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Summary A sharp bound on the distance between a spline and
its B-spline control polygon is derived. The bound yields a piecewise
linear envelope enclosing spline and polygon. This envelope is partic-
ularly simple for uniform splines and splines in Bernstein-Bézier form
and shrinks by a factor of 4 for each uniform subdivision step. The
envelope can be easily and efficiently implemented due to its explicit
and constructive nature.

1 Introduction & main results

B-splines are routinely used as approximating functions and to rep-
resent geometry for numerical calculations. A central feature that
allows reasoning about these nonlinear piecewise polynomials is the
fact that the spline is closely outlined by its control polygon, line
segments connecting the control points. The efficiency of many ap-
plications, for example rendering or intersection testing, hinges on
a tight quantitative estimate of the maximal distance of the spline
from its control polygon. However, apart from the convex hull and
the min—max bound, no quantitive estimates exist to date.

This paper shows how to bound the maximal distance between a
spline and its B—spline control polygon in terms of second differences
of the control points and linear interpolants of special piecewise con-
vex and nonnegative splines that depend only on the knot sequence.
The bounds yield piecewise linear envelopes consisting of a positive
and a negative offset of the control polygon (cf. Figures 1 and 2).
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Fig. 1. A quadratic spline over the knot sequence (0,0,0,1,3,4,7,8,8,8) with
control points (0,2,4,2,0,2,3). The spline is shown in black. The envelope ac-
cording to Corollary 1 is shown in grey. The control polygon is covered by the
envelope.

In most practical applications, the control points are varied far
more often than the knot sequence. For fixed knot sequences, includ-
ing the important cases of Bernstein polynomials and uniform splines,
the bounds require only forming the scalar product of the vector of
second differences of the control points and a precomputed vector.

The envelopes are as narrow as possible at each control point that
corresponds to a convex or concave polynomial piece: one envelope
polyline matches that control point while the other envelope polyline
touches the spline. This ensures quadratic convergence of the envelope
to the spline under subdivision as the number of inflection points of
a spline stays fixed while more and more pieces without inflection
points are produced.

The computation of the envelopes can be further simplified to
yield coarser envelopes expressed in terms of second differences of
the control polygon and the values of one nonnegative, convex spline
that depends only on the knot sequence.

Fig. 2. A quintic spline and its envelope according to Corollary 1 . The knots
are at (0,1,3,7) and the control points are (0,1,2,0,0,1,1,0). The first and last
knot have multiplicity 6.
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2 Notation
A piecewise polynomial p of degree d is in B-Spline form if

p(t) =Y beNg (1)

kEZ

where the control points by are real numbers and the B-Spline basis
functions N,‘f are defined recursively based on a nondecreasing se-
quence of real numbers, the knots t; [dB93]. We may assume that p
is at least continuous since otherwise we can treat p as two seperate
splines. This implies that any knot can appear with multiplicity at
most d, except for the first and last knot which can have multiplicity
d + 1. Therefore the Greville abscissae t},

are distinct. We denote the line segment from (tj, a1) to (¢, a2) by

Ek(ﬂal,@):alM Qi_
tlt+1 — 1, tlt+1 — 1,

and the linear interpolant of the function f at t;; and ¢}, as £, (f) =
Li(- | f(ty), f(ts1))- The control polygon £(p) of p is the piecewise
linear interpolant to control points (¢}, by). That is, over the interval
[ % %

5> tiy1) the k—th piece £ (p) of the control polygon £(p) is given by
Lr(p)(t) = Li(t | br, bry1)-

We abbreviate £(p) to £ if the spline p is understood from the context.
The first and second divided differences of b are
b; — b1 b, —b_,
K Ll Gl st
[ i—1 i+d—1 )
They are the B—spline control points of the first and second deriva-
tives of p. The centered second differences of b are defined as
Agb; = b — b

[ i

Only finitely many B-spline basis functions have support on some
part of [t},tf_]. Let k and k be the index of the first and the last
B-spline basis function that are nonzero on some part of [t} %} ].
There will be more than d+1 such basis functions if [}, ¢}, ;] contains
one or more knots in its interior. Since ¢ < tgyq < lpyar1 <tp i, K

and k are related to k by k < k < k.
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3 Tight envelopes for arbitrary knot sequences

The key to deriving the bounds in this paper is to factor the difference
between a spline and its B—spline control polygon into two parts: the
second differences of the control polygon and nonnegative splines [;
that only depend on the knot sequence. The Si; are piecewise convex
and therefore well suited for piecewise linear approximations. This
observation is made precise in the following theorem.

Theorem 1 Let t € [ty,t; ] and functions By; defined as
k * * d .
(45 — )N
Bri = {Ef_l(tj* tz*) I ' >k (3.1)
The difference between the spline p and its B—spline control polygon
lis
k
p—L0=" Asb; B (3.2)
i=k
The functions By; are nonnegative and conver.

Proof We write p — £ over [t;,t; ] as
> biogi =Y b (Nid(t) — Ly(t | 5ik,5z’,k+1)) ;

where §;;, = 1 if i = k and 0 otherwise. Only the ay; with & < i <k
can be nonzero on [t}, ;]

We show that ay; = Asf;: the partition of unity >, Nl-d =
1 implies that ), ap; = 0 and the linear precision of B-Splines,
S HNE =t implies on the interval [t},#},,] that > 7o = 0.

Hence, for any i, Z?Zk(t;‘ —t5)ag; = 0.

For i > k,
F ; i
Bri = Z (£ — tr) N - Z(tf =)ok = ) (4 — 1))
j=it+1 j=k 7=k

so that By = E;:k(t;‘ — t7)ay; for any i. It is now straightforward
to verify that AsfBr; = a;. Summation by parts then completes the
proof of (3.2),

k k k
p—lr=> biog =3 b Aofri =Y A B
i=k i=k i=k
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The functions fi; are nonnegative since their B—spline coefficients
are nonnegative by (3.1).

The convexity of the fi; over [t},t}; ] follows from the convexity
of their B—spline control polygons: for 7 > k, the part of the control
polygon of B, that influences S, over [t}, 1 +1] lies on the function
max{- — ¢;,0} while for i <k it lies on max{t; —-,0}. In both cases,
the control polygon of Bi;, and hence B;, is nonnegative and convex.

The characterization of p — £ from Theorem 1 gives us a piecewise
linear envelope for p that improves in practice on the convex hull, for
example for the splines in Figures 1 and 2.

Corollary 1 Ouver the interval [t} 1} ], the spline p is enveloped by

k k
O+ Le | Y AbiBri | <p<L+Lp|d ATbiBr|. (33)
i=k i=k

where A;‘bi = max{Agb;,0} and A;b; = min{Asb;,0}.
Proof We have from Theorem 1
k k k
p—L=> Ashifri=Y AfbiBu+ > A7bi B
i=k 1=k 1=k

The positivity of the i; implies that the first sum on the right—hand
side is positive and the second is negative and that therefore

Ayl B <p—L€< AFb; Bri.

-

1
B

M-

Il
|

13 7

Since the f; are convex over [t;,t} ], they can be bounded linearly
to yield (3.3).

3.1 Implementation

The envelopes of Corollary 1 depend on the control points b;, their
second differences Asb;, and the values f;(¢;). In evaluating the sum
in equation (3.3) for some ¢, specifically at t; and ¢} 41 it suffices to
sum over all i € Z(t) with

Z(t) =A{i|Bri(t) >0}, (3.4)

which is a subset of the integers between k and k.
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Fig. 3. For a given ¢ € [t},t;, ], the set Z(¢) = {i | Brs(t) > 0} is determined by
the positions of the displayed knots relative to one another.

We determine Z(t) by inspecting equation (3.1): let ¢ € [t}, 1} ]
and let ¢; < t < ¢;41 be the knots immediately to the left and right
of t (see Figure 3). Since de(t) can only be non-zero if | —d < j <1
and since Sy —q(t) = Bri(t) = 0, the set Z(t) is

Z(t)={i|ll—d<i<lfort;<t<tpi}.

For an efficient implementation, we precompute the Z(¢;) and the
values f;(t;), @ € Z(t;). Computing the lower and upper envelope
from Corollary 1 for any p over the fixed knot sequence (t;) then only
requires computing one second difference and one scalar product with
d — 1 terms for each Greville abscissa t}.

3.2 Sharpness and convergence

The envelope from Corollary 1 is sharp in the sense that the upper
(lower) part of the envelope equals p at t; if Asb; > 0 (Agb; < 0)
for all 4 € Z(t;). This is the case if the whole polynomial piece of p
on which p(t;) lies is convex (concave). In particular, the envelope is
sharp for splines of degree 2 since Z(t;) contains only one element.

Sharpness implies that, under subdivison, the width of the en-
velope shrinks quadratically in the distance of the knots: since the
envelope consists of linear pieces, the maximum width is attained
at the break points. Since a spline has only finitely many inflection
points almost all pieces generated by subdivision are either concave
or convex for which the width of the envelope equals the distance of
the spline to the control polygon which is known to decrease quadrat-
ically [CS85,Dah86].

4 Coarse envelopes
The envelope in Corollary 1 requires the evaluation of d — 1 splines

Bri at each Greville abscissa 2. We can reduce the computational
cost to just one evaluation per Greville abscissa by subsuming the
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values of the fi; into one spline ( and estimating its values. The
resulting envelopes, though very simple to compute, are in general
considerably larger than the ones from Corollary 1.

0 1 2 4

Fig. 4. The function 2z for cubic splines over the knot sequence
(0,0,0,0,1,2,4,4,4,4). The grey lines indicate the position of the Greville
abscissae. Knots are shown as ticks on the x—axis. The values of z range from 0
to 0.26.

Theorem 2 The difference between the spline p and its B—spline
control polygon £(p) over the interval [t},,t; ] is bounded by

Ip = Lk (p)] < M|C = Li(O)] = M 2. (4.5)

where M(t) = max { |Asgb;| | i € Z(t) }. The splines (,

%
C=> NI where (=gt + )t (4.6)
j i=j

and z = ( — ¢({) are nonnegative and convez.

Proof Using Theorem 1, we have

k k k
p = l(p)] = | Ao Bri| <MD Bri| = MY Br.
ik i—k

i=k



8 David Lutterkort, Jorg Peters

Equation (4.5) follows if we can show that ). fi; = 2.

k k4 E ok
S B =SS0t = tawy = S0 S8 — )
i=k i=k j=k j=k i=j
k k _ k k
ZZ th(kj+1)t;] Otkaz jt;—i-zt;k Qg
J=k [i=] i=k i=j
k
=Y ¢ ZCJ = Li(+ | Gy Q1) = 2
Jj=k

(4.7)

It is easily checked that (7 > 0. The functions ( and z = ¢ — £(()
are therefore strictly convex on [t;,¢;_ ]. The coefficients of ¢ and z
are nonnegative.

Corollary 2 The difference between p and its control polygon £ over
the interval [t},t; ] is bounded by

lp — £ < Ly (M2).
Proof By Theorem 1 and the convexity of the (B;, we have

x|

F
p— €] <Y | Agbi] Bri < Ly [ D | Aobi B

i=k i=k

The definition of M and equation (4.7) in the proof of Theorem 2
show that

k
Z|A2bi|5ki < L MZBM =L (M2z).
i—k

i=k

4.1 Bounding with a quadratic spline

The same considerations as in Theorem 2 but with divided instead
of centered second differences yield a quadratic bounding spline.

Corollary 3 The difference between the spline p and its control poly-
gon L(p) over the interval [ty t; ] is bounded by

b — £(p)| < M(2) |n — £(n)]

where M(t) = max { |b| | i € Z(t) }. The function n = anNJd is a
quadratic spline with " = 1.
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Fig. 5. A cubic spline and its envelope according to Corollary 1 (top) and Corol-
lary 2 (bottom) over the knot sequence (0,0,0,0,1,2,4,4, 4, 4) with control points
(0,1,3,0,3,2).

Proof Using divided second differences b/, equation (3.2) becomes

k

titd = tiy1
p—L=> b\ ﬁﬁki-
ik

Since, in analogy to the proof of Theorem 2,

k

tivd — ti+1
n—£n) = Z %@m
1=k

7 is given by

tivd — liy1 d
: - = (t; = t})N;

=
I

J

Livd — tit1
d—1

. <.
M > |l M I
ES
.
Il
|7~

By
Il
B
<
Il
by

d
(£ — 5N

™=

It is now easy to verify that 7 = 1.
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4.2 Implementation

The envelope from Corollary 2 requires M(t}) and z(t;) for finite
knot sequences (g, ...,tn1q) and corresponding Greville abscissae
17PN

The definition of the coefficients (; in equation (4.6) seems par-
ticular to the interval [¢}, ;] since it involves k. However, we can
extend the upper limit of summation in this definition to m, since
only the values of z = ( — £(() are needed which are not affected by
this change.

An efficient implementation of the bound of Corollary 2 stores
the values &}, z(t;), Z(t;) together with the knot sequence, so that
only the maximal second difference M(#;) needs to be recomputed
whenever the control points of a spline change.

4.8 Sharpness

The proof of Theorem 2 contains only one inequality,

D Ao Bra(t)| < M) | D Bra(t)]-

1€Z(t) 1€Z(t)

This is an equality exactly when all the second differences Asb;, i €
Z(t), are equal to one another. The splines with this property are the
linear polynomials and (.

Similarly, the bound from Corollary 3 is sharp for the linear poly-
nomials and 7, and therefore for all quadratic polynomials.

5 A Bound for Bernstein Polynomials

The B—splines N ]d of degree d over the knot sequence (%o, . . ., tog) with
t; =1 for ¢ > d and t; = 0 else are called the Bernstein polynomials
B}-i of degree d. An explicit bound for the Bernstein polynomials was
already given in [NPL99, Theorem 3.1]; we give an alternate proof for
this theorem, showing how it can be derived from the more general
exposition in this paper.

For Bernstein polynomials, the Greville abscissae are ¢} = i/d and
the coefficients (; are

j(7+1)+d(d+1)
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Thus,

= Yo = X (o= g (S (1) HSED

d—1, k@dt—k-1)
2 2d

and

i) =S g = D)

at the endpoints of the interval [t;,#; ]. The maximal value z(t})
over all k is taken on for k = [d/2]. Since Aqb; = d(bj—1 — 2b; + b;11)
the main theorem from [NPL99] follows:

Theorem 3 ([NPL99, Theorem 3.1]) Let p = % b; B be a
polynomial of degree d in Bernstein—Bézier form. The distance be-
tween p and its control polygon £ is uniformly bounded by

|d/2] [d/2] d-1

) < 2R )
lp—{ < ¥ max | Asb|
where Agb; = b; 1 — 2b; + bi11.

This bound decreases by a factor of 4 under subdivision at 1/2 [NPL99,
Lemma 6.1].

6 A Bound for Uniform Splines

A spline is uniform if the knots are all equidistant. Without loss of
generality, we choose #; = k. The uniform B-spline basis functions
N ¢ are shifts of one another and we define N = N¢ so that N, d( ) =

N d(t — 7). The corresponding Greville abscissae are

k+d

Z ik d+1

z k+1

and ¢ has the B—spline coefficients

C-—JJ+— +Z( >=(m+1)(J+d%)+(j_2m>-



12 David Lutterkort, Jorg Peters

According to Equation (4.7), 2 = }_, (jay;. For uniform splines
this simplifies to

= S = > [om e 06+ CE 1 (75 e

()= ()

Regardless of the degree of p, z is a quadratic polynomial and has
the monomial form

1(, tr+ti g\ d—2
z(t):§<t—(t;;+t;+1)t+( 5 + 0 |-

Since z is a positive and convex function, it attains its maximum over
[tist;41] at one of the endpoints of the interval. Tts values there are

d+1

At) = #lti) = S

This proves the following simplified version of Corollary 2:

Corollary 4 Let p = Zj ijj‘-i be a uniform spline over the knot
sequence t, = k. Over the interval [t},,t; ], the difference between p
and its control polygon £ is bounded by

d+1
24

lp—£| < Ly (M).

For uniform splines, the set Z(¢;) from equation (3.4) is
Z(ty) ={i|k—|d/2] <i<k+|d/2]}.

Since z(t;) = (d 4+ 1)/24 and Z(t;) = {k} for d = 2 or d = 3,
Corollary 1 reduces for quadratic and cubic uniform splines to

d+1 _ _ d+1
Tﬁk(' | Ay bg, Ay b)) <p—1£< 1 Ly(+ ] AFbry AF bgi1).

(6.8)
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7 Uniform refinement

For uniform splines, we consider the refinement of the knot sequence
tr = k to the sequence t; = k/2. We now have two representations

for p,
= BNt —k) =) bN(2t —k
k k

where the new control points Bk are

[d/2] [d/2]
d+1 . d+1

b _2d§: b; bo; 2d§:
z = ( 2j ) = e = <2j+1>

(7.9)

Since a] = Asa;_1, we can use the B-spline representation of p”
together with equation (7.9) to relate the centered second differences
of the new control polygon to those of the old control polygon as

. d—1 - d—1
24 Agby; = XJ: <2j B 1) Aob;_; 20 Aoboiy1 = Z ( 2 >A2bij-

J

The equality »; ( ) = 2¢=1 and the symmetry of the binomial
coefficients 1mply

S ()2 () -

J

so that

- 1
max i| < — max |Agb|.
i 4 i

This ensures that the bound from Corollary 4 converges quadratically
to zero under repeated uniform refinement. Figure 6 illustrates this
for a cubic uniform spline.

7.1 Examples

For quadratic splines, uniform refinement is called Chaikin’s algo-
rithm and

boi = 27 2(3bi—1 + by), bai1 = 2 2(bi—1 + 3b;).
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Fig. 6. A uniform cubic spline with control points (0, 1, 3,0, 3,2). Shown are the
envelope according to equation (6.8) (top) and the envelope after one step of
uniform refinement (bottom).

This yields
- N 1
Aobyi = Agboi 1 = ZA2bi71-

Since every second difference decreases by a factor of four, subsequent
envelopes are contained in one another.
Similarly, for cubic splines we have

boi = 273 (bi_g + 6bi_1 + b;), boir1 = 273 (db;_y + 4b;).

and therefore

. 1 A 1
Agby; = ZAQbi—la Aoboity = g(AQbi—1 + Agb;).

8 Conclusion

We only considered envelopes for spline functions. The extension to
parametric curves, though, is a simple two step process: first, the
coordinate functions of the curve are enveloped separately at each
control point, yielding axis—aligned boxes around the control points.
The union of the convex hulls of any two consecutive control points
is guaranteed to contain the curve by the linearity of the envelopes.
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The envelopes developed in this paper can be generalized to ten-
sorproduct splines and other bivariate bases commonly used in CAGD.
The construction follows the principles outlined in this paper: rewrite
p — £ in terms of second differences in a new basis and estimate the
range of the basis functions at the Greville abscissae. Separating the
vector of second differences of p into a negative and a positive part
gives then simple envelopes as piecewise offsets of the control poly-
gon. The details of this construction will be reported in a forthcoming

paper.
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