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Abstract Given a polynomial p of degree n we want to find a best Lo-
approximation over the unit interval from polynomials of degree m < n. This
problem is shown to be equivalent to the problem of finding the best Euclidean
approximation of the vector of Bernstein-Bézier coefficients of p from the vector
of degree-raised Bernstein-Bézier coefficients of polynomials of degree m.

1 Motivation

Optimal degree reduction to exchange, convert or reduce data, or compare geo-
metric entities is an important task in CAGD. Since the piecewise linear control
structure of the commonly used Bernstein-Bézier form efficiently captures geo-
metric properties it is tempting to find the optimal lower degree approximant
by just comparing control points. This is in general a flawed approach since
the Lo-norm ||-||;, of the polynomials and the Euclidean norm ||| of the co-
efficients are not similar. For a simple example, consider the univariate linear
polynomials p(t) = 6(1 —¢) and ¢(¢t) = 4(1 — ) + 3¢t. Then
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The result proven in this paper is therefore not obvious: to find a best Lo-
approximation over the unit interval from polynomials of degree m to a given
polynomial p of degree n > m is equivalent to finding the best Euclidean ap-
proximation of the vector of Bernstein-Bézier coefficients of p from vectors of
Bernstein-Bézier coefficients of polynomials of degree m raised to degree n.
Bypassing the many interesting identities encountered along the way, we
present the result succinctly in the next pages — but not before pointing out
prior work. Lachance [5] and Eck [2], [3] analyze Chebyshev economization,
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Brunnett et al. [1] focus on separability of degree reduction into the different
spatial components and the geometry of the control polygon. Endpoint con-
strained Ls-approximation coupled with subdivision is discussed in [4] which
also contains a summary of earlier literature on economization.

2 Characterization of degree-raised polynomials

The linear space of polynomials of degree less than or equal to n is denoted
by P,. We shall use two different bases of P,, namely the Bernstein-Bézier
(BB) basis and the Lagrange basis with respect to the points 0,...,n. The
corresponding row vectors of polynomials are

n

B":=[BY,...,B" ,)(1 — )"t
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Q" :=1[Qf,...,Qu, where Q7(t) =] ::j :

where BJ'(t) := <

j=0
J#i
With b € R**! a column vector of coefficients, we write polynomials in BB form
and Lagrange form as B"b and Q"b, respectively. The latter form is used to
relate a discrete polynomial dependence of the coefficients on the vector index
to a continuous polynomial. For example, if the coefficients b(i) = i> — i depend
quadratically on the index i, then Q™ (t)b = t? —t is the corresponding quadratic
polynomial. The following lemma is well-known.

Lemma 2.1 A polynomial B™b is of degree < m if and only if the vector of
coefficients is a polynomial of degree < m in its indez, i.e.

B eP,, & Q"beP,.

Proof We define the column vector of alternating binomial coefficients by

vg (i) = (—1)"(@), i=0,...,n (1)

A

with the understanding that (]:) = 01if ¢ > k. First, when expanding the BB
form into monormial form we obtain

- n
B(t)b =Y (b'vi)(~1)F <k> tr
k=0
Hence, B"b € Py, if and only if b'vy = Y, b(i)vg (i) = 0 for m < k < n. Second,
the divided difference of @Q™b at the points 0, ...,k is

0, K@) = T2k



. From the Newton form
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we see that also Q"b € P,, if and only if b'v;, = 0 for m < k < n, what concludes
the proof. >

3 Equivalence of orthogonal complements

Like any approximation problem in a Hilbert space, degree reduction is closely
related to determining the orthogonal complement of the approximation space
with respect to the embedding space. The following result states an unexpected
coincidence:

Theorem 3.1 The orthogonal complements of P, in P, with respect to the
Lo-inner product

.0y = / F(Hg(t) dt 2)

and the Euclidean inner product of the BB coefficients

n

(B"b, B"c)y, ==Y _ bic; (3)

i=0
are equal.
Proof Denote the orthogonal complement of P, in P,, with respect to the
Euclidean inner product by Py, ., and let B"wy,41, ..., B"w, be some basis of
this space. By equality of dimensions it suffices to show that P, , is contained

in the orthogonal complement with respect to the Lo-inner product, i.e. the
polynomials B™"wy, have to be Ls-orthogonal to all polynomials in P,,,

(B"w;,t'), =0, 0<i<m<j<n.
Defining the column vector p; by
1 .
pilk) = / Br®Edt, k=0,....n
0
we rewrite <B”wj,ti>L = (B"wj, B"p;),,. By definition, the latter expression

vanishes if and only if B"p; € P,,, and by Lemma 2.1 this is equivalent to
Q"p; € Pp,. In other words, we have to show that p;(k) is polynomial in k of



degree < m for all i =0,...,m. Using the formula [, B(t)dt = 1/(d+1), this
follows easily from

pi(k) = 7(1’_1)?.) /0 Bty dt = o H(k+£).

i !
(n+i+1)! P
B
iJFrom the proof of Lemma 2.1 we can see that a possible choice for the ba-

sis B"Wp41, . - ., B"w, is provided by the coefficient vectors vy 41,...,0,. In
particular, we see for m = n — 1 that

B"v, = iz:;(—ni(’;’) Br

is La-orthogonal to all polynomials of degree < n. Hence, up to scaling, B"v,,
is just the Legendre polynomial of degree n on the unit interval in BB form.

4 Consequences

The implications of Theorem 3.1 to degree reduction are straightforward.

Corollary 4.1 Given a polynomial B™b of degree n, the approximation problem
min ||B"b —
min [|B" - p

has the same minimizer for the norm induced either by the La-inner product (2)
or the Euclidean inner product (3).

Proof The polynomial B"b can be decomposed uniquely according to

B =p+q, p€Pm, ¢€Pmn
and, by orthogonality, p is the wanted solution for both norms. >
The following corollary affirms that the degree reduction process factors, e.g.
k-fold degree reduction by one yields the same best approximand as a single

reduction by k degrees. This is of interest, for example, when seeking an ap-
proximand of least degree that still lies within a prescribed tolerance.

Corollary 4.2 Denote by Py, ,, the linear operator mapping polynomials B™b €
P, to their best Lo or Euclidean approzimant p € P,,,. Then

Pm,n = Pm,lplm , m< 14 <n.

The factorization of degree reduction is well-known in the Lo-case, non-trivial
to prove directly in the discrete Euclidean case, and in general false in other
norms, e.g. for Chebyshev approximation.



5 Practical considerations and an example

In practice, one is often interested in the BB form p = B™c of the best de-
gree reduction to the polynomial B™b. In order to compare coefficients, p has
to be represented in terms of B™, i.e. p = B"™¢. The degree raising matrix
Ap m for mapping the BB coefficients ¢ to ¢ has dimension (n + 1) x (m + 1)
and can be decomposed into elementary degree-raising steps [5] as Agn,m =
AmnflAnanfZ o Am+17m7 where

i/k ifj=i—1
Apper (i) = 1—ifk ifj=i
0 else.

Then, with ||-|| denoting the Euclidean norm in R**! degree reduction amounts
to solving the least squares problem

i b— A .
céﬁ?ﬂl I m,nCH

The solution is given by the pseudo inverse Py, ,, of the degree raising matrix,
c=P,nb:= (A:nynAmm)*lA:nynb.

(From Corollary 4.2 it follows that P,,, can be factored corresponding to a
sequence of elementary degree reduction steps,

Pm,n = m,m+1Pm+17m+2 T Pnfl,n .

Hence, in order to get easy access to arbitrary degree reduction matrices, it
suffices to precompute the matrices Py j41, the first few of which are

B
[1 1], Pis==—| -5 15 15 -5
T2 3 3 19

207 12 —-18 12 -3
5 2 —1 P 1 | -53 212 102 -68 17
-1 2 51| 37970 17 —68 102 212 -53

-3 12 —18 12207

DN | =

Py =

P, =

| =

We obtain for instance

1 7 4 1 =2
P173:P172P2,3:1_0|:_2 1 4 7

As an example, consider the cubic polynomial B?b® with BB coefficients > =
[1,—-3,1,0]*. The best approximating quadratic B?b* has coefficients b? =
[7/20,-35/20,13/20]%, while the best approximating linear polynomial B'b!
to either B?b? or B3b3 has coefficients b' = [-4/10,—1/10]*. The result is
illustrated in Figure 1.
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Figure 1: Ly degree reduction of a cubic to degree 2 (left) and degree 1 (right).
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