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Summary A sharp bound on the distane between a spline and

its B-spline ontrol polygon is derived. The bound yields a pieewise

linear envelope enlosing spline and polygon. This envelope is parti-

ularly simple for uniform splines and splines in Bernstein-B�ezier form

and shrinks by a fator of 4 for eah uniform subdivision step. The

envelope an be easily and eÆiently implemented due to its expliit

and onstrutive nature.

1 Introdution & main results

B-splines are routinely used as approximating funtions and to rep-

resent geometry for numerial alulations. A entral feature that

allows reasoning about these nonlinear pieewise polynomials is the

fat that the spline is losely outlined by its ontrol polygon, line

segments onneting the ontrol points. The eÆieny of many ap-

pliations, for example rendering or intersetion testing, hinges on

a tight quantitative estimate of the maximal distane of the spline

from its ontrol polygon. However, apart from the onvex hull and

the min{max bound, no quantitive estimates exist to date.

This paper shows how to bound the maximal distane between a

spline and its B{spline ontrol polygon in terms of seond di�erenes

of the ontrol points and linear interpolants of speial pieewise on-

vex and nonnegative splines that depend only on the knot sequene.

The bounds yield pieewise linear envelopes onsisting of a positive

and a negative o�set of the ontrol polygon (f. Figures 1 and 2).
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Fig. 1. A quadrati spline over the knot sequene (0; 0; 0; 1; 3; 4; 7; 8; 8; 8) with

ontrol points (0; 2; 4; 2; 0; 2; 3). The spline is shown in blak. The envelope a-

ording to Corollary 1 is shown in grey. The ontrol polygon is overed by the

envelope.

In most pratial appliations, the ontrol points are varied far

more often than the knot sequene. For �xed knot sequenes, inlud-

ing the important ases of Bernstein polynomials and uniform splines,

the bounds require only forming the salar produt of the vetor of

seond di�erenes of the ontrol points and a preomputed vetor.

The envelopes are as narrow as possible at eah ontrol point that

orresponds to a onvex or onave polynomial piee: one envelope

polyline mathes that ontrol point while the other envelope polyline

touhes the spline. This ensures quadrati onvergene of the envelope

to the spline under subdivision as the number of inetion points of

a spline stays �xed while more and more piees without inetion

points are produed.

The omputation of the envelopes an be further simpli�ed to

yield oarser envelopes expressed in terms of seond di�erenes of

the ontrol polygon and the values of one nonnegative, onvex spline

that depends only on the knot sequene.

Fig. 2. A quinti spline and its envelope aording to Corollary 1 . The knots

are at (0; 1; 3; 7) and the ontrol points are (0; 1; 2; 0; 0; 1; 1; 0). The �rst and last

knot have multipliity 6.
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2 Notation

A pieewise polynomial p of degree d is in B{Spline form if

p(t) =

X

k2Z

b

k

N

d

k

(t)

where the ontrol points b

k

are real numbers and the B{Spline basis

funtions N

d

k

are de�ned reursively based on a nondereasing se-

quene of real numbers, the knots t

k

[dB93℄. We may assume that p

is at least ontinuous sine otherwise we an treat p as two seperate

splines. This implies that any knot an appear with multipliity at

most d, exept for the �rst and last knot whih an have multipliity

d+ 1. Therefore the Greville absissae t

�

k

,

t

�

k

:=

1

d

k+d

X

i=k+1

t

i

;

are distint. We denote the line segment from (t

�

k

; a

1

) to (t

�

k+1

; a

2

) by

L

k

(t j a

1

; a

2

) = a

1

t

�

k+1

� t

t

�

k+1

� t

�

k

+ a

2

t� t

�

k

t

�

k+1

� t

�

k

:

and the linear interpolant of the funtion f at t

�

k

and t

�

k+1

as L

k

(f) =

L

k

( � j f(t

�

k

); f(t

�

k+1

)). The ontrol polygon `(p) of p is the pieewise

linear interpolant to ontrol points (t

�

k

; b

k

). That is, over the interval

[t

�

k

; t

�

k+1

℄ the k{th piee `

k

(p) of the ontrol polygon `(p) is given by

`

k

(p)(t) = L

k

(t j b

k

; b

k+1

):

We abbreviate `(p) to ` if the spline p is understood from the ontext.

The �rst and seond divided di�erenes of b are

b

0

i

=

b

i

� b

i�1

t

�

i

� t

�

i�1

b

00

i

= (d� 1)

b

0

i

� b

0

i�1

t

i+d�1

� t

i

:

They are the B{spline ontrol points of the �rst and seond deriva-

tives of p. The entered seond di�erenes of b are de�ned as

�

2

b

i

= b

0

i+1

� b

0

i

:

Only �nitely many B{spline basis funtions have support on some

part of [t

�

k

; t

�

k+1

℄. Let k and k be the index of the �rst and the last

B{spline basis funtion that are nonzero on some part of [t

�

k

; t

�

k+1

℄.

There will be more than d+1 suh basis funtions if [t

�

k

; t

�

k+1

℄ ontains

one or more knots in its interior. Sine t

�

k

� t

k+d

� t

k+d+1

� t

�

k+1

, k

and k are related to k by k � k < k.
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3 Tight envelopes for arbitrary knot sequenes

The key to deriving the bounds in this paper is to fator the di�erene

between a spline and its B{spline ontrol polygon into two parts: the

seond di�erenes of the ontrol polygon and nonnegative splines �

ki

that only depend on the knot sequene. The �

ki

are pieewise onvex

and therefore well suited for pieewise linear approximations. This

observation is made preise in the following theorem.

Theorem 1 Let t 2 [t

�

k

; t

�

k+1

℄ and funtions �

ki

de�ned as

�

ki

=

(

P

k

j=i

(t

�

j

� t

�

i

)N

d

j

i > k

P

i

j=k

(t

�

i

� t

�

j

)N

d

j

i � k:

(3.1)

The di�erene between the spline p and its B{spline ontrol polygon

` is

p� ` =

k

X

i=k

�

2

b

i

�

ki

: (3.2)

The funtions �

ki

are nonnegative and onvex.

Proof We write p� `

k

over [t

�

k

; t

�

k+1

℄ as

X

i

b

i

�

ki

=

X

i

b

i

�

N

d

i

(t)�L

k

(t j Æ

ik

; Æ

i;k+1

)

�

;

where Æ

ik

= 1 if i = k and 0 otherwise. Only the �

ki

with k � i � k

an be nonzero on [t

�

k

; t

�

k+1

℄.

We show that �

ki

= �

2

�

ki

: the partition of unity

P

i

N

d

i

=

1 implies that

P

i

�

ki

= 0 and the linear preision of B{Splines,

P

i

t

�

i

N

d

i

= t implies on the interval [t

�

k

; t

�

k+1

℄ that

P

i

t

�

i

�

ki

= 0.

Hene, for any i,

P

k

j=k

(t

�

i

� t

�

j

)�

kj

= 0.

For i > k,

�

ki

=

k

X

j=i+1

(t

�

j

� t

�

i

)N

d

j

�

k

X

j=k

(t

�

i

� t

�

j

)�

kj

=

i

X

j=k

(t

�

i

� t

�

j

)�

kj

so that �

ki

=

P

i

j=k

(t

�

i

� t

�

j

)�

kj

for any i. It is now straightforward

to verify that �

2

�

ki

= �

ki

. Summation by parts then ompletes the

proof of (3.2),

p� `

k

=

k

X

i=k

b

i

�

ki

=

k

X

i=k

b

i

�

2

�

ki

=

k

X

i=k

�

2

b

i

�

ki

:
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The funtions �

ki

are nonnegative sine their B{spline oeÆients

are nonnegative by (3.1).

The onvexity of the �

ki

over [t

�

k

; t

�

k+1

℄ follows from the onvexity

of their B{spline ontrol polygons: for i > k, the part of the ontrol

polygon of �

ki

that inuenes �

ki

over [t

�

k

; t

�

k+1

℄ lies on the funtion

maxf� � t

�

i

; 0g while for i � k it lies on maxft

�

i

� �; 0g. In both ases,

the ontrol polygon of �

ki

, and hene �

ki

, is nonnegative and onvex.

The haraterization of p� ` from Theorem 1 gives us a pieewise

linear envelope for p that improves in pratie on the onvex hull, for

example for the splines in Figures 1 and 2.

Corollary 1 Over the interval [t

�

k

; t

�

k+1

℄, the spline p is enveloped by

`+ L

k

0

�

k

X

i=k

�

�

2

b

i

�

ki

1

A

� p � `+ L

k

0

�

k

X

i=k

�

+

2

b

i

�

ki

1

A

; (3.3)

where �

+

2

b

i

= maxf�

2

b

i

; 0g and �

�

2

b

i

= minf�

2

b

i

; 0g.

Proof We have from Theorem 1

p� ` =

k

X

i=k

�

2

b

i

�

ki

=

k

X

i=k

�

+

2

b

i

�

ki

+

k

X

i=k

�

�

2

b

i

�

ki

:

The positivity of the �

ki

implies that the �rst sum on the right{hand

side is positive and the seond is negative and that therefore

k

X

i=k

�

�

2

b

i

�

ki

� p� ` �

k

X

i=k

�

+

2

b

i

�

ki

:

Sine the �

ki

are onvex over [t

�

k

; t

�

k+1

℄, they an be bounded linearly

to yield (3.3).

3.1 Implementation

The envelopes of Corollary 1 depend on the ontrol points b

i

, their

seond di�erenes �

2

b

i

, and the values �

ki

(t

�

k

). In evaluating the sum

in equation (3.3) for some t, spei�ally at t

�

k

and t

�

k+1

, it suÆes to

sum over all i 2 I(t) with

I(t) = f i j �

ki

(t) > 0 g ; (3.4)

whih is a subset of the integers between k and k.
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t

k

t

k+1

t

�

k

t

l

t t

l+1

t

k

t

�

k+1

t

k+d+1

Fig. 3. For a given t 2 [t

�

k

; t

�

k+1

℄, the set I(t) = f i j �

ki

(t) > 0 g is determined by

the positions of the displayed knots relative to one another.

We determine I(t) by inspeting equation (3.1): let t 2 [t

�

k

; t

�

k+1

℄

and let t

l

< t � t

l+1

be the knots immediately to the left and right

of t (see Figure 3). Sine N

d

j

(t) an only be non-zero if l � d � j � l

and sine �

k;l�d

(t) = �

kl

(t) = 0, the set I(t) is

I(t) = f i j l � d < i < l for t

l

< t � t

l+1

g :

For an eÆient implementation, we preompute the I(t

�

k

) and the

values �

ki

(t

�

k

), i 2 I(t

�

k

). Computing the lower and upper envelope

from Corollary 1 for any p over the �xed knot sequene (t

k

) then only

requires omputing one seond di�erene and one salar produt with

d� 1 terms for eah Greville absissa t

�

k

.

3.2 Sharpness and onvergene

The envelope from Corollary 1 is sharp in the sense that the upper

(lower) part of the envelope equals p at t

�

k

if �

2

b

i

� 0 (�

2

b

i

� 0)

for all i 2 I(t

�

k

). This is the ase if the whole polynomial piee of p

on whih p(t

�

k

) lies is onvex (onave). In partiular, the envelope is

sharp for splines of degree 2 sine I(t

�

k

) ontains only one element.

Sharpness implies that, under subdivison, the width of the en-

velope shrinks quadratially in the distane of the knots: sine the

envelope onsists of linear piees, the maximum width is attained

at the break points. Sine a spline has only �nitely many inetion

points almost all piees generated by subdivision are either onave

or onvex for whih the width of the envelope equals the distane of

the spline to the ontrol polygon whih is known to derease quadrat-

ially [CS85,Dah86℄.

4 Coarse envelopes

The envelope in Corollary 1 requires the evaluation of d � 1 splines

�

ki

at eah Greville absissa t

�

k

. We an redue the omputational

ost to just one evaluation per Greville absissa by subsuming the



Tight linear envelopes for splines 7

values of the �

ki

into one spline � and estimating its values. The

resulting envelopes, though very simple to ompute, are in general

onsiderably larger than the ones from Corollary 1.

0 1 2 4

Fig. 4. The funtion z for ubi splines over the knot sequene

(0; 0; 0; 0; 1; 2; 4; 4; 4; 4). The grey lines indiate the position of the Greville

absissae. Knots are shown as tiks on the x{axis. The values of z range from 0

to 0:26.

Theorem 2 The di�erene between the spline p and its B{spline

ontrol polygon `(p) over the interval [t

�

k

; t

�

k+1

℄ is bounded by

jp� `

k

(p)j � Mj� � `

k

(�)j =M z: (4.5)

where M(t) = max f j�

2

b

i

j j i 2 I(t) g. The splines �,

� =

X

j

�

j

N

d

j

where �

j

= jt

�

j

+

k

X

i=j

t

�

i

; (4.6)

and z = � � `(�) are nonnegative and onvex.

Proof Using Theorem 1, we have

jp� `

k

(p)j =

�

�

�

�

�

�

k

X

i=k

�

2

b

i

�

ki

�

�

�

�

�

�

�M

�

�

�

�

�

�

k

X

i=k

�

ki

�

�

�

�

�

�

=M

k

X

i=k

�

ki

:
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Equation (4.5) follows if we an show that

P

i

�

ki

= z.

k

X

i=k

�

ki

=

k

X

i=k

i

X

j=k

(t

�

i

� t

�

j

)�

kj

=

k

X

j=k

k

X

i=j

(t

�

i

� t

�

j

)�

kj

=

k

X

j=k

2

4

k

X

i=j

t

�

i

� (k � j + 1)t

�

j

3

5

�

kj

=

k

X

j=k

2

4

jt

�

j

+

k

X

i=j

t

�

i

3

5

�

kj

=

k

X

j=k

�

j

�

kj

=

k

X

j=k

�

j

N

d

j

�L

k

( � j �

k

; �

k+1

) = z:

(4.7)

It is easily heked that �

00

j

> 0. The funtions � and z = � � `(�)

are therefore stritly onvex on [t

�

k

; t

�

k+1

℄. The oeÆients of � and z

are nonnegative.

Corollary 2 The di�erene between p and its ontrol polygon ` over

the interval [t

�

k

; t

�

k+1

℄ is bounded by

jp� `j � L

k

(Mz) :

Proof By Theorem 1 and the onvexity of the �

ki

, we have

jp� `j �

k

X

i=k

j�

2

b

i

j�

ki

� L

k

0

�

k

X

i=k

j�

2

b

i

j �

ki

1

A

:

The de�nition of M and equation (4.7) in the proof of Theorem 2

show that

L

k

0

�

k

X

i=k

j�

2

b

i

j�

ki

1

A

� L

k

0

�

M

k

X

i=k

�

ki

1

A

= L

k

(Mz) :

4.1 Bounding with a quadrati spline

The same onsiderations as in Theorem 2 but with divided instead

of entered seond di�erenes yield a quadrati bounding spline.

Corollary 3 The di�erene between the spline p and its ontrol poly-

gon `(p) over the interval [t

�

k

; t

�

k+1

℄ is bounded by

jp� `(p)j �



M(t) j� � `(�)j

where



M(t) = max f jb

00

i

j j i 2 I(t) g. The funtion � =

P

�

j

N

d

j

is a

quadrati spline with �

00

= 1.
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Fig. 5. A ubi spline and its envelope aording to Corollary 1 (top) and Corol-

lary 2 (bottom) over the knot sequene (0; 0; 0; 0; 1; 2; 4; 4; 4; 4) with ontrol points

(0; 1; 3; 0; 3; 2).

Proof Using divided seond di�erenes b

00

i

, equation (3.2) beomes

p� ` =

k

X

i=k

b

00

i+1

t

i+d

� t

i+1

d� 1

�

ki

:

Sine, in analogy to the proof of Theorem 2,

� � `(�) =

k

X

i=k

t

i+d

� t

i+1

d� 1

�

ki

;

� is given by

� =

k

X

i=k

i

X

j=k

t

i+d

� t

i+1

d� 1

(t

�

i

� t

�

j

)N

d

j

=

k

X

j=k

k

X

i=j

t

i+d

� t

i+1

d� 1

(t

�

i

� t

�

j

)N

d

j

:

It is now easy to verify that �

00

j

= 1.
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4.2 Implementation

The envelope from Corollary 2 requires M(t

�

k

) and z(t

�

k

) for �nite

knot sequenes (t

0

; : : : ; t

m+d

) and orresponding Greville absissae

t

�

0

; : : : ; t

�

m

.

The de�nition of the oeÆients �

j

in equation (4.6) seems par-

tiular to the interval [t

�

k

; t

�

k+1

℄ sine it involves k. However, we an

extend the upper limit of summation in this de�nition to m, sine

only the values of z = � � `(�) are needed whih are not a�eted by

this hange.

An eÆient implementation of the bound of Corollary 2 stores

the values t

�

k

, z(t

�

k

), I(t

�

k

) together with the knot sequene, so that

only the maximal seond di�erene M(t

�

k

) needs to be reomputed

whenever the ontrol points of a spline hange.

4.3 Sharpness

The proof of Theorem 2 ontains only one inequality,

�

�

�

�

�

�

X

i2I(t)

�

2

b

i

�

ki

(t)

�

�

�

�

�

�

�M(t)

�

�

�

�

�

�

X

i2I(t)

�

ki

(t)

�

�

�

�

�

�

:

This is an equality exatly when all the seond di�erenes �

2

b

i

, i 2

I(t), are equal to one another. The splines with this property are the

linear polynomials and �.

Similarly, the bound from Corollary 3 is sharp for the linear poly-

nomials and �, and therefore for all quadrati polynomials.

5 A Bound for Bernstein Polynomials

The B{splinesN

d

j

of degree d over the knot sequene (t

0

; : : : ; t

2d

) with

t

i

= 1 for i > d and t

i

= 0 else are alled the Bernstein polynomials

B

d

j

of degree d. An expliit bound for the Bernstein polynomials was

already given in [NPL99, Theorem 3.1℄; we give an alternate proof for

this theorem, showing how it an be derived from the more general

exposition in this paper.

For Bernstein polynomials, the Greville absissae are t

�

i

= i=d and

the oeÆients �

j

are

�

j

=

j(j + 1) + d(d + 1)

2d

:
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Thus,

z =

X

j

�

j

�

kj

=

1

d

X

j

�

j

2

�

�

kj

=

1

d

0

�

X

j

�

j

2

�

B

d

j

�

k(2dt� k � 1)

2

1

A

=

d� 1

2

t

2

�

k(2dt� k � 1)

2d

and

z(t

�

k

) =

k(d� k)

2d

2

; z(t

�

k+1

) =

(k + 1)(d � (k + 1))

2d

2

at the endpoints of the interval [t

�

k

; t

�

k+1

℄. The maximal value z(t

�

k

)

over all k is taken on for k = bd=2. Sine �

2

b

i

= d(b

i�1

� 2b

i

+ b

i+1

)

the main theorem from [NPL99℄ follows:

Theorem 3 ([NPL99, Theorem 3.1℄) Let p =

P

d

i=0

b

i

B

d

i

be a

polynomial of degree d in Bernstein{B�ezier form. The distane be-

tween p and its ontrol polygon ` is uniformly bounded by

jp� `j �

bd=2 dd=2e

2d

d�1

max

i=1

j�

2

b

i

j

where �

2

b

i

= b

i�1

� 2b

i

+ b

i+1

.

This bound dereases by a fator of 4 under subdivision at 1=2 [NPL99,

Lemma 6.1℄.

6 A Bound for Uniform Splines

A spline is uniform if the knots are all equidistant. Without loss of

generality, we hoose t

k

= k. The uniform B{spline basis funtions

N

d

j

are shifts of one another and we de�ne N

d

= N

d

0

so that N

d

j

(t) =

N

d

(t� j). The orresponding Greville absissae are

t

�

k

=

1

d

k+d

X

i=k+1

i = k +

d+ 1

2

and � has the B{spline oeÆients

�

j

= j(j +

d+ 1

2

) +

m

X

i=j

�

i+

d+ 1

2

�

= (m+ 1)(j +

d+ 1

2

) +

�

j �m

2

�

:
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Aording to Equation (4.7), z =

P

j

�

j

�

kj

. For uniform splines

this simpli�es to

z =

X

j

�

j

�

kj

=

k

X

j=k

�

(m+ 1)(j +

d+ 1

2

) +

�

j �m

2

��

�

kj

=

X

j

�

j �m

2

�

�

kj

=

X

j

�

j � k

2

�

N

d

j

:

Regardless of the degree of p, z is a quadrati polynomial and has

the monomial form

z(t) =

1

2

 

t

2

� (t

�

k

+ t

�

k+1

)t+

�

t

�

k

+ t

�

k+1

2

�

2

+

d� 2

12

!

:

Sine z is a positive and onvex funtion, it attains its maximum over

[t

�

k

; t

�

k+1

℄ at one of the endpoints of the interval. Its values there are

z(t

�

k

) = z(t

�

k+1

) =

d+ 1

24

:

This proves the following simpli�ed version of Corollary 2:

Corollary 4 Let p =

P

j

b

j

N

d

j

be a uniform spline over the knot

sequene t

k

= k. Over the interval [t

�

k

; t

�

k+1

℄, the di�erene between p

and its ontrol polygon ` is bounded by

jp� `j �

d+ 1

24

L

k

(M) :

For uniform splines, the set I(t

�

k

) from equation (3.4) is

I(t

�

k

) = f i j k � bd=2 < i < k + bd=2 g :

Sine z(t

�

k

) = (d + 1)=24 and I(t

�

k

) = fkg for d = 2 or d = 3,

Corollary 1 redues for quadrati and ubi uniform splines to

d+ 1

24

L

k

(� j �

�

2

b

k

;�

�

2

b

k+1

) � p� ` �

d+ 1

24

L

k

(� j �

+

2

b

k

;�

+

2

b

k+1

):

(6.8)
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7 Uniform re�nement

For uniform splines, we onsider the re�nement of the knot sequene

t

k

= k to the sequene

^

t

k

= k=2. We now have two representations

for p,

p(t) =

X

k

b

k

N

d

(t� k) =

X

k

^

b

k

N

d

(2t� k);

where the new ontrol points

^

b

k

are

^

b

2i

= 2

�d

dd=2e

X

j=0

�

d+ 1

2j

�

b

i�j

;

^

b

2i+1

= 2

�d

dd=2e

X

j=0

�

d+ 1

2j + 1

�

b

i�j

:

(7.9)

Sine a

00

i

= �

2

a

i�1

, we an use the B{spline representation of p

00

together with equation (7.9) to relate the entered seond di�erenes

of the new ontrol polygon to those of the old ontrol polygon as

2

d

�

2

^

b

2i

=

X

j

�

d� 1

2j � 1

�

�

2

b

i�j

2

d

�

2

^

b

2i+1

=

X

j

�

d� 1

2j

�

�

2

b

i�j

:

The equality

P

j

�

d�1

j

�

= 2

d�1

and the symmetry of the binomial

oeÆients imply

X

j

�

d� 1

2j

�

=

X

j

�

d� 1

2j � 1

�

= 2

d�2

;

so that

max

i

�

�

�

�

2

^

b

i

�

�

�

�

1

4

max

i

j�

2

b

i

j:

This ensures that the bound from Corollary 4 onverges quadratially

to zero under repeated uniform re�nement. Figure 6 illustrates this

for a ubi uniform spline.

7.1 Examples

For quadrati splines, uniform re�nement is alled Chaikin's algo-

rithm and

^

b

2i

= 2

�2

(3b

i�1

+ b

i

);

^

b

2i+1

= 2

�2

(b

i�1

+ 3b

i

):
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Fig. 6. A uniform ubi spline with ontrol points (0; 1; 3; 0; 3; 2). Shown are the

envelope aording to equation (6.8) (top) and the envelope after one step of

uniform re�nement (bottom).

This yields

�

2

^

b

2i

= �

2

^

b

2i�1

=

1

4

�

2

b

i�1

:

Sine every seond di�erene dereases by a fator of four, subsequent

envelopes are ontained in one another.

Similarly, for ubi splines we have

^

b

2i

= 2

�3

(b

i�2

+ 6b

i�1

+ b

i

);

^

b

2i+1

= 2

�3

(4b

i�1

+ 4b

i

):

and therefore

�

2

^

b

2i

=

1

4

�

2

b

i�1

; �

2

^

b

2i+1

=

1

8

(�

2

b

i�1

+�

2

b

i

):

8 Conlusion

We only onsidered envelopes for spline funtions. The extension to

parametri urves, though, is a simple two step proess: �rst, the

oordinate funtions of the urve are enveloped separately at eah

ontrol point, yielding axis{aligned boxes around the ontrol points.

The union of the onvex hulls of any two onseutive ontrol points

is guaranteed to ontain the urve by the linearity of the envelopes.
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The envelopes developed in this paper an be generalized to ten-

sorprodut splines and other bivariate bases ommonly used in CAGD.

The onstrution follows the priniples outlined in this paper: rewrite

p � ` in terms of seond di�erenes in a new basis and estimate the

range of the basis funtions at the Greville absissae. Separating the

vetor of seond di�erenes of p into a negative and a positive part

gives then simple envelopes as pieewise o�sets of the ontrol poly-

gon. The details of this onstrution will be reported in a forthoming

paper.
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