrays containing the coefficients of a spline whose zero set is a circular disk, and another array that
represents the intersection of two linearly bounded half spaces: the result is a C' quadratic blend of —22—4%2416 >= 0
union (—z + .65y + 3.5 >= 0 intersect z — .65y — .75 >=0). (cf. [19]).

third section gives a formal statement of the algorithm,
Section 4 gives the details of the 3D construction and
Section 5 discusses the properties of the representation
and gives examples. A review of box spline properties
used in this paper is appended.

2 Discrete blending in coefficient
space

We start with an intentionally simple example in two
rather than three dimensions. Consider two arrays with
+1 entries:

+1 +1 +1 -1
= -1 -1 and Mz .—+1 _1

M,y
and a third array generated as the componentwise max-
imum
41 +1
S+l -1

We interpret each entry My(i,j),k € {1,2,3},i,5 €
{1,2} as the coefficient of a positive, symmetric func-
tion of compact support in two variables centered at
(4,5), say the bell-shaped function displayed in Figure
12,bottom so that the array My represents the superpo-
sition of the four functions. We can visualize the zero
set associated with M7 as a horizontal line segment, the
zero set of My as a vertical line segment and the zero set
of M3 as a right angle, that has to be smoothed out since
the four function shifts are each smooth and regular and
hence so is their zero set. Thus, if we interpret the posi-
tive side of each line segment as the interior of some two
dimensional object, then M3 represents a smoothed-out
union of the two objects. Correspondingly, we call this

M3 = maX{M1,M2} :

approach discrete blending in coefficient space. A num-
ber of detailed examples of this blending in two dimen-
sions have been worked out in [19]. For example, in
Figure 1,left, the grid of dots represents the array of
coefficients weighing shifts of the positive, symmetric
function depicted in Figure 12,bottom. The shading is
proportional to the value of the array-entry, the darker
the more negative, with black denoting “outside”. The
array is initialized as the maximum of two arrays con-
taining the coefficients of a spline whose zero set is a cir-
cular disk, and another array that represents the inter-
section of two linearly bounded half spaces. The details
of the initialization of this two-dimensional example are
given in [19], Section 3. The general algorithm for the
initialization is explained in the next two sections.

A useful property of surfaces defined as shifts of a
box-spline is that the surface is approximated well by
the piecewise linear interpolant to the coefficients in the
array, the better the less the local variation between
the coeflicients (see also Appendix 7.3). This is the
basis for fast algorithms for graphic display and render-
ing because a simple averaging rule, called subdivision,
increases the number of coefficients and decreases the
variation between them quickly, so that the function
values are well approximated by the coefficients after
only a few steps of subdivision. Correspondingly, the
zero set can be well approximated by the sign change in
the coeflicient array. This is illustrated by the sequence
in Figure 1 where, from left to right, the zero level set
is approximated at three consecutive subdivision steps
and the white curve inside the rectangle of the second
subdivision is a piecewise linear approximation to the
quadratic blend curve. Note also that the ever denser
set of coeflicients shrinks towards a two dimensional ver-
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Figure 2: (Upper left) Primary surfaces, (lower left) blend volume in place, (lower right) zero set of the box-spline,
(upper right) blended ensemble.
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Figure 3: Termination of the blend with the left cylinder altered by subtracting a half space.




sion of the blend volume.

We are now ready for a complete example in three
dimensions illustrated by Figure 2. On the left, we
see the primary surfaces, and below, a blend volume,
here a simple brick shape, that covers the volume to
be blended. The blend volume serves as spline domain.
The zero set of this spline is shown on the right, both
in place as blending surface and enlarged, by itself. The
blend surface is rendered just like the white blend curve
in the two-dimensional example. The next section is
devoted to explaining the details of the algorithm.

3 The algorithm

The input to the algorithm are

a. the n defining polynomials p;(x), x € R®, of the
primary surfaces.

b. a blend volume and its partition (default 5 by 5
by 5),

c. a map that combines n array entries to one, and
scaling factors (default 1), and

d. a number of averaging steps (default 0).

For example, the defining polynomial of the unit sphere
p > 0is pi(x) = pi(e,y,2) = —2° —y® — 2> + 1;
that is, the interior corresponds to positive values of
the defining polynomial. The blend volume is a typ-
ically block-shaped region in 3-space that encloses the
blend surface to be constructed. The blend volume need
not be aligned with the global zyz coordinate axes and
can be the image of a cube under a more general map.
An example of an operation is to choose the maximum
of a set of coeflicients. This will correspond to an ap-
proximate union or blend, while a minimum operation
approximates an intersection.

The three steps of the algorithm are as follows. First,
each of the n basic primitives within the blend vol-
ume is automatically expanded as a trivariate spline.
That is, the defining polynomial of each basic primi-
tive, is written as a linear combination of shifts of the
spline basis function M. For example, the first defin-
ing polynomial is p;1(x) = Y a'(a)M(x — a), where
a = (az,ay,a;) € R is a point on a lattice that
sub-divides the blend volume. The explicit formulas
for the constants a'(a) € R in terms of the coeffi-
cients of the defining polynomial are derived in Section
4. The zero set of the spline then defines the surface.
Second, the operation specified generates from the n
3D arrays of spline coefficients one entry in each posi-
tion and hence a new 3D array and associated spline,
p(x) = Y a(a)M(x — a). Typically, when blending,
a(a) is defined as a(a) := maxy{a‘(a)} except for a

in the boundary set. The boundary set of the blend
consists of  within a certain range of a sign change
on a face of one of the arrays where all other arrays
have negative entries. A face of the array is the 2 di-
mensional subarray where one of the three indices is
either maximal or minimal. Thus where a single in-
put surface meets the blend volume, its coefficients are
preferred. This preference also holds during the op-
tional third and final step, local averaging that allows
to smoothen features, and thus guarantees a smooth
transition between primary surface and blend surface.
When surfaces are added to the blend ensemble, blends
on blends are avoided by regenerating the blend based
on all primitives.

4 Blend Surfaces

According to the first step of the algorithm, we select
a suitable box-spline in three variables. A poor choice
of box-spline can result in artifacts as shown in Figure
4. We choose for M the centered 7-direction quartic
box spline which is a serendipitous element among the
trivariate box-splines in that it combines a high degree
of symmetry, with high reproduction of polynomials, al-
most maximal smoothness and low degree. The specific
properties, degree four, curvature continuity and repro-
duction of all cubics and some quartics, are derived in
the appendix.

The first step requires representing the defining poly-
nomial p; of each primary surface in terms of shifts of

M:
p(x) = 3 (@) M(x - a).

Since each p; decomposes into monomials ziy’ z*, namely
pe=Y. cfj LTy 2, it suffices to determine scalar coeffi-
cients a;jx () such that the following (Marsden) identity

holds o
ziyik = Z aijr () M(x — a).

Then
at(a) := Z cfjkaijk(a).
i+j+k
For the centered 7-direction box-spline, the scalar coef-
ficients for i + j + k < 3 are particularly simple:

(@) = ook - {2/:155 i=2orj=2ork=2

For example, to represent the cylinder
(z—y)?+22=1

the array entry (ag,ay,a;) € N® for a unit partitioned

blend volume at the origin is

)
2 Y -9 2 Y —“y_-1
(02— 2) 20,0, + (02 - ) + (a2 - 2)



Figure 4: Artifacts on a blend surface generated as the zero set of the 5-direction box spline (left) with the unsym-

100 -1 -1

metric direction matrix = := [0 10 1 —1] The zero set of this box-spline and hence the blend consists of quadrics.

001-11

The zero set of the 7-direction box spline is shown (right).

To map the integer indices of the array onto the par-
tition of the blend volume in the general case let A be
the transformation that maps a box of size nq X 1y X ng
at the origin to the blend volume. Then the 3D array
V is initialized as

V(B) = a(a) = a(A(Smf)),
,B € [Onl] X [O’I’L2] X [0”3]

Here Sy is a shift by 1.5 followed by scaling by (n; +
1)/n; in the ith component so that evaluation by sub-
division converges exactly to the blend volume.

For additional smoothing, an optional averaging step
may be added. None of the figures displayed in this pa-
per required this extra smoothing. With the boundary
set kept fixed and positive and negative coefficients are
averaged separately by a Gaussian. The averaging is
not expensive since it involves at most the n; X ny X ng
interior coefficients of the array V. The boundary set of
the 7-direction box-spline blend consists of the indices
within an index range of 2 from sign changes on the
array boundary.

5 Discussion of the blend surfaces

5.1 Smoothness and reproduction

Within the blend volume the blend surface is the zero
set of a C? function. If this function is regular within the
blend volume then, by the implicit function theorem, its

zero set is also C?. Using singular defining polynomials,
it is also possible to represent singularities such as the
apex of a cone. A C? join with the input surface across
the boundary of the blend volume is guaranteed if the
blend surface matches the input surface up to second or-
der across the boundary. This is in particular the case if
the boundary sets do not overlap and the defining poly-
nomial is of degree less than four or equal to four with no
fourth order mixed monomials. Cyclides, whose defin-
ing polynomial is p(z,y, 2) = (#2 +y* + 22 —m? +b%)? —
4(ax —cm)? —4b%y? (see e.g.[22]), have a combination of
mixed terms 22y? + 2222 4+ y222 that is not reproduced
exactly. Yet, the box-spline approximation is visually
indistinguishable from the correct zero set (c.f. Figure
5) traced out using the explicit parametrization. This
may be explained by the O(h*) approximation order of
the box spline. If we choose an (n,n,n)-partition of the
blend volume, then the error in the mixed terms is of
the order n=* with respect to the size of the bounding
box. Moreover, for the smooth blend, global reproduc-
tion is not necessary. Local reproduction of the first
three Taylor terms across a plane (or other blend vol-
ume boundary) suffices. For example, if we choose the
blend volume boundary to coincide with a line of cur-
vature of the cyclide then only a quadratic has to be
reproduced for continuity and a cone for tangent conti-
nuity.



Figure 5: Exact cyclide, approximate cyclide as zero set
of box-splines and two blended cyclides.

Figure 6: Dominance of the interior can join two non-
intersecting primary surfaces inside the blend volume if
they are sufficiently close. To keep the surfaces sepa-
rate, a finer partition of the blend volume suffices, or,
of course, removal of the blend volume.

5.2 Zero sheets, rendering, evaluation and
point-classification

In the approximate union or blend operation represented
by the the maximum operation in Step 2 of the algo-
rithm, positive entries dominate. That is, if any of
the entries in a one of the 3D arrays is positive, the
resulting entry will be positive. Conversely, a nega-
tive entry will only appear in the resulting array, if all
contributing entries are negative. Thus interior volume
dominates and hence zero sheets can disappear but no
more sheets can appear than were present in the orig-
inal n primary surfaces. At worst, as Figure 6 illus-
trates, separate zero sheets can join if they are suffi-
ciently close within the blend volume. The analogous
argument holds for smoothed intersections — here the
intersection is smoothed by removing volume in the in-
terior of some but not all primary surfaces.

To extract a continuous piecewise linear approxima-
tion of the zero sheet of the spline, we traverse the coef-
ficient array to detect sign changes. In standard fashion,
here additionally motivated by the tetrahedral support
of the polynomial pieces, each cube with a sign change
is split into tetrahedra according to Figure 10, associ-
ating the average of the values at the vertices with the
center of each cube and cube face. For each edge whose
endpoints have an opposite sign, we mark the midpoint.
Each tetrahedron has either zero, three or four marked
edge-midpoints. Correspondingly, we add no, one or
two (coplanar) triangles connecting the midpoints to a
list of triangles. The union of the triangles in the list
then form the surface approximation.

The surface approximation is refined by averaging
the array entries according to the subdivision rules of
the 7-direction box spline (cf. the Appendix). That is,
each value is replicated over a cube of half the edge
length and then the values on this refined lattice are
averaged consecutively in each of the four diagonal di-
rections of the box spline. With each step of the subdi-
vision, the approximation gains two additional digits of
accuracy.

To test for intersection, we subdivide depth-first to
obtain a nested sequence of bounding boxes. If a single
point is to be classified, the check is first against the
blend volume then against the subcubes and tetrahedra
already generated. If this check fails because the point
is very close to the boundary, the spline is exactly eval-
uated. A stable evaluation algorithm and code for the
box-spline basis functions are given in [7].

5.3 Shape and detail control

Since the spline is the limit of the coeflicients gener-
ated by the subdivision process, and subdivision reduces
variation through averaging, its rough shape and hence
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Figure 7: Blends under variation of blend volume size.

the shape of its zero set can be inferred from the 3D ar-
ray of coefficients (cf. the preceding discussion of zero
sheets). The blend can be modified by scaling the array-
entries other than the boundary sets, e.g. by local aver-
aging, by changing the scale A, or by changing the blend
volume(cf. Figure 7).

5.4 Compatibility with existing shape de-

scription techniques.

Combining the blend volume-approach with a set-theoretic

modeling environment is straightforward: subtract the
volume covered by the blend volume and add the blend
volume. The 3D examples consist of clipped parametric
or implicit primitives outside the blend volume while the
data inside are specified by a Boolean expression over
the coefficient arrays.

6 Conclusion

Smooth surfaces as the zero set of a piecewise poly-
nomial function on a fixed-grid are capable of modeling
free-form objects (see Figure 8 and also [17], [18]). How-
ever, this representation is clearly less efficient for many
tasks than parametric spline-based surfacing. Our im-
plementation is therefore specific to local blending.

The general approach offers a number of degrees
of freedom that may still be explored: apart from the
boundary set, the 3D array defining the blend surface
can be initialized independently of the primary surfaces.
In particular, non-constant scaling may be applied.
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Figure 9: Uniform univariate splines

7 Box splines

Box splines represent a generalization of univariate spline
theory to several variables. Since box splines were in-
troduced by de Boor and DeVore [8] a rich theory has
been developed and collected in the “box spline book”
[3] which serves as reference for the following exposition
of these piecewise polynomial functions.

The box spline Mz in s variables is defined by the s x
n matrix Z (pronounced Xi) with columns in R*\0. For
the purposes of this paper we may assume that the first
s columns of Z form the identity matrix I. This yields
the following inductive definition of the box spline. If
Z = I, then Mz is the function that is 1 on the unit
cube and 0 elsewhere:

1, if z € [0..1)°,
0, else.

My(z) = {

This box spline is piecewise constant, has degree zero
and is discontinuous. If EUE is any matrix formed from
= by the addition of the column & € R*, then the box
spline Mz is given by the convolution equation

1
Maue(u) = / Mz (u - t6).

For s = 1 this is exactly the B-spline construction by
convolution(c.f. Figure 9).

7.1 Box spline properties

The box spline has the following properties.

(i) Mz is positive and its shifts sum to one:
Yacze Mz(-—a) =1.

(ii) The support of Mz is Z[0..1)%, i.e. the set sum of
the columns contained in =.

(iil) Mgz is piecewise polynomial of degree n —s. That
is, each convolution in another direction ¢ increases
the degree by one.

(iv) Mz is p—2 times continuously differentiable, where
p is the minimal number of columns that need
to be removed from = to obtain a matrix whose
columns do not span R?.

(v) M= reproduces all polynomials of degree m :=
p — 1 and none of degree higher than n — s.

(vi) The LP approximation-order of the spline space
S := span (M(- — @)) is p. That is with the re-
finement of the lattice z — hx, h < 1,
dist(f, > a(a)M=((- — a)/h)) = O(h*) for all suf-
ficiently smooth f.

Thus the n columns of =, which may be interpreted as
directions in R?®, determine the support of the piecewise
polynomial and its continuity properties. Understand-
ing the number p requires an analysis of the independent
submatrices of =.

7.2 Box spline examples

We develop three examples relevant to this paper.

1. The well-known univariate uniform cubic B-spline
has the matrix (direction set)

=01 111 ]

Figure 9 shows in order the characteristic function of
the 1-dimensional cube and its repeated convolution in
the direction 1 yielding the linear ‘hat’ function, the
quadratic and finally the cubic B-spline. We determine
the characteristic numbers as

s=1,n=4, and p=4

since all elements of the set have to be removed to make
it nonspanning in R®. The degree of the B-spline pieces
is n —s = 3 and the continuity is of order p —2 = 2
as expected. The cubic spline formed as a linear combi-
nation of B-splines is guaranteed to at least reproduce
polynomials of degree 3 and none of degree higher than
3. The approximation order is 4.

2. The bivariate box spline Mz based on the matrix

- [t o1 -1
=T l1 11

is called Zwart-Powell element [29], [20], [21]. It is dis-
played in Figure 12 (lower right). The characteristic
numbers are

s=2,n=4, and p=3

and hence the element is of degree 2 and its polynomial
pieces are connected C!. Since n —s =2 = p — 1 linear
combinations of the ZP-element reproduce exactly all



Figure 10: The 7 directions of the box spline and its
domain tetrahedra

quadratic polynomials; that is any quadratic g(z,y) can
be written as

q(may) = Z a(a)ME((xay) - Oé).

a€Z?

The Zwart-Powell element stands out among the low-
degree box-splines defined over the plane, in that it has
maximal smoothness equal to the degree minus one and
is piecewise polynomial over a regular triangulation.

3. The 7-direction box spline is a similar serendipity
element among the trivariate box splines. It is based on
the direction matrix

1001 -1 1 -1
=01 01 1 -1 -1
0011 -1 -1 1

The seven directions defined by the colums of the matrix
cut R? into a symmetric regular arrangement of tetrahe-
dra. The characteristic numbers of the 7-direction box
spline are

s=3,n=17, and p =4.

Thus the polynomial piece defined over each tetrahe-
dron is of degree n—s = 4 and splines formed as a linear
combination of shifts of the box spline are C*~2 = C2.
Elements of the spline space reproduce all cubics in
three variables (and some additional polynomials of de-
gree four) and the approximation order is 4.

7.3 Box spline subdivision

To quickly approximate any box spline we may use sub-
division. Since the shifts of the box spline M= form a
nonnegative, local partition of unity, a spline formed as
a linear combination of shifts of the box spline is a finite
convex combination of its coefficients a(a). To the ex-
tent that the local variation of the coefficients is small,
the coefficients a(a) approximate the spline well. This
is the basis for fast algorithms for graphic display and
rendering. The key observation is that the variation of

10
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Figure 11: Four-direction box spline subdivision.

the coefficients is reduced when the spline is expressed
in terms of box splines corresponding to the refined lat-
tice 1 Z°:

Yo al)M@—j)= Y ap(k)M(2z - k).

i€z ke ze

The successive computation of a sequence of refined
coefficients a1,a;/3,... is called a subdivision algo-
rithm: We compute aj/» from a; for o on the finer
mesh 27°. First set

(@) 2%ap(a),if o € hZ*®

ap () =

h/2 0, else

Then average in each of the directions in Z. That is
for each £ € = compute, careful not to overwrite still
needed values,

ans2(a) < (ans2(@) +apj2(a —£/2))/2.

Under mild assumptions on the matrix = that are satis-
fied by all three box splines defined above, the sequence
of control points converges quadratically to the spline
[3], (30)Theorem, page 169. The sequence of array en-
tries for the subdivision of a spline with coefficients
a, b, c,d and the ZP-element as M is displayed in Figure
11.

To illustrate the effect of subdivision as approximate
evaluation, we choose one box-spline coefficient (at the
origin) non-zero, and all other coefficients equal zero,
i.e.

1, ifog =ay =
a(a):{ it =02 =0 a:= (a1, qs).

0, else
Then
> a(@)Mz((z,y) — a) = Mz(,y),

and the spline represents just a single basis function.
Figure 12 below shows four steps of subdivision on the
spline coefficients. The central spike is of height 1.
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Figure 12: The Zwart-Powell element Mz approximated
using 4 steps of subdivision. The point cloud are the
coefficients generated by the refinement.
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In priciple, one can convert any piecewise polyno-
mial in box-spline form into any other piecewise poly-
nomial representation such as the power form or the
Bernstein form. For example, in the Bernstein-Bézier
form, the Zwart element is represented by 28 quadratic
pieces with coefficients 1/2, 1/4, 1/8 and 0.
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