Improved Caps for Improved Subdivision Surfaces

Caps can assume
less fluctuation than
general n-sided
surface models

Kestutis Karciauskas and Jorg Peters
SPM 2023, Genoa

Reminder to Me

Show the Bezierview of the Problem

Overview

$>$ Improved subdivision surfaces

- PAS (Point Augmented Subdivision)
- QAS (Quadratic-Attraction Subdivision)
> Improved caps

Subdivision Surfaces

refined meshes with

nested surface rings

Subdivision Surfaces

$$
d=A d
$$

New PAS, QAS subdivision:
> Same structure and layout as Catmull-Clark subdivision,
> but better shape due to baked-in "guide"

Improved subdivision via guides

Guide-generation algorithm as (a complicated but) linear formula: b=G c

$$
\begin{array}{ll}
\text { Tools to build } & >\text { Sample total degree } \\
\text { a guide } & >\text { pre-guide } \\
& >\text { Pre-solved G-constraints }
\end{array}
$$

Guided subdivision = guide surface + prolongation

Guided curve subdivision = guide surface + prolongation

Guide is offset for better visualizaiton

Guided curve subdivision = guide surface + prolongation

Guided subdivision = guide surface + prolongation

Tools and tricks of the subdivision maker

EG subdivision

Tools and tricks of the subdivision maker

> BB-coefficient of patches

Guide-generation algorithm as a (complicated but) linear formula: $\mathbf{b}=\mathrm{G} \mathbf{c}$

Bake G into the subdivision matrix A

Improved Subdivision

EG subdivision

https://bitbucket.org/surflab/eg_refine

Quadratic-Attraction Subdivision

Improved caps KK and JPeters

https://bitbucket.org/surflab/quadratic-attraction-subdivision

Quadratic-Attraction Subdivision (QAS)

Splines on Meshes with Irregularities

Gauss curvature
bi-5

Interpretation of control points

Overview

> Improved subdivision surfaces

- PAS (Point Augmented Subdivision)
- QAS (Quadratic-Attraction Subdivision)
$>$ Improved caps - one for each occasion

Possible Caps in the Literature

$>$ Polynomial, C^2/G^2: [Loop, Schaefer, 2008] [KP Minimal bi-6 2016] ...
$>$ Multisided, rational: [Hettinga, Kosinka, 2020], [Vaitkus, Varady, Salvi 2021] ...
> Rational corner singularity: [Gregory 1074], [Loop, Schaefer, Ni, Castano 2009] ...
> Curved knot lines: [Sabin, Fellows, Kosinka 2022]...
> Manifold Splines: [Gu, He, Qin 2005]...
$>$ Polynomial G1: [Kapl, Sangalli, Takacs 2017], [Blidia, Mourrain, Xu 2020], [Marsala, Mantzaflaris, Mourrain 2022], [Bonneau, Hahmann 2014]
$>$ Polynomial almost G1: [KP 2015]
Caps can assume less fluctuation than general n-sided surface models

Want same degree as subdivision rings

Why new caps for new subdivision?

(g) $\mathrm{AS}^{4}+\mathrm{GZ}$

New (good)
subdivision + old cap

(h) $\mathrm{CC}^{4}+\mathrm{cap}^{9}$

Old (poor) subdivision
$+\quad$ new cap

(i) $\mathrm{AS}^{4}+$ cap 9

New subdivision + new cap

Cap without subdivision

Unlike multi-sided surfaces, caps expect a few steps of subdivision \rightarrow lower degree

Genealogy: a hat for each occasion

Cap-aux: auxiliary base cap

Cap-aux: auxiliary base cap

(a) G^{1}

(b) layout

Tools and tricks of the cap maker

Choices of reparameterization

(a) 6

(b) 5

(c) cap^{9}

$$
\begin{array}{r}
\partial_{v} \grave{\mathbf{p}}=a(u) \partial_{v} \dot{\mathbf{p}}+b(u) \partial_{u} \grave{\mathbf{p}} \\
\rho(u, v):=(u+b(u) v, a(u) v)
\end{array}
$$

Cap-aux: auxiliary base cap

Comparisons

Many more comparisons in the paper

Effect of a transition ring to accommodate

(a) transition

(b) $\mathrm{AS}^{6}+7=$ good multi-sided surface

Effect of a transition ring to accommodate

Improved caps KK and JPeters

(c) transition

(d) $\mathrm{AS}^{6}+$ cyan $+\mathrm{AS}^{6}$

(e) $\mathrm{AS}^{13}+\mathrm{cap}^{\boxplus}$

Implementation via explicit Tables

9.2. Tables and assignments of cap ${ }^{\boxplus}$

We define the BB-net $\hat{\mathbf{p}}_{r s}$ of the central piece attached to \mathbf{c}_{0} in terms of the BB-coefficients $\mathbf{p}_{i j}$ of cap ${ }^{\text {aux }}$ and tabulated $\kappa_{i j}^{r s}$ as

$$
\begin{aligned}
\hat{\mathbf{p}}_{r s}: & :=\sum_{i=0}^{4} \sum_{j=0}^{4} \kappa_{i j}^{r s} \mathbf{p}_{i j}, \quad 0 \leq r, s \leq 2, \\
\kappa_{i j}^{r s} & :=\frac{1}{10^{5}}\left(K_{r s}^{n}\right)_{i+1, j+1}, \quad r s \in\{00,10,20,11,21,22\},
\end{aligned}
$$

$$
\begin{aligned}
& K_{00}^{6}:=\left(\begin{array}{ccccc}
520 & 1935 & 2698 & 1672 & 388 \\
1935 & 7195 & 10032 & 6216 & 1444 \\
2698 & 10032 & 13987 & 8667 & 2014 \\
1672 & 6216 & 8667 & 5371 & 1248 \\
388 & 1444 & 2014 & 1248 & 299
\end{array}\right), K_{10}^{6}:=\left(\begin{array}{ccccc}
48 & 1156 & 2971 & 2684 & 819 \\
115 & 4057 & 10713 & 9772 & 2998 \\
71 & 5320 & 14468 & 13334 & 4113 \\
-11 & 3088 & 8675 & 8082 & 2507 \\
-15 & 669 & 1948 & 1836 & 582
\end{array}\right), \\
& K_{20}^{6}:=\left(\begin{array}{ccccc}
-12 & 77 & 2508 & 3928 & 1745 \\
-37 & 163 & 8276 & 13945 & 6267 \\
-34 & 69 & 10216 & 18456 & 8439 \\
-7 & 2 & -29 & 1142 & 2360
\end{array}\right), K_{11}^{6}:=\left(\begin{array}{cccccc}
17 & 122 & 158 & 34 & -20 \\
122 & 2501 & 6001 & 5066 & 1441 \\
158 & 6001 & 15442 & 13660 & 4056 \\
34 & 5066 & 13660 & 12370 & 3739 \\
-20 & 1441 & 4056 & 3739 & 1156
\end{array}\right) \\
& K_{21}^{6}:=\left(\begin{array}{ccccc}
-3 & 28 & 276 & 252 & -110 \\
-34 & 181 & 5196 & 7798 & 2994 \\
-57 & 200 & 11712 & 19522 & 8520 \\
-26 & 5 & 9310 & 16842 & 7743 \\
0 & -42 & 2498 & 4869 & 2326
\end{array}\right), K_{22}^{6}:=\left(\begin{array}{ccccc}
520 & 1935 & 2698 & 1672 & 388 \\
1935 & 7195 & 10032 & 6216 & 1444 \\
2698 & 10032 & 13987 & 8667 & 2014 \\
1672 & 6216 & 8667 & 5371 & 1248 \\
388 & 1444 & 2014 & 1248 & 299
\end{array}\right) . \\
& K_{3}^{6}:=\left(\begin{array}{cccccccccc}
4971 & 16014 & 19346 & 10387 & 2091 & 3897 & 13537 & 17542 & 10056 & 2159 \\
474 & 9864 & 21987 & 17212 & 4554 & 224 & 7434 & 18325 & 15519 & 4407 \\
-198 & 572 & 18471 & 26871 & 9912 & -131 & 162 & 13444 & 21737 & 9160 \\
0 & 0 & 0 & 32641 & 24048 & 0 & 0 & 0 & 24048 & 19263
\end{array}\right), \\
& K_{41}^{6}:=\left(\begin{array}{lll}
669 & 179424074432115 & 8530
\end{array}\right), K_{43}^{6}:=\left(\begin{array}{lll}
0 & 0 & 0 \\
57133 & 42867
\end{array}\right) \text {. }
\end{aligned}
$$

The tables K^{n} for $n \neq 6$ are listed in Section 9.5 Then

Summary

