
A characterization of connecting maps

as nonlinear roots of the identity

J. Peters

Abstract. In order to de�ne the smoothness of a piecewise poly-

nomial surface, the domains of adjacent pieces must be related to one

another by connecting maps; such maps reparametrize the surface

pieces by mapping the domains of adjacent pieces to a joint domain.

We characterize the subclass of connecting maps that can be used

to surround a point by three or more pieces. The characterization of

connecting maps for second order continuity suggests a lower bound

on the degree of any curvature continuous surface assembled from

polynomial pieces.

x1. Motivation

A popular approach to modeling smooth parametric surfaces is to as-

semble them from polynomial patches p

k

: 


k

� IR

2

7! IR

3

. To determine

the smoothness of transition from one patch to its neighbor, the domains of

adjacent patches must locally be mapped to a joint domain so that directions

of di�erentiation are well de�ned. Thus connecting maps �

k

: IR

2

7! 


k

play

a central role in the construction of smooth parametric surfaces, a�ecting for

example the polynomial degree and the shape of the surfaces. Of particular in-

terest for constructions is the subclass of connecting maps that can be used to

smoothly surround a point by three or more patches. The paper characterizes

this subclass.

When three or more patches join smoothly at a common point, the pair-

wise continuity constraints between the patches form a circular system. Cor-

respondingly, the composition of all n connecting maps must map any initial

domain to itself and must agree with the identity map, id, at the preimage

of the common point up to the given order of continuity (cf. [2, Theorem
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7.1]). This motivates viewing the connecting maps as roots of the identity. In

particular, if all connecting maps at the point are equal, we call them uniform

roots of the identity.

The connecting-map across an edge between two vertices must Hermite

interpolate the connecting-maps at the vertices. Based on the characterization

of uniform and special non uniform second-order roots of the identity we prove

that the Hermite interpolant cannot be linear, and hence that the formal

degree of a curvature continuous surface built from polynomial pieces exceeds

the degree of the boundary curves by four.

The paper is organized as follows. Section 2 formalizes the notion of con-

necting maps and gives a closed form expression for the constraint on their

composition. Section 3 looks at linear roots of the identity and identi�es

uniform linear roots as rotations. Sections 4 and 5 characterize second-order

uniform and special non-uniform roots. This characterization is used in Sec-

tion 6 to derive a lower bound on the degree of curvature continuous piecewise

polynomial surfaces.

x2. Roots of the identity

To formalize the constraint on the connecting maps, let k = 1::n and denote

by �

k

the connecting map between the domain 


k�1

� IR

2

of the (k � 1)st

patch p

k�1

and the domain 


k

of the adjacent patch p

k

. Concretely, let 


k

have two consecutive edges aligned with the unit vectors e

1

and e

2

. Then

�

k

maps e

2

to e

1

in a neighborhood of 0 = (0; 0). Circularity implies that




0

= 


n

and that �

n

� �

n�1

� : : : � �

1

maps a neighborhood of 0 to itself.

Since we are only interested in the values of functions at 0, we write the name

of a function when we really mean that function's value at 0. Let D

i

:=

@

@x

i

be the derivative in the direction of the ith unit vector e

i

. Thus

J

r

� := (D

m

1

D

n

2

�)

m+n�r

is an ordered collection of Taylor coe�cients of a connecting-map � expanded

at 0 up to the rth Taylor term. The composition constraint on admissible �

l

is

J

r

id = J

r

(�

n

l=1

�

l

) := J

r

(�

n

� �

n�1

� : : : � �

1

); (C)

where � is the symbol for composition. Note that by the above convention,

both sides of Constraint C are evaluated at 0. We normalize �

l

such that

�

l

(0; 0) = 0 for l = 1::n. Hence, for r = 0, C is

0 = �

n

l=1

�

l

: (2:0)

Denote the components of any connecting map � as �

[1]

and �

[2]

and de�ne

the derivative of � to be the Jacobian, D� :=

�

D

1

�

[1]

D

2

�

[1]

D

1

�

[2]

D

2

�

[2]

�

. For r = 1

and i 2 f1; 2g, since the derivative of the identity map at 0 is the identity
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matrix and the ith column of the identity matrix is the ith unit vector e

i

, the

additional constraints are, by the chain rule,

e

i

= D

i

(�

n

l=1

�

l

) = (

n

Y

l=1

D�

l

)e

i

(2:1)

For r = 2, and i; j 2 f1; 2g, since id has no quadratic terms, the chain rule

and the product rule yield

0 = D

j

D

i

(�

n

l=1

�

l

) =

n

X

k=1

(

Y

l<k

D�

l

)D

2

�

k

�

(

Y

l>k

D�

l

)e

i

; (

Y

l>k

D�

l

)e

j

�

: (2:2)

Each of the two components of the Hessian D

2

�

k

�

;

�

is a bilinear form with

two vector-valued arguments.

Since 


k

must share an edge with �

k

(


k�1

), it is reasonable to stipulate

that 


k

and �

k

(


k�1

) share a coordinate direction corresponding to the com-

mon edge. This implies that the edge is traced with a common orientation

and parameter v:

�(0; v) =

�

v

0

�

(A

1

)

and that the transversal derivative (with respect to u) of �

[2]

is constant for

varying v:

D

1

D

2

�

[2]

= 0: (A

2

)

x3. Uniform linear roots of the identity

We �rst consider the case r = 1, the characterization of the linear compo-

nents of the connecting-maps. For now, we assume that the connecting maps

are uniform, that is �

l

= �. Since the neighborhood of the origin is to be

covered exactly once, the linear part of � is a rotation by � := 2�=n.

Proposition 3. If �

l

= �, l = 1::n, and (A

1

) holds then (2.0) and (2.1) hold

if and only if

� =

�

�

[1]

�

[2]

�

:=

�

2 cos � 1

�1 0

� �

u

v

�

+ higher order terms

Proof: The assumption �(0; v) = (v; 0) implies D� =

�

u

1

1

u

2

0

�

. Since D�

has to have the eigenvalues e

���

, � :=

p

�1, of a rotation matrix,

e

�2��

� u

1

e

���

� u

2

= 0

must hold. From this constraint, u

1

= 2cos �; u

2

= �1 follows.
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Conversely, the linear part of � can be diagonalized:

D� :=

�

2 cos � 1

�1 0

�

=

�

�e

���

�e

��

1 1

� �

e

���

0

0 e

��

� �

�e

���

�e

��

1 1

�

�1

implying that

D(�

l

k=1

�) =

l

Y

k=1

D� =

�

2 cos � 1

�1 0

�

l

=

�

�e

���

�e

��

1 1

� �

e

���

0

0 e

��

�

l

�

�e

���

�e

��

1 1

�

�1

=

1

F (1)

�

F (l + 1) F (l)

�F (l) �F (l � 1)

�

where

F (l) := e

��l

� e

���l

= 2� sin(�l):

If l = n, then �l = 2� and hence

D(�

n

k=1

�) =

�

1 0

0 1

�

as required for a �rst-order connecting-map by condition (2.1).

x4. Uniform quadratic roots of the identity

We now apply the calculus of the previous section to the case r = 2. In

particular, we want to characterize the uniform non-linear connecting maps

that satisfy (2.0{2.2).

Theorem 4. If �

l

= �, l = 1::n and (A

1

) and (A

2

) hold, then (2.0), (2.1)

and (2.2) hold if and only if

� :=

�

2 cos � 1

�1 0

� �

u

v

�

+

1

2

[u v ]

�

x

1

a

a 0

� �

u

v

�

e

1

+

1

2

[u v ]

�

x

2

0

0 0

� �

u

v

�

e

2

+ h:o:t:

for certain constants x

1

, x

2

, a.

If n > 3, then x

1

, x

2

, a can be chosen independently and arbitrarily.

If n = 3, then x

1

= x

2

= �2a must hold.

Proof: The proof is structured as follows. First we express (2.2) in terms of

F (l) := 2� sin(�l) and use the diagonalization derived in the previous section.
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Then we show that the sums of F (l) that multiply the constants x

1

, x

2

, and

a vanish except if n = 3. The case n = 3 is analyzed separately.

Since D

2

2

� = 0 and D

1

D

2

�

[2]

= 0 by (A

1

) and (A

2

), the kth summand

of the right hand side (2.2) can be expressed using the constants A

ij

(k) and

B

ij

(k):

(D�)

k�1

D

2

�

�

(D�)

n�k

e

i

; (D�)

n�k

e

j

�

(4:1)

= F

�3

(1)

�

F (k) F (k � 1)

�F (k � 1) �F (k � 2)

�

(D

2

1

�A

i;j

(k) +D

1

D

2

�B

i;j

(k)):

The constant A

i;j

(k) is the entry in the ith row and jth column of the

matrix A(k) which tabulates all possible combinations of the �rst entry of

(

Q

n

l=k+1

D�)e

i

and (

Q

n

l=k+1

D�)e

j

since these multiply D

2

1

�. Since F (0) =

F (n) = F (n=2) = 0; F (n+ l) = F (l) and F (�l) = �F (l);

A(k) :=

�

F (n� k + 1)

F (n� k)

�

[F (n� k + 1) F (n � k) ]

=

�

F

2

(n � k + 1) F (n� k)F (n� k + 1)

F (n � k)F (n� k + 1) F

2

(n� k)

�

=

�

F

2

(k � 1) F (k)F (k � 1)

F (k)F (k � 1) F

2

(k)

�

:

Similarly B

i;j

(k) is the i; j entry of

B(k) :=

�

F (n � k + 1)

F (n� k)

�

[�F (n� k) �F (n� k � 1) ]

+

�

�F (n� k)

�F (n� k � 1)

�

[F (n � k + 1) F (n� k) ] :

= �

�

2F (k)F (k � 1) F (k + 1)F (k � 1) + F

2

(k)

F (k + 1)F (k � 1) + F

2

(k) 2F (k)F (k + 1)

�

:

Combining all the summands, we have D

j

D

i

(�

n

l=1

�) =

(F (1))

�3

n

X

k=1

�

F (k)x

1

+ F (k � 1)x

2

�F (k � 1)x

1

� F (k � 2)x

2

�

A

i;j

(k) + a

�

F (k)

�F (k � 1)

�

B

i;j

(k):

Now we note that the multipliers of a, x

1

and x

2

are of the form

n

X

k=1

sin(k�) sin((k + l)�) sin((k +m)�)

= �

1

n

X

k=1

sin(k�) + �

2

n

X

k=1

sin

3

(k�) + �

3

n

X

k=1

cos(k�) + �

4

n

X

k=1

cos

3

(k�)
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for constants �

1

, �

2

�

3

and �

4

.

Claim: If n > 3, then

n

X

k=1

sin(k�) =

n

X

k=1

cos(k�) =

n

X

k=1

sin

3

(k�) =

n

X

k=1

cos

3

(k�) = 0:

proof of claim: Let =a denote the imaginary part of a and <a the real part

of a. Then

n

X

k=1

sin(k�) =

n�1

X

k=0

= e

�k�

= = (

e

�n�

� 1

e

��

� 1

) = 0;

since n� = 2� and similarly

P

n

k=1

cos(k�) = 0. Since 4 cos

3

� = cos 3� +

3cos�;

n

X

k=1

cos

3

(k�) =

1

4

n�1

X

k=0

< e

�k3�

= <

e

�n3�

� 1

e

�3�

� 1

= 0

and similarly

P

n

k=1

sin

3

(k�) = 0.

end of proof of claim

The claim proves the theorem for n > 3. If n = 3, then

P

3

k=1

cos

3

(k�

3

) =

<3 6= 0 and we need to analyze (2.2), 0 = D

j

D

i

(� � � � �), in detail. We now

list the three cases i = j = 1, i 6= j, and i = j = 2 of (2.2), one per column,

and use the fact that F (0) = 0 and F (2) = �F (1).

�

0 0 0

0 0 0

�

=

�

�2 0 2

�2 2 0

�

a+

�

�1 1 0

0 1 �1

�

x

1

+

�

0 �1 1

�1 0 1

�

x

2

:

We see that (2.2) holds if and only if x

1

= x

2

= �2a.

x5. Non uniform quadratic roots of the identity

Next, we characterize �rst order uniform, but second order non uniform

connecting-maps that satisfy (2.2) for the special case of fourth roots.

Proposition 5. If n = 4 and J

1

�

l

= J

1

� for l = 1::4, then (2.0{2.2) hold if

and only if

�

k

:=

�

0 1

�1 0

� �

u

v

�

+

1

2

[u v ]

�

x

1;k

a

k

a

k

0

� �

u

v

�

e

1

+

1

2

[u v ]

�

x

2;k

0

0 0

� �

u

v

�

e

2

+ h:o:t:

and

a

1

= a

3

; a

2

= a

4

; x

i;j

= �x

i;j+2

; for i; j 2 f1; 2g;
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Proof: We follow the structure of the proof of Theorem 4. Since F (1) = 1 =

�F (3), F (0) = F (2) = F (4) = 0,

A(k) :=

�

F

2

(k � 1) 0

0 F

2

(k)

�

; B(k) := (�1)

k+1

�

0 1

1 0

�

Setting

a :=

2

6

4

a

1

a

2

a

3

a

4

3

7

5

; x

1

:=

2

6

4

x

1;1

x

1;2

x

1;3

x

1;4

3

7

5

; x

2

:=

2

6

4

x

2;1

x

2;2

x

2;3

x

2;4

3

7

5

the equations 2.2 and 4.1 simplify to

D

1

D

2

(�

4

l=1

�) =

�

0 1 0 �1

�1 0 1 0

�

a

D

1

D

1

(�

4

l=1

�) =

�

0 0 0 0

�1 0 �1 0

�

x

1

+

�

1 0 1 0

0 0 0 0

�

x

2

D

1

D

2

(�

4

l=1

�) =

�

0 1 0 1

0 0 0 0

�

x

1

+

�

0 0 0 0

0 �1 0 �1

�

x

2

Setting the expressions to zero proves the claim.

The next section uses the following simple extension of the Proposition.

Corollary 5.2. If n = 8 and every odd connecting map is the identity, then

Proposition 5 applies to the even numbered connecting maps.

x6. Degree bounds for curvature continuous surfaces

We now apply the theorems developed in Sections 4 and 5 to estimate the

minimal degree of polynomial pieces necessary for building free-form surfaces

that follow the outline of an irregular mesh. A mesh is irregular if neither the

degree of its vertices nor the number of vertices to a mesh cell is restricted.

To improve our chances of �tting a low degree surface we may decrease the

combinatorial complexity of the input mesh by inserting a midpoint on every

edge and connecting the midpoints of a cell to its centroid (see [3]). After this

re�nement every original vertex is surrounded by vertices of degree four and

all cells are quadrilateral. To mimic the quartic C

2

box spline with directions

e

1

, e

1

, e

2

, e

2

, e

1

+e

2

, e

1

�e

2

and keep the total degree of the surface pieces low,

we split each quadrilateral into four triangles and connect the patch domains

by the identity across the splitting edges.

Since we are interested in a worst case analysis, we can cook up data.

In particular, let P be one of the midpoints generated above surrounded by

8 patches and with original mesh point neighbors P

i

, i = 1::4. We may

assume that P

1

and P

3

have di�erent degree, but that the data at both points

are locally symmetric. That is, the data relevant to the determination of
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each connecting map are indistinguishable under rotation. Thus any rotation

invariant construction must use uniform roots of the identity at P

1

and P

3

.

At P , the data are not locally symmetric, but the degrees of freedom at P are

maximal when the linear part of the connecting map is uniform. We therefore

proceed under the assumption that the connecting maps at P are uniform up

to �rst order. Let �

i

be the connecting map associated with the edge PP

i

and

�

i

(v) := (D

2

�

[1]

i

)(0; v). Then by Corollary 5.2 either �

1

or �

3

has to be at

least quadratic if (2.0{2.2) are to hold. For if both �

i

were linear, then their

derivative at P is determined di�erently depending on the number of patches

meeting at P

i

and thus a

1

6= a

3

.

Now consider the two patches p(u; v) and q(u; v) with a common bound-

ary curve (u) such that (0) = P

1

and (1) = P . Let � := �

1

be the

connecting map between p and q, � := �

1

be quadratic and choose the data

such that symmetry implies D

2

�

[2]

i

� �1. If d is the degree of  then the left

hand side of the G

1

constraints (cf. [1])

�D

1

 = D

2

p+D

2

q (G

1

)

is of degree d � 1 + 2 and hence D

2

p and D

2

q are formally of degree d + 1.

We say formally, since D

2

p and D

2

q could be degree-raised polynomials. The

terms �D

1

D

2

p and �D

1

D

2

q in the G

2

constraints

D

2

2

p�D

2

2

q � �D

1

D

2

p+ �D

1

D

2

q =

1

2

(D

2

q �D

2

p)D

2

2

�

[2]

(G

2

)

are therefore of degree d+1�1+2. Unless we have cancellation, D

2

2

p and D

2

2

q

must therefore be of degree d+2 and, if none of the intermediate polynomials

are degree-raised, p and q must be of degree d+ 4.

Matching this bound, a curvature continuous surface spline that general-

izes the C

2

box spline with directions e

1

; e

1

; e

2

; e

2

; e

1

+e

2

; e

1

�e

2

and boundary

curves of degree d = 4 has recently been developed and implemented by the

author.
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