Improved Caps for Improved Subdivision Surfaces

Caps can assume less fluctuation than general n-sided surface models

Kestutis Karciauskas and Jorg Peters SPM 2023, Genoa

Reminder to Me

Improved caps KK and JPeters

Show the Bezierview of the Problem

Overview

Improved caps KK and JPeters

Improved subdivision surfaces

- PAS (Point Augmented Subdivision)
- QAS (Quadratic-Attraction Subdivision)

➤ Improved caps

Subdivision Surfaces

Splines on Meshes with Irregularities

Blender: Suzanne

Jorg Peters

Subdivision Surfaces

Splines on Meshes with Irregularities Jorg Peters

$\mathbf{d} = \mathbf{A} \mathbf{d}$

New PAS, QAS subdivision:

- Same structure and layout as Catmull-Clark subdivision,
- but better shape due to baked-in "guide"

Improved subdivision via guides

Splines on Meshes with Irregularities

Guide-generation algorithm as (a complicated but) linear formula: $\mathbf{b} = \mathbf{G} \mathbf{c}$

Tools to build a guide

- Sample total degree pre-guide
- Pre-solved G-constraints

Jorg Peters

Guided subdivision = guide surface + prolongation

Guided curve subdivision = guide surface + prolongation

Guided curve subdivision = guide surface + prolongation

Guided subdivision = guide surface + prolongation

Tools and tricks of the subdivision maker

Tools and tricks of the subdivision maker

Splines on Meshes with Irregularities Jorg Peters

Guide-generation algorithm as a (complicated but) linear formula: **b** = G **c**

Bake G into the subdivision matrix A

Improved Subdivision

Quadratic-Attraction Subdivision

Improved caps KK and JPeters

https://bitbucket.org/surflab/quadratic-attraction-subdivision

Quadratic-Attraction Subdivision (QAS)

Splines on Meshes with Irregularities Jorg Peters

Bounded curvature

Interpretation of control points

Overview

Improved caps KK and JPeters

Improved subdivision surfaces

- PAS (Point Augmented Subdivision)
- QAS (Quadratic-Attraction Subdivision)
- Improved caps one for each occasion

Possible Caps in the Literature

Improved caps KK and JPeters

- > Polynomial, C^2/G^2: [Loop, Schaefer, 2008] [KP Minimal bi-6 2016] ...
- Multisided, rational: [Hettinga, Kosinka, 2020], [Vaitkus, Varady, Salvi 2021] ...
- Rational corner singularity: [Gregory 1074], [Loop, Schaefer, Ni, Castano 2009] ...
- ➤ Curved knot lines: [Sabin, Fellows, Kosinka 2022]...
- ➤ Manifold Splines: [Gu, He, Qin 2005]...
- Polynomial G1: [Kapl, Sangalli, Takacs 2017], [Blidia, Mourrain, Xu 2020], [Marsala, Mantzaflaris, Mourrain 2022], [Bonneau, Hahmann 2014]
- Polynomial almost G1: [KP 2015]

 \succ

Caps can assume less fluctuation than general n-sided surface models

Want same degree as subdivision rings

Why new caps for new subdivision?

Cap without subdivision

Improved caps KK and JPeters

Unlike multi-sided surfaces, caps expect a few steps of subdivision \rightarrow lower degree

New cap

One subdiv step New cap

Genealogy: a hat for each occasion

Improved caps KK and JPeters

22

Tools and tricks of the cap maker

Choices of reparameterization

$$\partial_{v} \dot{\mathbf{p}} = a(u)\partial_{v} \dot{\mathbf{p}} + b(u)\partial_{u} \dot{\mathbf{p}},$$
$$\rho(u, v) := (u + b(u)v, a(u)v)$$

Comparisons

Improved caps KK and JPeters

Many more comparisons in the paper

Effect of a transition ring to accommodate

Effect of a transition ring to accommodate

Implementation via explicit Tables

Improved caps KK and JPeters

9.2. Tables and assignments of cap^{\boxplus}

We define the BB-net $\hat{\mathbf{p}}_{rs}$ of the central piece attached to \mathbf{c}_0 in terms of the BB-coefficients \mathbf{p}_{ij} of cap^{aux} and tabulated κ_{ij}^{rs} as

$$\begin{aligned} \hat{\mathbf{p}}_{rs} &:= \sum_{i=0}^{4} \sum_{j=0}^{4} \kappa_{ij}^{rs} \mathbf{p}_{ij}, \quad 0 \le r, s \le 2, \\ \kappa_{ij}^{rs} &:= \frac{1}{10^5} (K_{rs}^n)_{i+1,j+1}, \quad rs \in \{00, 10, 20, 11, 21, 22\}, \end{aligned}$$

$K_{00}^{6} := \begin{pmatrix} 520 & 1935 & 2698 & 1672 & 388 \\ 1935 & 7195 & 10032 & 6216 & 1444 \\ 2698 & 10032 & 13987 & 8667 & 2014 \\ 1672 & 6216 & 8667 & 5371 & 1248 \\ 388 & 1444 & 2014 & 1248 & 299 \end{pmatrix}, K_{10}^{6} := \begin{pmatrix} 48 & 1156 & 2971 & 2684 & 819 \\ 115 & 4057 & 10713 & 9772 & 2998 \\ 71 & 5320 & 14468 & 13334 & 4113 \\ -11 & 3088 & 8675 & 8082 & 2507 \\ -15 & 669 & 1948 & 1836 & 582 \end{pmatrix},$
$K_{20}^{6} := \begin{pmatrix} -12 & 77 & 2508 & 3928 & 1745 \\ -37 & 163 & 8276 & 13945 & 6267 \\ -34 & 69 & 10216 & 18456 & 8439 \\ -7 & 2 & -29 & 1142 & 2360 \end{pmatrix}, K_{11}^{6} := \begin{pmatrix} 17 & 122 & 158 & 34 & -20 \\ 122 & 2501 & 6001 & 5066 & 1441 \\ 158 & 6001 & 15442 & 13660 & 4056 \\ 34 & 5066 & 13660 & 12370 & 3739 \\ -20 & 1441 & 4056 & 3739 & 1156 \end{pmatrix},$
$K_{21}^{6} := \begin{pmatrix} -34 & 181 & 5196 & 7798 & 2194 \\ -57 & 200 & 11712 & 19522 & 8520 \\ -26 & 5 & 9310 & 16842 & 7743 \\ 0 & -42 & 2498 & 4869 & 2326 \end{pmatrix}, K_{22}^{6} := \begin{pmatrix} 1935 & 7195 & 10032 & 6216 & 1444 \\ 2698 & 10032 & 13987 & 8667 & 2014 \\ 1672 & 6216 & 8667 & 5371 & 1248 \\ 388 & 1444 & 2014 & 1248 & 299 \end{pmatrix}.$
$K_3^6 := \begin{pmatrix} 4971 & 16014 & 19346 & 10387 & 2091 & 3897 & 13537 & 17542 & 10056 & 2159 \\ 474 & 9864 & 21987 & 17212 & 4554 & 224 & 7434 & 18325 & 15519 & 4407 \\ -198 & 572 & 18471 & 26871 & 9912 & -131 & 162 & 13444 & 21737 & 9160 \\ 0 & 0 & 32641 & 24048 & 0 & 0 & 0 & 24048 & 19263 \end{pmatrix},$
$K_{41}^6 := (\ 669\ 17942\ 40744\ 32115\ 8530\), K_{43}^6 := (\ 0\ 0\ 0\ 57133\ 42867\).$
The tables K^n for $n \neq 6$ are listed in Section 9.5. Then

Summary

