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Summary A sharp bound on the distan
e between a spline and

its B-spline 
ontrol polygon is derived. The bound yields a pie
ewise

linear envelope en
losing spline and polygon. This envelope is parti
-

ularly simple for uniform splines and splines in Bernstein-B�ezier form

and shrinks by a fa
tor of 4 for ea
h uniform subdivision step. The

envelope 
an be easily and eÆ
iently implemented due to its expli
it

and 
onstru
tive nature.

1 Introdu
tion & main results

B-splines are routinely used as approximating fun
tions and to rep-

resent geometry for numeri
al 
al
ulations. A 
entral feature that

allows reasoning about these nonlinear pie
ewise polynomials is the

fa
t that the spline is 
losely outlined by its 
ontrol polygon, line

segments 
onne
ting the 
ontrol points. The eÆ
ien
y of many ap-

pli
ations, for example rendering or interse
tion testing, hinges on

a tight quantitative estimate of the maximal distan
e of the spline

from its 
ontrol polygon. However, apart from the 
onvex hull and

the min{max bound, no quantitive estimates exist to date.

This paper shows how to bound the maximal distan
e between a

spline and its B{spline 
ontrol polygon in terms of se
ond di�eren
es

of the 
ontrol points and linear interpolants of spe
ial pie
ewise 
on-

vex and nonnegative splines that depend only on the knot sequen
e.

The bounds yield pie
ewise linear envelopes 
onsisting of a positive

and a negative o�set of the 
ontrol polygon (
f. Figures 1 and 2).
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Fig. 1. A quadrati
 spline over the knot sequen
e (0; 0; 0; 1; 3; 4; 7; 8; 8; 8) with


ontrol points (0; 2; 4; 2; 0; 2; 3). The spline is shown in bla
k. The envelope a
-


ording to Corollary 1 is shown in grey. The 
ontrol polygon is 
overed by the

envelope.

In most pra
ti
al appli
ations, the 
ontrol points are varied far

more often than the knot sequen
e. For �xed knot sequen
es, in
lud-

ing the important 
ases of Bernstein polynomials and uniform splines,

the bounds require only forming the s
alar produ
t of the ve
tor of

se
ond di�eren
es of the 
ontrol points and a pre
omputed ve
tor.

The envelopes are as narrow as possible at ea
h 
ontrol point that


orresponds to a 
onvex or 
on
ave polynomial pie
e: one envelope

polyline mat
hes that 
ontrol point while the other envelope polyline

tou
hes the spline. This ensures quadrati
 
onvergen
e of the envelope

to the spline under subdivision as the number of in
e
tion points of

a spline stays �xed while more and more pie
es without in
e
tion

points are produ
ed.

The 
omputation of the envelopes 
an be further simpli�ed to

yield 
oarser envelopes expressed in terms of se
ond di�eren
es of

the 
ontrol polygon and the values of one nonnegative, 
onvex spline

that depends only on the knot sequen
e.

Fig. 2. A quinti
 spline and its envelope a

ording to Corollary 1 . The knots

are at (0; 1; 3; 7) and the 
ontrol points are (0; 1; 2; 0; 0; 1; 1; 0). The �rst and last

knot have multipli
ity 6.
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2 Notation

A pie
ewise polynomial p of degree d is in B{Spline form if

p(t) =

X

k2Z

b

k

N

d

k

(t)

where the 
ontrol points b

k

are real numbers and the B{Spline basis

fun
tions N

d

k

are de�ned re
ursively based on a nonde
reasing se-

quen
e of real numbers, the knots t

k

[dB93℄. We may assume that p

is at least 
ontinuous sin
e otherwise we 
an treat p as two seperate

splines. This implies that any knot 
an appear with multipli
ity at

most d, ex
ept for the �rst and last knot whi
h 
an have multipli
ity

d+ 1. Therefore the Greville abs
issae t

�

k

,

t

�

k

:=

1

d

k+d

X

i=k+1

t

i

;

are distin
t. We denote the line segment from (t

�

k

; a

1

) to (t

�

k+1

; a

2

) by

L

k

(t j a

1

; a

2

) = a

1

t

�

k+1

� t

t

�

k+1

� t

�

k

+ a

2

t� t

�

k

t

�

k+1

� t

�

k

:

and the linear interpolant of the fun
tion f at t

�

k

and t

�

k+1

as L

k

(f) =

L

k

( � j f(t

�

k

); f(t

�

k+1

)). The 
ontrol polygon `(p) of p is the pie
ewise

linear interpolant to 
ontrol points (t

�

k

; b

k

). That is, over the interval

[t

�

k

; t

�

k+1

℄ the k{th pie
e `

k

(p) of the 
ontrol polygon `(p) is given by

`

k

(p)(t) = L

k

(t j b

k

; b

k+1

):

We abbreviate `(p) to ` if the spline p is understood from the 
ontext.

The �rst and se
ond divided di�eren
es of b are

b

0

i

=

b

i

� b

i�1

t

�

i

� t

�

i�1

b

00

i

= (d� 1)

b

0

i

� b

0

i�1

t

i+d�1

� t

i

:

They are the B{spline 
ontrol points of the �rst and se
ond deriva-

tives of p. The 
entered se
ond di�eren
es of b are de�ned as

�

2

b

i

= b

0

i+1

� b

0

i

:

Only �nitely many B{spline basis fun
tions have support on some

part of [t

�

k

; t

�

k+1

℄. Let k and k be the index of the �rst and the last

B{spline basis fun
tion that are nonzero on some part of [t

�

k

; t

�

k+1

℄.

There will be more than d+1 su
h basis fun
tions if [t

�

k

; t

�

k+1

℄ 
ontains

one or more knots in its interior. Sin
e t

�

k

� t

k+d

� t

k+d+1

� t

�

k+1

, k

and k are related to k by k � k < k.
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3 Tight envelopes for arbitrary knot sequen
es

The key to deriving the bounds in this paper is to fa
tor the di�eren
e

between a spline and its B{spline 
ontrol polygon into two parts: the

se
ond di�eren
es of the 
ontrol polygon and nonnegative splines �

ki

that only depend on the knot sequen
e. The �

ki

are pie
ewise 
onvex

and therefore well suited for pie
ewise linear approximations. This

observation is made pre
ise in the following theorem.

Theorem 1 Let t 2 [t

�

k

; t

�

k+1

℄ and fun
tions �

ki

de�ned as

�

ki

=

(

P

k

j=i

(t

�

j

� t

�

i

)N

d

j

i > k

P

i

j=k

(t

�

i

� t

�

j

)N

d

j

i � k:

(3.1)

The di�eren
e between the spline p and its B{spline 
ontrol polygon

` is

p� ` =

k

X

i=k

�

2

b

i

�

ki

: (3.2)

The fun
tions �

ki

are nonnegative and 
onvex.

Proof We write p� `

k

over [t

�

k

; t

�

k+1

℄ as

X

i

b

i

�

ki

=

X

i

b

i

�

N

d

i

(t)�L

k

(t j Æ

ik

; Æ

i;k+1

)

�

;

where Æ

ik

= 1 if i = k and 0 otherwise. Only the �

ki

with k � i � k


an be nonzero on [t

�

k

; t

�

k+1

℄.

We show that �

ki

= �

2

�

ki

: the partition of unity

P

i

N

d

i

=

1 implies that

P

i

�

ki

= 0 and the linear pre
ision of B{Splines,

P

i

t

�

i

N

d

i

= t implies on the interval [t

�

k

; t

�

k+1

℄ that

P

i

t

�

i

�

ki

= 0.

Hen
e, for any i,

P

k

j=k

(t

�

i

� t

�

j

)�

kj

= 0.

For i > k,

�

ki

=

k

X

j=i+1

(t

�

j

� t

�

i

)N

d

j

�

k

X

j=k

(t

�

i

� t

�

j

)�

kj

=

i

X

j=k

(t

�

i

� t

�

j

)�

kj

so that �

ki

=

P

i

j=k

(t

�

i

� t

�

j

)�

kj

for any i. It is now straightforward

to verify that �

2

�

ki

= �

ki

. Summation by parts then 
ompletes the

proof of (3.2),

p� `

k

=

k

X

i=k

b

i

�

ki

=

k

X

i=k

b

i

�

2

�

ki

=

k

X

i=k

�

2

b

i

�

ki

:
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The fun
tions �

ki

are nonnegative sin
e their B{spline 
oeÆ
ients

are nonnegative by (3.1).

The 
onvexity of the �

ki

over [t

�

k

; t

�

k+1

℄ follows from the 
onvexity

of their B{spline 
ontrol polygons: for i > k, the part of the 
ontrol

polygon of �

ki

that in
uen
es �

ki

over [t

�

k

; t

�

k+1

℄ lies on the fun
tion

maxf� � t

�

i

; 0g while for i � k it lies on maxft

�

i

� �; 0g. In both 
ases,

the 
ontrol polygon of �

ki

, and hen
e �

ki

, is nonnegative and 
onvex.

The 
hara
terization of p� ` from Theorem 1 gives us a pie
ewise

linear envelope for p that improves in pra
ti
e on the 
onvex hull, for

example for the splines in Figures 1 and 2.

Corollary 1 Over the interval [t

�

k

; t

�

k+1

℄, the spline p is enveloped by

`+ L

k

0

�

k

X

i=k

�

�

2

b

i

�

ki

1

A

� p � `+ L

k

0

�

k

X

i=k

�

+

2

b

i

�

ki

1

A

; (3.3)

where �

+

2

b

i

= maxf�

2

b

i

; 0g and �

�

2

b

i

= minf�

2

b

i

; 0g.

Proof We have from Theorem 1

p� ` =

k

X

i=k

�

2

b

i

�

ki

=

k

X

i=k

�

+

2

b

i

�

ki

+

k

X

i=k

�

�

2

b

i

�

ki

:

The positivity of the �

ki

implies that the �rst sum on the right{hand

side is positive and the se
ond is negative and that therefore

k

X

i=k

�

�

2

b

i

�

ki

� p� ` �

k

X

i=k

�

+

2

b

i

�

ki

:

Sin
e the �

ki

are 
onvex over [t

�

k

; t

�

k+1

℄, they 
an be bounded linearly

to yield (3.3).

3.1 Implementation

The envelopes of Corollary 1 depend on the 
ontrol points b

i

, their

se
ond di�eren
es �

2

b

i

, and the values �

ki

(t

�

k

). In evaluating the sum

in equation (3.3) for some t, spe
i�
ally at t

�

k

and t

�

k+1

, it suÆ
es to

sum over all i 2 I(t) with

I(t) = f i j �

ki

(t) > 0 g ; (3.4)

whi
h is a subset of the integers between k and k.
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t

k

t

k+1

t

�

k

t

l

t t

l+1

t

k

t

�

k+1

t

k+d+1

Fig. 3. For a given t 2 [t

�

k

; t

�

k+1

℄, the set I(t) = f i j �

ki

(t) > 0 g is determined by

the positions of the displayed knots relative to one another.

We determine I(t) by inspe
ting equation (3.1): let t 2 [t

�

k

; t

�

k+1

℄

and let t

l

< t � t

l+1

be the knots immediately to the left and right

of t (see Figure 3). Sin
e N

d

j

(t) 
an only be non-zero if l � d � j � l

and sin
e �

k;l�d

(t) = �

kl

(t) = 0, the set I(t) is

I(t) = f i j l � d < i < l for t

l

< t � t

l+1

g :

For an eÆ
ient implementation, we pre
ompute the I(t

�

k

) and the

values �

ki

(t

�

k

), i 2 I(t

�

k

). Computing the lower and upper envelope

from Corollary 1 for any p over the �xed knot sequen
e (t

k

) then only

requires 
omputing one se
ond di�eren
e and one s
alar produ
t with

d� 1 terms for ea
h Greville abs
issa t

�

k

.

3.2 Sharpness and 
onvergen
e

The envelope from Corollary 1 is sharp in the sense that the upper

(lower) part of the envelope equals p at t

�

k

if �

2

b

i

� 0 (�

2

b

i

� 0)

for all i 2 I(t

�

k

). This is the 
ase if the whole polynomial pie
e of p

on whi
h p(t

�

k

) lies is 
onvex (
on
ave). In parti
ular, the envelope is

sharp for splines of degree 2 sin
e I(t

�

k

) 
ontains only one element.

Sharpness implies that, under subdivison, the width of the en-

velope shrinks quadrati
ally in the distan
e of the knots: sin
e the

envelope 
onsists of linear pie
es, the maximum width is attained

at the break points. Sin
e a spline has only �nitely many in
e
tion

points almost all pie
es generated by subdivision are either 
on
ave

or 
onvex for whi
h the width of the envelope equals the distan
e of

the spline to the 
ontrol polygon whi
h is known to de
rease quadrat-

i
ally [CS85,Dah86℄.

4 Coarse envelopes

The envelope in Corollary 1 requires the evaluation of d � 1 splines

�

ki

at ea
h Greville abs
issa t

�

k

. We 
an redu
e the 
omputational


ost to just one evaluation per Greville abs
issa by subsuming the
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values of the �

ki

into one spline � and estimating its values. The

resulting envelopes, though very simple to 
ompute, are in general


onsiderably larger than the ones from Corollary 1.

0 1 2 4

Fig. 4. The fun
tion z for 
ubi
 splines over the knot sequen
e

(0; 0; 0; 0; 1; 2; 4; 4; 4; 4). The grey lines indi
ate the position of the Greville

abs
issae. Knots are shown as ti
ks on the x{axis. The values of z range from 0

to 0:26.

Theorem 2 The di�eren
e between the spline p and its B{spline


ontrol polygon `(p) over the interval [t

�

k

; t

�

k+1

℄ is bounded by

jp� `

k

(p)j � Mj� � `

k

(�)j =M z: (4.5)

where M(t) = max f j�

2

b

i

j j i 2 I(t) g. The splines �,

� =

X

j

�

j

N

d

j

where �

j

= jt

�

j

+

k

X

i=j

t

�

i

; (4.6)

and z = � � `(�) are nonnegative and 
onvex.

Proof Using Theorem 1, we have

jp� `

k

(p)j =

�

�

�

�

�

�

k

X

i=k

�

2

b

i

�

ki

�

�

�

�

�

�

�M

�

�

�

�

�

�

k

X

i=k

�

ki

�

�

�

�

�

�

=M

k

X

i=k

�

ki

:
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Equation (4.5) follows if we 
an show that

P

i

�

ki

= z.

k

X

i=k

�

ki

=

k

X

i=k

i

X

j=k

(t

�

i

� t

�

j

)�

kj

=

k

X

j=k

k

X

i=j

(t

�

i

� t

�

j

)�

kj

=

k

X

j=k

2

4

k

X

i=j

t

�

i

� (k � j + 1)t

�

j

3

5

�

kj

=

k

X

j=k

2

4

jt

�

j

+

k

X

i=j

t

�

i

3

5

�

kj

=

k

X

j=k

�

j

�

kj

=

k

X

j=k

�

j

N

d

j

�L

k

( � j �

k

; �

k+1

) = z:

(4.7)

It is easily 
he
ked that �

00

j

> 0. The fun
tions � and z = � � `(�)

are therefore stri
tly 
onvex on [t

�

k

; t

�

k+1

℄. The 
oeÆ
ients of � and z

are nonnegative.

Corollary 2 The di�eren
e between p and its 
ontrol polygon ` over

the interval [t

�

k

; t

�

k+1

℄ is bounded by

jp� `j � L

k

(Mz) :

Proof By Theorem 1 and the 
onvexity of the �

ki

, we have

jp� `j �

k

X

i=k

j�

2

b

i

j�

ki

� L

k

0

�

k

X

i=k

j�

2

b

i

j �

ki

1

A

:

The de�nition of M and equation (4.7) in the proof of Theorem 2

show that

L

k

0

�

k

X

i=k

j�

2

b

i

j�

ki

1

A

� L

k

0

�

M

k

X

i=k

�

ki

1

A

= L

k

(Mz) :

4.1 Bounding with a quadrati
 spline

The same 
onsiderations as in Theorem 2 but with divided instead

of 
entered se
ond di�eren
es yield a quadrati
 bounding spline.

Corollary 3 The di�eren
e between the spline p and its 
ontrol poly-

gon `(p) over the interval [t

�

k

; t

�

k+1

℄ is bounded by

jp� `(p)j �




M(t) j� � `(�)j

where




M(t) = max f jb

00

i

j j i 2 I(t) g. The fun
tion � =

P

�

j

N

d

j

is a

quadrati
 spline with �

00

= 1.
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Fig. 5. A 
ubi
 spline and its envelope a

ording to Corollary 1 (top) and Corol-

lary 2 (bottom) over the knot sequen
e (0; 0; 0; 0; 1; 2; 4; 4; 4; 4) with 
ontrol points

(0; 1; 3; 0; 3; 2).

Proof Using divided se
ond di�eren
es b

00

i

, equation (3.2) be
omes

p� ` =

k

X

i=k

b

00

i+1

t

i+d

� t

i+1

d� 1

�

ki

:

Sin
e, in analogy to the proof of Theorem 2,

� � `(�) =

k

X

i=k

t

i+d

� t

i+1

d� 1

�

ki

;

� is given by

� =

k

X

i=k

i

X

j=k

t

i+d

� t

i+1

d� 1

(t

�

i

� t

�

j

)N

d

j

=

k

X

j=k

k

X

i=j

t

i+d

� t

i+1

d� 1

(t

�

i

� t

�

j

)N

d

j

:

It is now easy to verify that �

00

j

= 1.
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4.2 Implementation

The envelope from Corollary 2 requires M(t

�

k

) and z(t

�

k

) for �nite

knot sequen
es (t

0

; : : : ; t

m+d

) and 
orresponding Greville abs
issae

t

�

0

; : : : ; t

�

m

.

The de�nition of the 
oeÆ
ients �

j

in equation (4.6) seems par-

ti
ular to the interval [t

�

k

; t

�

k+1

℄ sin
e it involves k. However, we 
an

extend the upper limit of summation in this de�nition to m, sin
e

only the values of z = � � `(�) are needed whi
h are not a�e
ted by

this 
hange.

An eÆ
ient implementation of the bound of Corollary 2 stores

the values t

�

k

, z(t

�

k

), I(t

�

k

) together with the knot sequen
e, so that

only the maximal se
ond di�eren
e M(t

�

k

) needs to be re
omputed

whenever the 
ontrol points of a spline 
hange.

4.3 Sharpness

The proof of Theorem 2 
ontains only one inequality,

�

�

�

�

�

�

X

i2I(t)

�

2

b

i

�

ki

(t)

�

�

�

�

�

�

�M(t)

�

�

�

�

�

�

X

i2I(t)

�

ki

(t)

�

�

�

�

�

�

:

This is an equality exa
tly when all the se
ond di�eren
es �

2

b

i

, i 2

I(t), are equal to one another. The splines with this property are the

linear polynomials and �.

Similarly, the bound from Corollary 3 is sharp for the linear poly-

nomials and �, and therefore for all quadrati
 polynomials.

5 A Bound for Bernstein Polynomials

The B{splinesN

d

j

of degree d over the knot sequen
e (t

0

; : : : ; t

2d

) with

t

i

= 1 for i > d and t

i

= 0 else are 
alled the Bernstein polynomials

B

d

j

of degree d. An expli
it bound for the Bernstein polynomials was

already given in [NPL99, Theorem 3.1℄; we give an alternate proof for

this theorem, showing how it 
an be derived from the more general

exposition in this paper.

For Bernstein polynomials, the Greville abs
issae are t

�

i

= i=d and

the 
oeÆ
ients �

j

are

�

j

=

j(j + 1) + d(d + 1)

2d

:
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Thus,

z =

X

j

�

j

�

kj

=

1

d

X

j

�

j

2

�

�

kj

=

1

d

0

�

X

j

�

j

2

�

B

d

j

�

k(2dt� k � 1)

2

1

A

=

d� 1

2

t

2

�

k(2dt� k � 1)

2d

and

z(t

�

k

) =

k(d� k)

2d

2

; z(t

�

k+1

) =

(k + 1)(d � (k + 1))

2d

2

at the endpoints of the interval [t

�

k

; t

�

k+1

℄. The maximal value z(t

�

k

)

over all k is taken on for k = bd=2
. Sin
e �

2

b

i

= d(b

i�1

� 2b

i

+ b

i+1

)

the main theorem from [NPL99℄ follows:

Theorem 3 ([NPL99, Theorem 3.1℄) Let p =

P

d

i=0

b

i

B

d

i

be a

polynomial of degree d in Bernstein{B�ezier form. The distan
e be-

tween p and its 
ontrol polygon ` is uniformly bounded by

jp� `j �

bd=2
 dd=2e

2d

d�1

max

i=1

j�

2

b

i

j

where �

2

b

i

= b

i�1

� 2b

i

+ b

i+1

.

This bound de
reases by a fa
tor of 4 under subdivision at 1=2 [NPL99,

Lemma 6.1℄.

6 A Bound for Uniform Splines

A spline is uniform if the knots are all equidistant. Without loss of

generality, we 
hoose t

k

= k. The uniform B{spline basis fun
tions

N

d

j

are shifts of one another and we de�ne N

d

= N

d

0

so that N

d

j

(t) =

N

d

(t� j). The 
orresponding Greville abs
issae are

t

�

k

=

1

d

k+d

X

i=k+1

i = k +

d+ 1

2

and � has the B{spline 
oeÆ
ients

�

j

= j(j +

d+ 1

2

) +

m

X

i=j

�

i+

d+ 1

2

�

= (m+ 1)(j +

d+ 1

2

) +

�

j �m

2

�

:
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A

ording to Equation (4.7), z =

P

j

�

j

�

kj

. For uniform splines

this simpli�es to

z =

X

j

�

j

�

kj

=

k

X

j=k

�

(m+ 1)(j +

d+ 1

2

) +

�

j �m

2

��

�

kj

=

X

j

�

j �m

2

�

�

kj

=

X

j

�

j � k

2

�

N

d

j

:

Regardless of the degree of p, z is a quadrati
 polynomial and has

the monomial form

z(t) =

1

2

 

t

2

� (t

�

k

+ t

�

k+1

)t+

�

t

�

k

+ t

�

k+1

2

�

2

+

d� 2

12

!

:

Sin
e z is a positive and 
onvex fun
tion, it attains its maximum over

[t

�

k

; t

�

k+1

℄ at one of the endpoints of the interval. Its values there are

z(t

�

k

) = z(t

�

k+1

) =

d+ 1

24

:

This proves the following simpli�ed version of Corollary 2:

Corollary 4 Let p =

P

j

b

j

N

d

j

be a uniform spline over the knot

sequen
e t

k

= k. Over the interval [t

�

k

; t

�

k+1

℄, the di�eren
e between p

and its 
ontrol polygon ` is bounded by

jp� `j �

d+ 1

24

L

k

(M) :

For uniform splines, the set I(t

�

k

) from equation (3.4) is

I(t

�

k

) = f i j k � bd=2
 < i < k + bd=2
 g :

Sin
e z(t

�

k

) = (d + 1)=24 and I(t

�

k

) = fkg for d = 2 or d = 3,

Corollary 1 redu
es for quadrati
 and 
ubi
 uniform splines to

d+ 1

24

L

k

(� j �

�

2

b

k

;�

�

2

b

k+1

) � p� ` �

d+ 1

24

L

k

(� j �

+

2

b

k

;�

+

2

b

k+1

):

(6.8)
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7 Uniform re�nement

For uniform splines, we 
onsider the re�nement of the knot sequen
e

t

k

= k to the sequen
e

^

t

k

= k=2. We now have two representations

for p,

p(t) =

X

k

b

k

N

d

(t� k) =

X

k

^

b

k

N

d

(2t� k);

where the new 
ontrol points

^

b

k

are

^

b

2i

= 2

�d

dd=2e

X

j=0

�

d+ 1

2j

�

b

i�j

;

^

b

2i+1

= 2

�d

dd=2e

X

j=0

�

d+ 1

2j + 1

�

b

i�j

:

(7.9)

Sin
e a

00

i

= �

2

a

i�1

, we 
an use the B{spline representation of p

00

together with equation (7.9) to relate the 
entered se
ond di�eren
es

of the new 
ontrol polygon to those of the old 
ontrol polygon as

2

d

�

2

^

b

2i

=

X

j

�

d� 1

2j � 1

�

�

2

b

i�j

2

d

�

2

^

b

2i+1

=

X

j

�

d� 1

2j

�

�

2

b

i�j

:

The equality

P

j

�

d�1

j

�

= 2

d�1

and the symmetry of the binomial


oeÆ
ients imply

X

j

�

d� 1

2j

�

=

X

j

�

d� 1

2j � 1

�

= 2

d�2

;

so that

max

i

�

�

�

�

2

^

b

i

�

�

�

�

1

4

max

i

j�

2

b

i

j:

This ensures that the bound from Corollary 4 
onverges quadrati
ally

to zero under repeated uniform re�nement. Figure 6 illustrates this

for a 
ubi
 uniform spline.

7.1 Examples

For quadrati
 splines, uniform re�nement is 
alled Chaikin's algo-

rithm and

^

b

2i

= 2

�2

(3b

i�1

+ b

i

);

^

b

2i+1

= 2

�2

(b

i�1

+ 3b

i

):
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Fig. 6. A uniform 
ubi
 spline with 
ontrol points (0; 1; 3; 0; 3; 2). Shown are the

envelope a

ording to equation (6.8) (top) and the envelope after one step of

uniform re�nement (bottom).

This yields

�

2

^

b

2i

= �

2

^

b

2i�1

=

1

4

�

2

b

i�1

:

Sin
e every se
ond di�eren
e de
reases by a fa
tor of four, subsequent

envelopes are 
ontained in one another.

Similarly, for 
ubi
 splines we have

^

b

2i

= 2

�3

(b

i�2

+ 6b

i�1

+ b

i

);

^

b

2i+1

= 2

�3

(4b

i�1

+ 4b

i

):

and therefore

�

2

^

b

2i

=

1

4

�

2

b

i�1

; �

2

^

b

2i+1

=

1

8

(�

2

b

i�1

+�

2

b

i

):

8 Con
lusion

We only 
onsidered envelopes for spline fun
tions. The extension to

parametri
 
urves, though, is a simple two step pro
ess: �rst, the


oordinate fun
tions of the 
urve are enveloped separately at ea
h


ontrol point, yielding axis{aligned boxes around the 
ontrol points.

The union of the 
onvex hulls of any two 
onse
utive 
ontrol points

is guaranteed to 
ontain the 
urve by the linearity of the envelopes.
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The envelopes developed in this paper 
an be generalized to ten-

sorprodu
t splines and other bivariate bases 
ommonly used in CAGD.

The 
onstru
tion follows the prin
iples outlined in this paper: rewrite

p � ` in terms of se
ond di�eren
es in a new basis and estimate the

range of the basis fun
tions at the Greville abs
issae. Separating the

ve
tor of se
ond di�eren
es of p into a negative and a positive part

gives then simple envelopes as pie
ewise o�sets of the 
ontrol poly-

gon. The details of this 
onstru
tion will be reported in a forth
oming

paper.
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