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Abstract

We study the interpolation of a mesh of curves by a piecewise polynomial C! surface
that consists of exactly one patch per mesh facet. In particular, we derive the precise
necessary and sufficient condition on the mesh data to. allow for interpolation. We apply
the result by exhibiting an algorithm for the local interpolation of a cubic mesh by a
piecewise [biJquartic C! surface.
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1. Introduction

Fitting a smooth parametric piecewise polynomial surface to a given mesh of curves is a
well studied problem. A popular approach to its solution is based on ‘blending’ polynomial
patches: each patch matches the data of one edge‘of a mesh hele and remains ‘neutral’
on the others so that the sum of the patches matches all the mesh data [Coons '67].” To
obtain the desired smoothness, blending schemes need to know the normal derivative at
each mesh point. This gives extra control but comes at a cost in the form of ‘compatibility
constraints’. There is one such constraint on the mesh data at each patch corner. A
different approach was championed by Sarraga [Sarraga '86]. His scheme does away with
the normal derivatives and aims at just interpolating the mesh and no further information.
That is, he does not assume that the ‘continuity links’ between adjacent patches have been
removed a priori by prescribing the common normal derivatives. The additional complexity
of this approach is rewarded by fewer restrictions on the curve mesh: at points with an odd
number of neighbors, the curves can be arbitrary; at points with four neighbors just one
constraint suffices (Sarraga does not treat the general ‘even-point’ case).| Our algorithm is
in many aspects akin to Sarraga’s. However, it includes the general even-point case, adds
total degree (triangular) patches to the surface construction and employs, generically,
half as many coefficients. This is possible by exploiting all the degrees of freedom not
pinned down by the compatibility constraints and the smoothness conditions. In
particular, we do not restrict our scheme to follow the well established sufficient but not
necessary C! conditions laid out in [Farin '82 p.277| and [Farin '83 p.57). Instead, we
derive the necessary and sufficient smoothness conditions for polynomial patches from
first principles. This includes a proof that, up to a common factor, the three ‘weight
functions’ that relate the directional derivatives along and across a patch boundary are
polynomials of low degree. We then show how to exploit.the newly found flexibility by
constructing a piccewise [bi]quartic (geometrically) C! surface that interpolates a given
mesh of cubic boundary curves and associates exactly one polynomial patch with each
facet. The construction is locel and linear,

The primary point of this paper is the precise analysis of the conditions that guarantee
that a polynomial curve mesh has a smooth interpolant, i.e. a complete characterization
of the compatibility constraints. It turns out that these constraints are less stringent
than they appear from the analyses of ‘twist matrices’ in [Sarraga '86] and [Watkins '88].
The additional freedom comes by including the scalar coefficients of the weight functions
as variables. To cope with the one scalar constraint still imposed by the compatibility
constraints, we present an effective way of locally generating compatible quartic mesh
curves. This construction is based on a theorem that ascertains that curve meshes that
are consistent with second order data at the mesh points always allow for interpolation.
The same theorem explains why facet splitting at the centroid resolves the compatibility
problem, while rational patches only help if the polynomial in the denominator vanishes at
all the interpolation points. Finally, we establish that the number of sides of the facets at
a mesh point has no bearing on compatibility: the additional difficulties in interpolating
cubic meshes by triangular quartic patches are solely due to the low number of coefficients
of those patches.
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To avoid ambiguities, we will adhere to the following notation. A match between an i-sided
and a j-sided patch is called an i-j configuration. For example, if two biquartic, hence
4-sided, patches share an edge (not just a point), we refer to this as a 4-4 configuration.
Since we use exactly one piece per facet, we only encounter 3-3, 3-4 and 4-4 configurations.
The intersections of the mesh curves will be called data points or just points. We define
a j-point to be a data point with j incident mesh curves. Correspondingly, an even-point
is a data point with an even number of incident mesh curves. For easy reference and so
that the reader will not be disappointed later, we list the assumptions of our construction
already at the outset. First, the algorithm expects consistency of the data: the tangent
planes at the points must be well defined and the mesh facets triangular or rectangular.
Secondly, since 3-3 configurations offer fewer degrees of freedom and we want to remain
within the quartic setup, we assume symmetry in the data. This allows us to apply a
‘simple’ C! match. If one or both of the mesh cells may be split, the assumption can
be dropped. Finally, we subject the data at even-points to a compatibility constraint
sufficient to guarantee that a [bi]quartic or higher degree C? surface can be fitted into the
mesh without splitting. In its first variant, i.e. as Assumption 1.3.a, the constraint applies
only to 4-points and is due to [Sarraga *86]. The second variant, Assumption 1.3.b, applies
to general even-points. The complete necessary and sufficient condition, phrased in terms
of the curvature components of the mesh curves, are derived in Section 3. We now give
the list in formal terms.

Assumption 1.1. [basic consistency|

(a) The mesh curves define unique tangent planes at the data points.

(b) The mesh has only three- and four-sided facets.

(c) The data are well-distributed, i.e. at each mesh point (with a given or approximated
normal), the projections into the tangent plane of any two edges belonging to the same
facet span an angle of less than .

Assumption 1.2. [3-3 symmetry] For each data point lying on the common mesh curve
of a 3-3 configuration, express the first difference vector of the BB form as a weighted
average of the difference vectors of the left and the right neighbor curve and form the ratio
of the two weights. The ratios at the two points on the common mesh curve are equal.

Assumption 1.3. [even-point compatibility] At every even-point P one of the following

holds.

(a) For each mesh curve incident at P, the tangent vectors of the two neighboring curves
are collinear.

(b) There exists a second fundamental form at P to which all mesh curves conform.

To set the algorithm into perspective, we introduce a classification of local surface con-
structions that are based on polynomial patches. As Section 2 will show, the C! matching
constraints for patches consist of non-local nonlinear equalities end inequalities. Hence an
important feature of any surface construction is its selection of (geometrically meaningful)
variables that can be fixed a priori, that is input or derived from the data, so as to arrive
at a sufficient and consistent set of preferably linear constraints in the remaining variables.
Consequently, we sorted the schemes in Table 1 below according to the interpolated data.
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The first set of algorithms, to which our algorithm belongs, interpolates a mesh of curves.
The second group consists of blending methods that match normal derivatives in addition
to the mesh. The third group prescribes the normal direction along patch boundaries, and
the fourth group is set apart since its algorithms create additional free variables by split-
ting the original mesh facets. We caution that the table below only reflects the author’s
current knowledge of the field, hence may be incomplete.

Table 1: Local Piecewise Polynomial Surface Interpolation Schemes

Interpolated Facet Patches Degree Conti- References
data shape per facet of patches nuity

PNTM 4 1 6 1 Sarraga '86
PNTM 3,4 1 4 1 Peters 89
PNTMD 4 1 3 1° Coons '67
PNTMD 3 1 (9,9)" 1 Barnhill ea *73
PNTMD 34 1 (7,4)" 1 Gregory '74
PN« 4 1 3 1Y Sabin '68

P N (&) 34 1 3 10 Peters '88a.
PN 3 3 4o 1 Farin '83

PN n Eriinl 5 (X)41 1° (29) Jones '88
PNT 3 3 4 1 Piper 87
PNTM 3,4 3.4 4 1 Shirman ea 87
PNTM 3 3 3 1 Peters '88b

* P = location, N = normal, T =
D = normal derivative
9 the scheme has restrictions beyond those of Theorem 3.2 of this paper

! neighborimgfacets-have-to-besplit o eckol- pEg

" the blending functions are rational (numerator, common denominator)

tangent, £ =curvature, M = cubic curve mesh

Qur algorithm is thus characterized by observing that the resulting surface interpo-
lates a cubic curve mesh, associates a 3- or 4-sided facet with one polynomial patch, and
constructs, for appropriate data, a piecewise maximally [biJquartic C! surface. The chal-
lenge faced by Sarraga's and this algorithm is to get by without splitting facets. This
means fewer patches, but increases the degree and imposes restrictions on the curve mesh.
The splitting scheme described in [Peters '88b], for comparison, can interpolate (almost) |
arbitrary meshes using three cubic patches. In fact, given the restrictions that have to be
applied to the cubic curve mesh, and the ability of ‘splitting’ approaches to remove them,
we suggest and show how the basic algorithm can be made more fiexible by allowing it to
split facets (cf. Sections 3.3 and 4.3).

We represent the polynomial surface patches in Bernstein-Bézier form (BB form).
Besides stability under evaluation and differentiation, this form gives geometric meaning to
its coefficients and easy access to value and derivative information along patch boundaries
(cf. [Farin ’86] and [de Boor '87]). To construct the surface, we determine the coefficients
as 3-vectors, i.e. the polynomial pieces map from the unit square or triangle to 3-space. In
our derivation and analysis, it will suffice to look at univariate polynomials, i.e. derivatives
of the patches evaluated at a boundary. Since our main algebraic work consists of multi-
plying these univariate polynomials, we find it advantageous to use an abbreviation which
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explicitly lists the scalar coefficients (j) together with the control points. That is, we use

(9)"'1ﬂ""!1)
d+1 terms

to denote the polynomial
trr ol =)+ ...+ B —t) T 4 ytd

For example, raising the degree of the quadratic polynomial (a°,2a!,a?) is expressed as
(1,1)(a®,2a?,a?) = (a®,2a* + a®,2a* + a?,a?). If nothing else, this avoids writing frac-
tions. Abbreviating the scalar product of @ and b as ab keeps the notation simple, e.g.
(a®,al)(n%,n?) = (a®n® a’n! + a’n® aln'). We use subscripts to count the curves em-
anating from a given point and superscripts to number the coefficients of a polynomial.
The counting is cyclic, i.e. modulo the number of neighbors.

Sections and content:

In Section 2, we derive the conditions for a C! match between two surface patches in
terms of the BB form, i.e. as an (i,j,k)-match. In particular, we show that if the patches
are polynomial, then, without loss of generality, the degree of the ‘weight functions’ that
relate the directional derivatives along and across a patch boundary can be bounded in
terms of the patch degrees. In Section 3, we characterize the compatibility problem for
surfaces and compare the results with those in [Sarraga 86] and [Watkins '88]. In Section
4, a technical section, we derive the pairs of configurations and matches appropriate for
the quartic setup. These pairs are used in Section § to state the algorithm for coding.
Section 6 presents an algorithm for constructing quartic curve meshes that are compatible
and Section 7 concludes with some examples from our implementation.



2. The C! conditions

We now review the definition of a C! surface match and specialize it to patches in BB
form. Consider a patch p parametrized by u and v and its neighbor patch, g, parametrized
by u and w as depicted in Figure 2(a) below.

=

w
Figure 2(a): Parametrization of abutting patches.

We concentrate on the common boundary where » = w = 0. Assuming that both patches
are sufficiently smooth we use the subscripts u, v and w to denote partial derivatives along
the boundary, i.e. p, := %p(u,ﬂ), Dy i= -,f—up(u,O) and g, := g%q(u,O). Then p and ¢ are
part of a C?! surface if and only if the surface normal is well-defined on both patches and
agrees at every point of the boundary:

X
"I;: v i“” = "1;" : z:" , [matching normal] (1)
u /)
Pv X Py £ 0. [non-vanishing normal] (2)

Note that we were careful with the order in the vector products. The following equivalent
characterization of the C! conditions for patches can be found, e.g. in [Peters "88b].

Lemma 2.1. [C? conditions] A match between two smooth patches p(u,v) and g(u, w)
across a common boundary parametrized by u is C! if and only if there exist scalar-valued
functions A, p and v of u such that, at each point of the boundary,

APy = ppy +vqyw [common tangent plane] (E)

Py X Py £ 0, pv>0. [proper orientation] (I)

We call ), z and v the weight functions of the match and use (E) to denote to the
equality constraints and (I) when we refer to the inequality constraints.

Corollary 2.2 below characterizes the weight functions in case p and ¢ are polynomials.
It ascertains that, up to a common factor, the weight functions are also polynomials and
that their degree is bounded in terms of the degree of the patches. A similar claim appears
in [Liu '86). To make our development precise, we define d? to be the degree of the
(univariate) polynomial p and set d* := dP, d” := dP* and d¥ := d? to avoid double
indices.



Corollary 2.2. [polynomial weight functions] If p and g are polynomials, then, up to
a common factor, A, 4 and v in Lemma 2.1 are polynomials in u of degree no larger than
d® 4+ d¥, d¥ 4+ d* and d" + d” respectively.

Proof. We denote the Vector-valued polynomial corresponding to the i** and j th
eemponent of p, by p/ and define, for i # k # j and {i,5,k} = {1,2,3},
- oL T L
Ii := det( :g,—.‘ﬁ:,’) mp 1= det(.'qi-", :,;,') ng 1= det(.'g:',j,kf,j).
1 F S o ;
Since p, and p, are linearly independent by (I), there exists a k such that n is a nontrivial
polynomial."Applying Cramer’s rule to (E), i.e. to

(Pu,Pv) (_/\#) = Vqw,

we obtain the formal solution along the boundary as

A et

—p == m |- (3)
n

v ng

It remains to show that all roots of ny are also roots of I and m; so that common factors
can be cancelled and the solution is welldefined. For this it is sufficient to show that A
and g are continuous at any root u of ng. Since (I) implies that there exists an I # & such
that n;(u) # 0 and hence a formula like (3) with k replaced by [ holds at and in some
neighborhood of u, the continuity is established. &

The C! conditions for abutting polynomial patches are often stated in the form

Guw = &Py + Bpv.

From this formulation one can easily arrive at the conclusion that mathematics or simplic-

ity demand that a and § have to be polynomials. However, as the lowest degree schemes

i listed in Table 1 demonstrate, this conclusion is wrong. Rathex;, Lemma 2.1 and Corol-
lary 2.2 make clear that  and § are’in general (even after removing a common factor)
rational functions, i.e. a polynomial divided by a polynomial. The assumption that o and

8 are polynomials is equivalent to assuming that either y or v is constant; hence we will
refer to it as the ‘constancy assumption’. To illustrate the prevalence of the constancy
assumption, we list some papers that derive C? conditions or apply such conditions in the
construction of surfaces. Most references initially state the C! conditions in full general-

ity, i.e. as continuity of the surface normal or as continuity of the appropriate connecting
diffeomorphism. However, once the weight functions are derived in the BB setup, one of

the weight functions is treated as a constant. We looked at [de Rose "85 p.59], [Farin 82 p.
277], [Farin '83 p. 50,57], [Farin '88 p. 248,250], [Faux, Pratt '79 p. 216}, [Hahn 87 p. 14],

~ [Hbllig '86 p.14], [Jones '88 p. 329], [Sabin *77 p.85], {Sarraga '86 p.5], [Shirmen-Sequin
| —87-p-285Hvan Wijk '84 p.4]. [Liu 86 p. 438] also proposes constant coefficient matches for
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the surface construction, but additionally gives an example of a surface continuation based
on ‘non-constant’ smoothness conditions. More generally, the cubic mesh interpolation in
[Peters '88b) shows that it is not only correct but also very useful to explore the possibil-
ity of having all three weight functions non-consiant. The C! matches are correspondingly
characterized by the triple (degree of A, degree of u, degree of v). With this notation,
we can interpret Piper’s solution [Piper ’86 p.227] as a (2,1,1)-match and the construction
of [Chiyokura, Kimura '83 p.295] as a (1,1,1)-match. An explicit statement of the cusping
conditions in terms of the BB form is also useful. Piper, in his reference, poses the question
as to whether his construction isffree of cusps. A close look at the inequality constraints
of Lemma 2.1 proves that Assumption 1.1.c is both necessary and sufficient for his and the
construction in [Peters '88b] to be free of cusps. |'The appropriate ‘non-constant’ cusp-free
(i,j,k) C! matches for our surfate construction are derived in Section 4.



3. The ‘corner compatibility problem?

For ‘blending’ approaches [CGons-"67], it is well known (see e.g. {Gregory '74]) that
Assumption 1.a, i.e. the existence of a well defined tangent plane at the data points, is
not sufficient to guarantee the existence of a C ! mesh interpolant. In particular, since the
blending approaches prescribe normal derivatives along the boundaries, puy and p,, are
given independently at any point P. Thus, if the patches are polynomials and P has n
neighbors, the data must satisfy n additional constraints of the type puy = pvu at P

However, as Sarraga points outy for rectangular patches in BB form [Sarraga ’86]
and Watkins, for rectangular patches of arbitrary polynomial representation [Watkins 88|,
curve meshes by themselves need only satisfy one constraint per even-point and none at
odd-points. In particular, both authors draw attention to a certain matrix that arises in
determining ‘twist coefficients’, the major step in the interpolation process. This matrix is
always invertible at odd-points, but rank deficient at even-points. Related observations on
the influence of parity on the solvability of a crucial set of equations appear in@[van Wijk
'83] and [Peters 88a; hence the-interest-in-fully-understanding the-problem. For 4-points,
Sarraga exhibits an easy-to-check sufficient condition listed here as Assumption 1.3.a. The
challenge is to constrain the right hand side of the rank deficient system just-right-to make
it solvable. Unfortunately, this condition and thus Sarraga’s construction for even-points
applies solely to points with exactly four neighbors. For arbitrary even-points and non-
rectangular patches, the compatibility question: “how must a curve mesh be constrained
to allow for interpolation by a surface” was left unanswered.

This is where Lemma 3.1 below comes into play. It applies the analysis of Sarraga and
Watkins to arbitrary combinations of total degree and tensor product patches of possibly
differing degree. The heart of the analysis, however;is Theerem-3:2. Theorem 3.2 gives the
precise necessary and sufficient condition that guarantees that a quartic or higher degree
polynomial patch can be smoothly fitted into a mesh of cubic curves. The condition is
wealker than Sarraga’s (one ‘scalar constraint’ vs'one ‘vector constraint’) and indicates that
(a) the compatibility constraints at any point are independent of just how many edges

there are to the impinging patches, and that
(b) the compatibility constraints apply to rational (polynomial) patches in the same fash-

ion as to polynomial patches unless the denominator vanishes at all data points.

3.1 Derivation of the ‘twist equations’

By Corollary 2.2, the weight functions are, without loss of generality, polynomials,
and hence differentiable. The gist of the compatibility problem can be captured by differ-
entiating the C' equality constraints,

APu = ppv + Vqu, (E)
with respect to u and evaluating the result at u =0, i.e. at a data point P:

(Aupu - HuDy — Vqu) + )\Puu = UPuv + Vquw- (Eu)
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The data are ‘compatible’ if the system of constraints that arises from collecting (E,) for
each mesh curve incident to P, is solvable.

For mnemonic efficiency, we denote the BB coefficients of py, p, and gy by u’, vi and
w’, The terms that appear in (E,) are then given by

(A%, d*\Y, .. ) (u®, d%l, .. ) =

I

(a0, d*ut, .. )0, d%t, . ) + (0, 8t L ) (w?, dV et L), (E)

where d* 4+ d* = d* + d? = d” + d*. (We donot need to worry about the meaning of the

AL, yl, pl, etc. terms in case these polynomials are just constants,since then d* = d* =

... =0.) To obtain the matching constraints at P, we simply set the coefficients of the

scalar product polynomials with respect to the BB basis to zero. This yields the tangent
constraints

20u0 = ;00 + 100 (Eo)

and the twist constraints
d* A% 4 d*Atu® = d¥p! + dF plo® + dVvu! 4+ d¥ulwP. (Eh)

We now look at all n mesh curves incident to P aumbering the patches and curves clockwise.
With.a > 0 (to comply with (I)) and scalar, the tangent constraints are equivalent to

77:‘“? = k,-v?+(1—k,-)w? A? = a;7; ,u.? = a;ky V? = a;(1 - ki), i € {1,...,n}. (E})
Having thus determined all ; and k;, the twist equations become

dfaimiu} + d}Mud = dYoikiv] + dfpiol + dPai(l - kdw; +diviw].  (E})
Since the boundary curves are given, u?, v? and w? are fixed (and coplanar), and the
u} are fixed (but need not lie in the same plane). Only the vectors v} and w] and the
scalars a;, A}, p} and v} are off-hand still free. We say ‘off-hand’ since the degree of the
weight functions may be so low that A}, u} and v} are already, up to the common factor
a, pinned down by solving the tangent equations at the neighbor point F;. Similarly, if
the degree of p, or g is low, v! and w! could be determined at this stage. Cubics, for
example, have overlapping twist constraints, while bicubics have separated ones. Next,
we raise the degree of any two adjacent boundary curves to the same value, i.e., with
pi(v) := pu(0,v) and piy1(u) := py(u,0), to d* := max(dP:,dPit!). This avoids the purely
notational problems that arise, e.g. in the analysis of cubic-by-sextic patch complexes.
With the cubic-by-sextic patches raised to a bisextics, we-have-achieved-thwt the interior
Bézier coefficient closest to P in the i** patch is welldefined. We call this coefficient the
‘twist coefficient’ (for historical reasons) and denote it by ¢;. A comparison of the degrees
of freedom with the number of equations leads to the following approach: pin down the
scalar variables by some rule and try to solve for the twist coefficients. That is, solve

kidZytion + (1 = k)dl i = 7, (EY)

10
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where 5
figh= a—i(d?)\?u} + dMAtuld4

£0(d™ By + (d7y — d¥0?) — dpdol+
V(d™ B; + (dF — d¥)w?) — d¥v}w!

and B; := u? + P, the Bézier coefficient on the boundary curve closest to P.

Figure 3(a): Orientationat a data point

The twist constraints at P then consist of 3 independent n by n systems — one for
each coordinate. Each system is of the form

KT =R, (T)
where
ditk; d7'(1— k) 0 0
0 dy*ka 0 0
K= : : g 0 0 ,
0 0 e dR ke d™(1 — kn-1)
d7*(1 — ka) 0 0 ditky

tl ™
T:=(§) andR:=(5).
tn rﬂ

Unfortunately, as Lemma 3.1 shows, (T) is not always solvable given that the contribution
of the u! terms in R is arbitrary.

Lemma 3.1. [invertibility at odd-points] The matrix in (T) is of full rank if and only if
P is an odd-point. Otherwise its rank is deficient by one.

Proof.  Looking at the u? as 2-vectors in the tangent plane, we have from (Eg) for
the it* edge:
_ det(uf, u?—t—l)
= T, %y, — 0y
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On the other hand, for any n-vector ¢ € ker(X)
kidi't; + (1 - k,’)dﬁ_lti.;.l =0,

and thus n
kid™
-——i‘ = {5.
;-I;'! ( l)dz-l-l
Since
n n det.(u.,ul_1
ciet.(u‘,u.._|_1 ul 1) —(_\n
= =1 = det(ui,ﬂ._l_l ul_,)
the kernel is nontrivial if and oaly if » is even. &

3.2 The ‘extended twist equations’

Lemma 3.1 makes clear that our only hope for solving (E,) at even-points lies in
adjusting the scalar weight coefficients so that the right hand side lies in the range of K.
The net effect of treating the scalar coefficients as additional variables is a reduction from
one vector-valued constraint (Lemma 3.1) to one scalar-valued constraint (Theorem 3.2).
This constraint has an easy-to-check sufficient condition in Assumption 1.3.

Theorem 3.2. [sufficiency of C? data] In general, system (T') is inconsistent for even-
points. However, Assumption 1.3 is sufficient to guarantee a solution.

Proof. We first restrict our attention to the A} terms and show later that the
analysis remains the sarne if we allow additional scalar coeﬂic1ents to vary. With uf be
the first component of u, R'*(i) the first component of (r; — u—'_d"/\1 u?), L the n- _vector

corresponding to the A} a.nd

_iiul 0
0 —i':-u 0
U* .= z (4)
* - -I i
0 0 —ZnyZ
(E.) becomes
T
kK o o v\ (7, R
0 K 0 U¥ T | = R, (T
0 0 K U~ I R'*

We show that (T') is not always solvable. To simplify the analysis, we transform the
coordinate system rigidly, preserving orientation and angle, so that P is mapped to the
origin and the normal N at P to (0, 0, 1). This preserves the block structure of (T'):

K 0 0 U ;‘ R,
0 K, 0 Us T2 =| R |. (")
0 0 I 0O If

12



Since all the u? lie in the same tangent plane, the transformation creates a 0 matrix in the
lower right hand corner. On the other hand, the partial system corresponding to the first
2n equations is of full rank since there are exactly two linearly independent vectors among
the u?. Consequently, we focus on K373 = R3. The only contributions to R3 comes from
the A%}, terms (cf. (EY)), where the second subscript ‘3’ indicates the non-tangential
component. All other terms are vectors in the tangent plane and hence appear only in R
and R,. Since K3 is of rank n — 1, (T") is solvable exactly if Rj is in the span of the first
n — 1 columns of K3. That is, if and only if,

drk,  dP(1—k) 0 Aluis
0 d;nkg 900 0 ’\gu%:i
det| S 0— | =0 &
0 0 con AP Eng /\?;—1“}:-1,3
dm(1 — kg) 0 0 Alns

Assumption 1.3.a implies (5) by stipulating that )Y be zero. To show the sufficiency of
Assumption 1.3.b we look directly at (E,). Since there exists a symmetric matrix @ of
rank two such that Nsuy = —84Qsy, the normal component of (E,) at u =0 1is

_Asquu = [-‘Nsuv + I)Ntuw. (Etfl.v)

If we choose the normal component of each t; so that s,, satisfies Nsy, = —s5y,@s, at the
data point, equation (EY) reduces to

(Asy — pSy — Vtw)@su =0 at u=0

which is already implied by the tangent constraints (Eq).
We could try to make use of the other scalar variables in (E;). However, since the
corresponding vectors u?, v? and w? all lie in the same (tangent) plane, we cannot improve

the result. ) l

3.3 Implications of Theorem 3.2

A look at the proofs of Lemma 3.1 and Theorem 3.2 confirms that compatibility at
a point is independent of just how many edges there are to the impinging patches. We
record this fact in the following corollary.

Corollary 3.2.a. The compatibility problem exists for any combination of 3- or 4-sided
or even n-sided patches.

Next we consider the problem of immediate interest to the practitioner: how can one
obtain ‘compatible’ meshes? We discuss some alternatives. If df" = ... = d7, then (5) can
be expressed as

n-1 j
: 1— k-
Augg = Z(-)""I(H %)A?u}a. (6)

j=1 =1
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Since any change in the A{ or k; has to come from a perturbation of the tangent vectors, and
hence will affect many other terms, this suggests adjusting the ul;. For cubic boundaries,
however, any change in ul; has also an impact on the equations at P,. A better approach
seems therefore the local and symmetric enforcement of Assumption 1.3.b. However, local
interpolation of positional, normal and curvature data by a cubic, as discussed in {Sabin
'68], [de Boor, Héllig, Sabin '87] and [Peters 88c|, is not always feasible. This leaves us
with the alternative to use global cubic spline interpolation for ‘regular’ meshes or to shift
to quartic mesh curves. The latter idea is pursued in Section 5.1.

Next, we establish that Assumption 1.3 is in general not necessary. For this recall
that the second fundamental form consists of three pieces of information. If, at a 4-point,
at least one of the two pairs of opposing tangents is not collinear, then three of the mesh
curves can be used to define the form; the fourth curve then has to satisfy a single scalar
constraint. But, even though this constraint implies (6) and acts on the same variables as
(6), it is not equivalent.

Claim 3.2.b. The existence of a solution to the compatibility problem at a 4-point does
not imply Assumption 1.3.

We prove the claim by exhibiting data that can be extended to a set of compatible
data, but neither satisfies the collinearity nor the curvature condition of Assumption 1.3.
Example 3.3. We choose N = (0,0,1) »% = (1,0,0), v} = (0,-1,0), »§ = (-1,1,0),
uY =(1,1,0), a = 1. Then

1, 1
Ll—ia)\l— z,kz—

1 2
r)\g = _§$k4 = '3'!’\94=

| =

1

1 1
, A =-§,k3= 3

rI| -

and Assumption 1.3.a does not hold. Hence we focus on the curvature assumption, 1.3.b.
On one hand, compatibility, (6), implies

1-k)1-% 2
ra = fhr1 — (( ’:3562 1))7'2 + fars = fir1 — 372 + Bars, (7)
for r; := Alu); and some constants §; and f;. On the other hand, Assumption 1.3.b

implies —uQu) = Niu4. Hence, using the tangent equations, (Eo), we get
—((1 = ka)ud + ku)Q((L — ka)us + kgul) = NXiry
which are, by assumption, equal to
(1 — k4)*Naa + E3Na; — 2(1 — ky)ksulQul = NAjr,.

We subtract the analogous equation for i = 2, i.e.
(1 — k)2 Ny + k2 Nz — 2(1 — k2 )koulQui = NAjr, and eliminate @ to obtain

(1= ka)ka((1 = k)2 NGy + KEN@is)—(1 — ka)ks (1 — ks)?Niiz + kZNT,)

8
= N(l T k4)k4}\g'f‘2 - N(l - kz)szg‘l“p ( )
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It remains to show that (7) does not imply (8), hence does not imply Assumption 1.3.b.
We replace r4 in (8) and collect the terms associated with Nr,. Since rq is unrestricted
(we can always use r3 or 1 to enforce (6)), the coefficient of N7 must vanish. However,

2 1
(1 — kq)kg A} — §(1 — k)M = =7 # 0.

)
Finally, we consider rational polynomial paiches, i.e. patches of the form S§/s where §
is a vector-valued and s a scalar-valued polynomial. We show

Corollary 3.2.c. The compatibility problem exists for rational polynomial patches unless
the polynomial in the denominator vanishes at all data points.

Proof.  Since Gregory's patches (cf. [Gregory'74], [Chiyokura '83]) are in rational
form where S is biseptic and s biquartic for 4-sided patches and the degree is 7 and 3
for 3-sided patches, and since these patches match arbitrary cross derivatives at the data
points, compatibility is not a problem. Conversely, to obtain the advantage of the rational
setup, s must vanish at the data points. For, if s(0) # 0, we may assume, after scaling and
shifting, that s(0) = 1 and S(0) = 0. Differentiating the rational equivalent of (E),

Sus + 525 Sy8 + 5,5 Tot + tuT
2 =¢ z +v 2 ’
8 3 t

A (Erat)

with respect to u, we obtain

04 Sus+ 545
33

Sy

Au

Sus ";sus + A(Suus + 23ufu + SuuS
S K]

) = AuSy + ASuu =

Pusv + #(Suu + $uSu — SuSu) + v Ty + V(Twu + twSu — 3uTw)-

That is, we arrive at the same setup that we discussed in Lemma 3.1 and Theorem 3.2.

&

A look at the C! equality constraints for rational polynomial patches, (Em), shows
that the high degree of the Gregory patches is in the nature of the construction: the degree
of the numerator has increased to d° + d” —1. For example, if the weight functions x and v
are constant, then the number of vector equations rises to d® + d* vs d° in the polynomial
case; yet there are only d° additional scelar degrees of freedom.

3.4 Applications to splitting and Sarraga’s scheme

We will now examine why splitfing, i.e. the partitioning of one triangle into three
subtriangles at the centroid, resolves the compatibility problem even though it creates
even-points. A partial explanation is provided by observing that the splitting technique
generates the coefficients of the new interior boundaries in dependence on the twist coef-
ficients and not vice versa (cf. [Farin 83], [Piper '87], [Peters *88b], [Shirman, Séquin 87]).
The other crucial ingredient is the fact that the new coefficients are chosen to be straight
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averages of their surrounding coefficients. Assuming that the twist coefficients, ¢;, have
been chosen in accordance with (E;) at the original boundaries and that the degree of all
triangles is the same, say d, we only have to check that (E}) holds at the new boundaries:

dkitisy +d(1 — ki)t = . (E7)

The averaging construction implies that A = 3/2, y = v = 1/2 and a@ = 1 for any new
boundary so that d* = d* = d” = 0. This simplifies r; (cf. (E{)) to

T = 1.5du} 4 p?dB.- + v?dB,-.
Dividing by k; =1 —k; = u? = v? and d, we obtain
ti-1 +t; = 3u} +2B;. (E?)

By construction, u! = (1/3)((ti=1 — B:) + (¢ — B:)), so that compatibility is achieved.

[Sarraga '86)] offers a different approach to the compatibility problem than we are
about to give. It is based on the fine observation that, if we choose the degree of the
patches sufficiently high, then we can set the coefficients of the troublesome terms in (E,)
to zero (see also [Hahn 87] for a similar approach). This leads to particularly simple twist
equations, as we will now show. We focus on 4-points which, by Sarraga's assumption,
have Al = 0. The nontangential u! terms (cf.(E{)) are removed by setting also the second
term of A to zero, so that A = {0,0,)%,...}. If u® # p!, the algorithm selects u so that
Z4(0) = Zpu(l) =0, ie. p:= {1 3u%3u!, p'}. This eliminates the v° terms on the
right hand side. However, since s, and ¢,, are at least cubic, and the algorithm is based
on the constancy assumption, v = 1, this raises the degree of ¢, to six: d¥ +d" =d¥ =
d’ +d* > 3+ 3. Only for u® = u? can d¥ = 3 be achieved. Altogether (T) now simplifies
to the rank-deficient homogenous systems

0 = 3u%]! + 6w}, ie{l,...,4} (T5Y)
for g # p', (N =2l =p! =d¥ =0,v" =1,d¥ =6,d° = 3), and
0 = 6utv} + 6w}, ie{1,...,4} (T5?)

for fd=p!, W =N =gt =¢d¥=0,"=1,d” =6,d" =6).
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4. Configurations and matches

In this ‘technical’, yet important section, we concentrate on the C! equality conditions for
a cubic boundary mesh:

Ml = pub+vs where u={u’2a,u'}.

Choosing patches of degree 4, we keep the compatibility systems separate (cf. Section 3).
For each configuration we derive two types of (i,j,k)-matches depending on the ratios ko
and k, that we obtain from the tangent constraints:

T,','u? = k."U? +(1- k,-)w?, i e {l,... ,n}. (EB)

If ko # k), we need a non-constant weight function for at least one of s, or ty, ie.
d* +d¥ > 0. We will restrict ourselves to a = 1, except for 3-4 configurations. The
analysis of the 3-3 configuration with ko # k1 suggests how to fit an irregular n-gon with
quartic triangular patches, a problem raised in [Shirman, Séquin 87).

4.1 The 4-4 configuration
The case kg # ki is the paradigm of our construction. With

0 4%, 67,40, v}
w?, 4w®, 6, 4w, w!}

v=:{v
w=:{

we have the (3,1,1)-match A =: {A%,33%3,3A10, A}, p=: {p®,p'}, v = {v9,v1}. Setting
each coefficient with respect to the BB basis to zero, we obtain the following conditions
for a C! match.

A0 = 4000 4 1000 (Eo)
3A01u0 + 2,\0- - 4#’0‘001 +u1v0 + 4v°w°1 L ylwﬂ (Efti)
301040 4 62023 + A0ul! = 4p 0% + 6u°% + 4w + 6% (EY)

320141 4+ 6A1%% 4+ AMu® = 4% + 645 + 4% 4+ 6v' %
3A10y1 4 2alg = 4pt00 + %t + 41w + 1 w!
Al = plo! + vlw?

The tangent equations (E¢) and the compatibility equations (E,) determine all the coeffi-
cients except for 7 and @. These we obtain by enforcing the conditions of type (E3*):

P+ (1—pw= %(3,\1%" + 62014 + A%u! — 4pt0® — 4t w®)
(@)
po4+(1—p')w = -;—(3)\01111 + 62107 + A1 — 44000 — 40%010). :

R 17
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gL!ﬁ-rQl- reneol s

(0 w2l 2eI,2) Gup) (o)
Since u° # u!, by assumption, we can solve for 7 and .
If, however, ko = k1, we choose a (2,0,0)-match with A =: {3°,2X, A1} and p =: {u},
v =: {v}. This leads to the system

040 = po® + pa” (Ey)
2Xu0 + 2A0'I_L - 4,&'001 + 4111.001 E'44
- 1
Mu® 4 4+ X! = po + v (E;“)

23u® + 22%% = 4pv® + 4vw®

Al = ,m.r1 + vw!

Again, ¥ and 7 are undetermined after enforcing (Eo) and (E;). However, this time there
is only one equation. We enforce this equation by solving

.1 _ .
min (" - o+l - @)

s.t. Alul 4+ 4hi + AOu? = pb + v, (10)
As usual, we use degree raising or averaging to obtain the estimates v* := 4v% + 401° —
(v° + v!) and w* 1= 4w + 4w!? — (W +w!).

Remarks:

(a) The scalar variable X is shared by (Ef*) at both endpoints of an edge. In general,
this does not invalidate the approach taken in the even point case, since the number of
incident edges is at least four. That is, we can associate two X's excluswely with each data
point, say P, and solve in such an order that all the X's that are not associated with P are
determined before solving for P.

(b)If ko = k1 and X = X? + A!, then (10) enforces a ‘degree raised’ cubic solution.

4.2 The 3-4 configuration
Let ¥ correspond to a triangular patch:

7 =: {v?, 30,3010, 0}

@ =: {w?, 4w, 6w, 4w, w'}.

We choose the (2,1,0)-match A =: {X%,2X,A'}, p =: {p°, '}, v =: {v}. This leads to the
system of equations

A% = 1%  po® (Eo)
22u® 4+ 20% = 3u%0% + plo® + dv® (E3)
Alu® 4 4hd + A% = 3ut 0" + 3% + 6vw (E3Y)

22u! + 20\ 'z = 3#1 10 4 4% 4

Ay! = plot + vt

18



After solving (Eo) and (E;), equation (E3*) is enforced by setting
6uw = AN u® + 43z + A0u! — 3ul0? — 34010 (11)

Remarks:

(a) The scalar variable ) is shared at both endpoints of an edge. (Cf. Remark (a) in
Section 4.1.)

(b) The weights computed by (Ef) have to be properly scaled, so that v agrees at both
end points.

4.3 The 3-3 configuration

This section explains the role of Assumption 1.2, namely why 3-3 configurations have
to be restricted in the quartic setup. First, we look at the case ko = k;. Given that

=: {v?,3v%2,32'%, 01}
o

v
w w?, 3w, 3w, w!}

the corresponding choices for the scalar weight polynomials are A =: {A% A1}, p =: {s°},
and v =: {#°}. That is, we choose a (1,0,0)-match. Setting each coefficient to zero, we
have the following conditions for a C' match:

A0 = %0 4+ %0 (Eo)
Aly® 4 22%% = 3u%0° 4 30w (E3®)
A0yt 4 201a = 3000 4 3 w0

Al = 10 + %01
Thus, for kg = ki1, the C! match is established once equations (Eg) and (E,) are enforced.
Remark: There are no free A's.

The case kg # ki, however, has no easy solution.

Theorem 4.3. A 3-3 configuration with quartics does not allow for a local C! match if
ko # k.

Proof. We show that the degrees of freedom in the quartic patches do not suffice
for a (2,1,1)-match. Since no degrees of freedom are gained by going to higher order
matches, the general result follows. Again we have

0, 309!, 3010, v1}

w?, 3w, 3w, w!}.

o
o

U=
uw =
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The (2,1,1)-match implies A =: {1%,2X,A'}, u =: {p®, 4!} and v =: {¥°,1'}. This leads
to the system of equations

A0y = 00 4+ 000 (Eo)
22u® + 2204 = 30! + plo? 4 300w 4 v1wf (E?)
A+ 423 + A%t =3t + 30! 4 3vtw® + 30%w! (E3?)

22u! + 221G =300 + pP! + 3'w!? 4 P!

Aly? = plo? 4 1wl

Equation (Eg) leaves room only for positive scaling of the scalar coefficients. Since (Eq)
and (E3) pin down % and % completely, there are, in general, not enough degrees of
freedom to satisfy (E5*®). )

We propose to attack 3-3 configurations with kg # k; by centroidal splitting as in
[Peters ’88b). Alternatively, one could work with quintic polynomials. The formulas for
the different configurations and matches carry over and only the degree has to be raised.
However, working entirely with quintics is costly and can be avoided if the design uses only
isolated triangular patches.

Theorem 4.3 shows that fitting an irregular n-gon with quartic triangular patches
as in [Shirman, Séquin 87} is only possible if the boundary curves are chosen such that
ko = k1. If the n-gon is regular, a regular ‘star-like’ construction for the tangents at the
splitting point is natural and leads to ko = k1. For irregular data this construction can
be altered so as reflect the data while maintaining equality of the tangent ratios. If n and
thus the splitting point is even, the quartic mesh curves of Section 6 can be used to ensure
compatibility.



5. The algorithm: interpolation of a cubic mesh

The algorithm determines the Bézier coefficients proceeding from the data points to the
interior.

step 1: [Determine tangent ratios] At each data point, solve
niud = kvf + (1 - kiJw} (Eq)

for k; and n; and set A} := a;ni, pf = aik; and v) == a1 — ;).

Remarks:

(a) Assumption l.c, which stipulates the proper distribution of the neighbors of any point,
implies 0 < k < 1. This guarantees that the match satisfies (I}, and hence is cusp-free.

(b) A 3-3 configuration with ko # k; requires special treatment (see Section 4.3).

(¢) The weights of a 3-4 configuration have to be properly scaled (see Section 4.2, Remark
(b)). Otherwise a = 1 is sufficient.

step 2: [Determine twists] If the number of incident edges is odd, solve (T) with A} chosen
by degree raising. Otherwise solve (T'). Since the corresponding system is underdeter-
mined, we propose to enforce

L P !
min 5 3 (I = l* + 147 - )
i=1

K o o U\ (%, R
st. | 0 K 0 UY s | = RY |,
0 0 K U® I R’*

where t¥ and A} are ‘desirable’ values for ¢; and A]. In particular, we propose to use degree
raising to obtain the A}, e.g. as 2A(0) + A(1) if A is cubjc, and, following [Sarraga ’86], use
blending for the estimate tf := P +u? + uly;. \Rok

Remark: The least squares solution is also applied to the global boundary of an open
surface where the constraints number one less than in the interior.

a a o =] =] =)
=] a
=} ] [°) n}
a o a
o o o a =] a

O boundary cocfficients

0 ‘twist’ coefficients

Figure 5: Coefficients determined after step 2

step 3: [Determine the interior coefficients of biquartics] For biquartic patches: compute
the middle coefficients of the first layer using (9) or (11) as detailed in Sections 4.1 and
4.2.
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step 4: [Determine the center coefficient of biquartics] For biquartic patches: determine
the central coefficient as an average of the surrounding coefficients.
Remark: The central coefficient of biquartic patches can be chosen freely.

6. Generation of compatible meshes using quartic space curves

The goal of this section is to locally construct a mesh of piecewise quartic space curves
consistent with given second order data at the mesh points. A similar construction can be
found in [Peters 88c]. We do not repeat the match and configuration pairs of Sections 4.1
to 4.3, since it is straightforward to adapt the formulas for & = {u?,32%,3u? «!}. (It
took the author less than an hour to adapt the implementation and generate Figures 6(e)
and 6(f).) Note, that due to higher degree of the curve mesh, we loose one scalar degree
of freedom.
We start the construction of

p(u,0) =: {P°,4B° 6C,4B?, P'}

[}
by fitting a cubic to the C! data at the end points. In particular, cornputing\t{ as the
projection of P! — P9 into the tangent plane at P!, we obtain C by raising the degree of
the cubic {P? 3(P° + 1d°),3(P? — 3d'), P'}:

Ci= %(P“ + P+ %(d“ —d).

With C thus fixed, we can match the second order information by setting B := P' 4
(—)!6*t* where t* := d*/||d*||. Dropping the superscript i for simplicity, we can compute §
to match &, the normal curvature in the direction ¢:

s _Bp x g fast x12(C —B -6 3fit x (C - P)f
AT FEFaE = 45 -

This gives

B°=P°+ \/3"*“ x(C = POl // I, £0

459

If the second fundamental form is specified by the principal direction £ and the two principal
curvatures Kmin and Kmax, £ can be computed as

K= ""max(&)2 + &min((§ % N)t)zz’* o



7. Examples

In this section, we display some of the surfaces generated by the algorithm. The first
four surfaces interpolate cubic curve meshes, while the last two match quartic boundary
curves. The cubic meshes are generated by prescribing the positions and normals of a set
of data points and computing a curvature estimate. We then followed the approach of
[Sabin 78] to obtain curves compatible with the curvature data whenever possible. The
input of Figure 7(a), for example, consists of 4 points equally distributed on a sphere. The
figure features six 3-3 configurations with kg = k;. All points are 3-points. The ‘cube’
of Figure 7(b) illustrates 4-4 configurations. To obtain matches with kp # k1 the upper
right front point of the cube is been pulled up and towards the viewer. In both figures we
display the ‘z-buffered’ and shaded surfaces overlaid by a B-net enlarged by 5%.

¥ rz.—jf -‘-‘-3'[':: 2y i
S 24 Sy
st el it
E e i o) 3
G | et 595
e H :
T ipaaber 1T H i b
S AT
1 - e A ik £ 5
- 7 ”["_:.‘.f. e
AR Sy e vt
e Ay h
TRHEiE
Sy
By LT

Figures T(a-b): Interpolation of tetrahedral and (perturbed) cube data

In Figure 7(c) we see the algorithm applied to mixed configurations. The mesh forms
a prism: it bounds three rectangular and two triangular facets. Again the upper right front
point has been pulled towards the viewer to obtain different types of matches. The four
rectangular patches displayed in Figure 7(d) form a saddle (top view). Its nine data points
can be easily identified by their white neighborhood, a result of the coincidence of light
and normal directions. We used variations of the saddle data to test the implementation
according to Theorem 3.2. The center point is a 4-point, and the setup in Figure 7(d) is
chosen such that the mesh curves only conform to a second fundamental form but don’t
satisfy Sarraga's assumption. Figure 7(d) is also interesting in that it displays an open
surface. The algorithm adapts in a straightforward fashion: the twist equations are solved
via least squares with one fewer constraint.

Figures 7(c-d): Prism and saddle

For comparison, we interpolate the same data first with a quartic curve mesh generated
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according to Section 6. The quartic mesh resolves most of the problems, but the restrictions
on 3-3 configurations suggest that splitting should be used in addition.

Figures 7(e-f): Prism and saddle over a quartic mesh.

Acknowledgement: I thank Carl de Boor for his comments and his help in proving
Corollary 2.2.
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Appendix: Savings for ‘regular’ 4-point geometries

In this section we focus on meshes or parts of meshes restricted to satisfy:
ko =k and n =0.

The reference [Faux, Pratt ’79, p.215] points out that ko = k; is a strong restriction
on rectangular meshes [Faux, Pratt '79, p.215]. However, when triangular patches are
included, this argument is less compelling. For example, we can design simple features like
‘suitcase corners’ in this setup. We consider the special setup since it offers considerable
savings in storage and complexity. Since kg = ki, the weight functions p and v may be
constant polynomials. Further, we can limit ourselves to patches of degree three. Thus
A = 0 and the (1,0,0)-match for a cubic 4-4 configuration simplifies to

0 = px{v°,30°%, 3%, v'} + v{w?, 3w", 3w, w'}.

Once g and v are determined from the tangent constraints (o = 1), we only need to solve

p® = —p

uol® = —pw!®.
Similarly, for 3-4 configurations, we have
0 = {u, u}{v°,28,v'} + v{w® 3w, 3w, w'},
and, for 3-3 configurations,
0 = p{v°,25,v'} 4+ v{w®, 2w, w'}.

The inclusion of triangular patches leads to non-local systems of equations, since
the compatibility conditions at adjacent data points share the center coefficient of the
cubic. This non-localness is, however, bounded by any ‘enclosure’ of bicubic patches, since
bicubics separate the compatibility conditions at adjacent points. Since A = 0 everywhere,
the compatibility constraints (T') are always solvable, and we have one twist coefficient per
system free to choose. For example, we are entitled to choose the interior coefficient of the
triangular patch in Figure 4.4 and can still solve (T) at the three corners of the patch.

Y
]
2
L/

Figure A(a): An ‘enclosed’ triangle (schematic view)

27



