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Abstract

The quest for a finite number of bicubic (bi-3) polynomial pieces to smoothly fill multi-sided holes after a fixed number of surface
subdivision steps has motivated a number of constructions of finite surface caps. Recent bi-3 and bi-4 subdivision algorithms have
improved surface shape compared to classic Catmull-Clark and curvature-bounded ‘tuned’ subdivision. Since the older subdivision
algorithms exhibit artifacts that obscure the shortcomings of corresponding caps, it is worth re-visiting their multi-sided fill surfaces.
The improved caps address the challenge so that either bi-3 or bi-4 data can be accommodated, as needed. The derivation illustrates
the subtle fundamental trade off between formal algebraic mathematical smoothness constraints and good shape in the large.

Keywords: subdivision surface, finitely-many patches, surface shape, smoothness

1. Introduction

For computer-aided design, an infinite sequence of surface
rings as in Fig. [T]b is not just impractical but complicates down-
stream operations such as computing exact integrals, moments,
and deformation under force. This motivates investigating how
to smoothly cap multi-sided holes after a fixed number of subdi-
vision steps. While, for visual effects, covering the hole with a
triangle fan may suffice, geometric design aims to fill with a cap
of the same high quality as the surrounding surface. Given re-
cent improvements of subdivision surfaces, shortcomings in the
existing panoply of caps become more visible (see Fig.[3]). Since
caps have to respond to different objectives: uniform highlight
lines, exact C! transitions, low degree or low number of pieces,
capping a bi-4 or bi-3 subdivision sequence of rings, we present
a family of options to cater towards the desired set of properties,
see Fig.[2]. The common ancestor, cap™*, consists of n patches of
degree bi-4 that provide good initial shape and approximate first-
order Hermite data of the innermost subdivision ring.

New splits and reparameterizations improve formal smooth-
ness and lower the polynomial degree. This completeness of op-
tions to address the variety of needs with new types of macro-
patch layouts is the main contribution: older caps require transi-
tions that introduce shape artifacts.

While "tuned’ subdivision algorithms, like [3], have a control
net of the type Fig.[I]a, just like their classical ancestor [1]] and
multi-sided constructions, see e.g. [7], recent high-quality sub-
division algorithms take advantage of a slightly different control
net that can be obtained from Fig.[T|a by the conversion explained
in [4] Egs 1,2], respectively [2, Sect 3]. This net also provides a
regular bi-cubic ring that surrounds the cap and so allows judging
the quality of the transition from regular bi-3 splines to the cap.
The first r subdivision steps generate a sequence of r contracting
rings as illustrated in Fig. [T]b. Catmull-Clark [1] generates three
bi-cubic patches per sector of such a ring, [2] three bi-4 patches.
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/ T

/

(c) single layer [1]], [2] (d) double layer [3], [4]

Figure 1: (a) Catmull-Clark input control net plus one layer of control points.
(b) A nested sequence structure of subdivision rings with central limit point ¢o
shown as e: (c) single layer ring, (d) double-layer (macro-patch) ring. Each ring
consists of an L-shaped collection of patches in each of the n sectors.

Both cases are illustrated by Fig. c. [3] and [4] both produce
three 2 X 2 bi-3 macro-patches per sector, as sketched in Fig.[T|d.
The family of caps addresses all such types of subdivision rings.
To judge the quality of the transition and the cap, note that in
Fig. B3] we zoom into a small area around the cap and display
highlight lines [8]. Evidently, an object-level view of a large,
complex surface would prevent any serious analysis of surface
artifacts.

Overview After a focused literature review in Section [2} Sec-
tion |3| introduces the toolkit for deriving the caps. Since this
section is necessarily technical, some readers may want to skip

ahead to Fig. [§|(b), Fig. [I0](a), Fig. [[2)(b), Fig. [[3](a) to take
in the structure of the caps and appreciate the executive sum-
mary of Fig.2]. Section[d]defines the progenitor bi-4 cap™* and
the smooth completion cap®™. (We adhere strictly to the cap-
with-superscript notation to avoid confusion between the con-

structions.)  Section [5| derives the bi-3 Eﬁf)EE, cap’ and cap®,
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cap
bi-3, C! | i
e . / Sect[3.3]
cap -
bi-4, C! =
cap™™ Sectd.2] cap’ a=ll .
bi-4, C° bi-3, C'—¢
Sect cap’ Sect cap’
bi-3, C!€ C!
Sect[5.1] Sectl[6]
Ix1 2x2 9 piece rational

Figure 2: Genealogy of improved caps for improved subdivision surfaces. Icons
depict one of n sectors of the cap. The central point ¢ is always in the upper right
hand corner. Cyan lower left edges of sector sketches indicate a C'~€ transition,
i.e. a tiny normal mismatch, from the last subdivision surface ring to the cap.

boundaries indicate a proper C! transition. Internally, all cap sectors are
C! and adjacent sectors are G' connected. Bi-4 patches are brick red, bi-3 pink;
gray indicates Gregory-type patches with 4 X 4 coefficients, some of which are
rational expressions in u, v. (The true rational degree of cap®is bi-7.)

and Section E] defines the Gregory type rational cap®. Notably,
the implementations amount to assembling a matrix and multi-
plying it by the input control structure [co,dfj] consisting of a
central point ¢y and the net d that encapsulates the first-order
Hermite data across the boundary of the innermost subdivision
ring. Focusing on the interplay of smoothness, surface quality,
polynomial degree and layout complexity, Section [/| compares
the caps to alternatives and each other and shows that transitions
to accommodate older cap constructions harm surface quality.

2. Prior work

Alignment of patch boundaries with features for better shape
and fundamental facts of topology imply that control nets of free
form surfaces with quadrilateral facets must allow for nodes with
n # 4 neighbors. Looking at this challenge in general, a large
number of solutions of good shape, measured as uniform high-
light line distribution [8]], exist in the literature, e.g. the curvature
continuous polynomial constructions of degree bi-7 9] of degree
bi-6 [[10], rational blending constructions [L1} [12]], curved knot-
line splines [13]] and manifold splines [14]. Here we focus on
geometrically continuous spline caps (G-spline caps) that assem-
ble a finite number of polynomial pieces to join smoothly after a
change of variables. For downstream processing and uniformity
of polynomial degree, constructions of lower degree are advan-
tageous. A number of constructions of degree as low as bi-3
solve the algebraic smoothness constraints [[15} [16} [17]] but do
not necessarily yield surfaces with acceptable highlight line dis-
tributions. Conversely, several publication focus on empirically
good highlight lines. Examples of bi-5 caps are [18]] and the
macro-patch bi-4 caps of [19] and [7] developed to serve both
geometry and solving partial differential equations on the geom-
etry. There are even bi-3 caps with very small normal mismatch,
called C'~¢ (almost C') constructions: the surfaces of [20] do not
match the rings of an improved subdivision ring, but serves as in-

spiration for Eﬁf)EE and 6559. The construction of cap™* is akin to
the bi-4 cap construction in [21]], whereas cap® is a new variant
of the classical Gregory-patch approach [22] but different from
[23]] and the rational multi-sided surfaces of [24, [12]].

The recent subdivision surfaces [4] and [2] build on the idea

of guided subdivision. They improve on the arguably best-

optimized (tuned) subdivision eigen-expansion of [3]. However,
in contrast to [25]] these recent subdivision surfaces have the con-
struction of a guide surface built into their explicit refinement
stencils.

Hybrids of a finite number of subdivision rings completed with
a cap are particularly useful as the final stage of nestedly refin-
ing spaces for use in engineering analysis. The finite polyno-
mial formulation yields exact volume and moment formulas [26]
and simplifies the integration compared even to optimized sub-
division [27]]. Realistically, six steps of subdivision suffice for
such applications; and the C! or C? transitions between subdivi-
sion rings are simpler to work with than G' refinable construc-
tions (see [28]). Section [/|illustrates why many of mentioned
schemes fail to complete high-quality subdivision surfaces main-
taining the high quality.

3. Tools of the cap maker

To define cap constructions that work both for bi-3 and bi-
4 subdivision, the input net is not assumed to be the classical
Catmull-Clark control net of 6n+ 1 nodes shown in Fig. E]a, but a
more general control net (that can be generated from the classical
control net if needed) that consists of 127 + 1 nodes [cy, dfj] as

explained in Section [3.2] The output surface is represented in
BB-form, see Section[3.1] All caps can be generated by applying
a large sparse matrix to the input net to yield the BB-coefficients
of the output cap. Given the Hermite data t derived from the input
data in Section[3.2} G'! smoothness between adjacent sectors of a
cap and with respect to target points obtained from an auxiliary
bi-4 surface are explained in Section [3.3]

3.1. Output surface representation p and jets of type jixi

The rings of subdivision surfaces and the cap can be repre-
sented as tensor-product patches of bi-degree d in Bernstein-
Bézier form (BB-form, [29, 30]). That is, for Bernstein poly-

nomials BY () := (Z)(l — ki,

pu,v) := Z

d d
p,-jBfl(u)B?(v), O<uv<l.

i=0 j=0

Connecting the BB-coefficients p;; € R to p;11; and p; j41 wher-
ever well-defined yields the BB-net. In this paper we construct
the caps of bi-degree d = 3 (bi-3) and d = 4 (bi-4) to complete C?
subdivision surfaces of degree bi-3 or bi-4. Fig. d] demonstrates
how BB-subnets jsx3 assemble to form bi-4 patches.

3.2. Hermite data t and the input data [c, dfj]

For C? bi-4 subdivision surfaces with the layout of Fig. c
and C? bi-3 subdivision surface with the layout of Fig. d, first-
order Hermite prolongation of the finest subdivision ring along
each boundary curve are expressed as the tensor-borders t (bi-
4) and €, t' (bi-3), see Fig. [5|a,b. There is a natural one-to-one
correspondence between a pair £, t! and t that preserves, at the
two end-points t), and ,, marked as big e in Fig. , the 3 x 2
Ovf 0.0 f O20f

Foog af
by 2 in each variable and presented in bi-4 form by applying the
process of Fig.[]. Explicitly, since for j =0, 1,

Hermite data ( ) : the end-point jets jsx, are scaled

w0 w0 Vo omea o Lo -
1 ._30 20 ._ 30 0 1 1 ._ 30 0 1
G =80, =1+ 7@, - 6.0, =1, - 7@, - ).
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(a) input net (b) layout () [3h

(f) layout (2) AS* + GZ

(d) cap®

— — ——

(e) AS! + cap’

(h) CC* + cap® (i) AS* + cap’®

Figure 3: Bi-3 caps added after no or r subdivision steps. The number of surface rings r is indicated as superscript for CC” [[1]] and AS” [4]. The bi-cubic caps are: cap®,
the construction of Section@ (c) [3]], a 12 year old construction; (h) a cap construction GZ based on the constraints formulated 30 years ago in [6], see also Fig.@a.

In (b,f) green indicates the surrounding regular bi-3 surface. Flaws are pointed to by E>, 1 and |. (h) Combining the improved cap” with CC* leads to poor outcomes:
the good cap cannot fix the structural problems of the underlying subdivision algorithm (the same is illustrated in Fig.@ for [3]). (g) Conversely applying an old cap
construction, here GZ, to a high-quality surrounding surface AS* fails to produce a good highlight line distribution. (d,e,i) Fewer visual oscillations when an improved

subdivision, here AS’, is completed with capg.

0uf 9uduf Touf
roof o

&S 0,03 0L f
ﬁ

(a) jax3 (b) bi4

Figure 4: Corner jets and composing the bi-4 patches. (a) Partial derivatives at
corner point are converted to BB-form of fixed degree bi-d; the BB-coefficients
form BB-subnet j3x3, called jet. (b) For d = 4 the four such j3x3 are merged
to form bi-4 patch by averaging the overlapping BB-coefficients. Restricting the
construction to the two bottom rows in (a) and (b) shows how to combine jets
Jjax2 at the corners to form a tensor-border of degree bi-4.

t’ and t' are defined by BB-coefficients f%,fgj, t i=0,1,j=

3-ij
0,1 and the C! bi-4 tensor-border by

1, - - - 1 -
too Z=t80, tio := 5(3t(1)0 - tgo), ty = 2tg0 - E({(I)O + téO)’
1, - - 1 - -
tor :=§(3t81 o). tir = Z(tgo =3 + &) +98). (D
_ 1 _ _ - -
toy :=31), + Z@O +6, = 3@, +6,)) — 6

The remaining BB-coefficients t4_; , i, j = 0, 1 are obtained from
t;; by replacing ), by §; , .

Tensor-borders t along the two outer boundary curves of one
sector are joined to form L-shaped bi-4 tensor-borders, see Fig. [6]
since they agree in their overlap data. Due to the shared Hermite
data, the tensor-borders of neighboring sectors are C>-connected.

Removing the BB-coefficients shared by neighboring sectors

yields truncated L-shaped tensor-borders whose coefficients are
denoted by (see Fig.[6])
d,s=0,..

1 .n—1. 2)
(These contain the full C! information since the removed BB-
coefficients are defined as averages to enforce the C' join). Each

sector s now retains 12 BB-coefficients that we index dj] as

shown on the left side of Fig. [6] for derivation. For implemen-
tation, it is more convenient to use the single-digit indexing of
a vector, shown for the sector s + 1 on the right side, i.e, df(“,
k =1,...,12. The control points d°, s = 0,...,n — 1, and the
point ¢y derived from the subdivision algorithm form the input
data for constructing the auxiliary bi-4 cap.

3.3. G' smoothness between adjacent sectors p and p and the
use of target points a;; and a;

This section collates a number of technical facts for the deriva-
tion and a number of formulas for the concrete implementation of
the algorithm. The polynomial pieces p and p of adjacent sectors
(see Fig. Ela) join G' along the common sector-separating curve
p(u, 0) = p(u, 0) with BB-coefficients py = Py if, see e.g. [31]],
after reparameterization p(u, v) := p o p(u, v), (u,v) € [0..1]%,

p~p: 3
op = aw)o,p + b(w)d,p, p(u,v) := (u+ b(w)v, a(u)v).

By setting a(u) := —1 the sectors are treated symmetrically (with-
out bias). Besides the shared BB-coefficients of common bound-
ary, only the next layers p;; and p;; of adjacent patches enter the
G! continuity constraints.
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(a) single bi-4 (b)2x 2 bi-3

Ql g 21 3101 11 o 3l
70 7l

00 19 t 30100 t 20 30,

01 11 31 41
[ 3 ® ®

t
0 20 . 40
© @) -t

Figure 5: Correspondence of tensor borders t (bi-4) and 0, T (bi-3): (a) Struc-
ture of the innermost ring of a C? bi-4 subdivision surface, say [2], and C 1 ex-
tension t. (b) The innermost ring of a C2 bi-3 subdivision surface, say [4] and C!
extensions (tensor-borders) T t'. (c) Transformation of the C2-connected bi-3
tensor-borders t° and ' to the bi-4 tensor-border t.

ds—l
0 0
13
30 31
_é_é_
: : Co
03 1
0 1
ol 1w 21 31 | 12 10
ds 6 ds+1
00 10 20 30 1711 5

Figure 6: Input data [co,dfj] for constructing cap®*: 12n control points parti-

tioned into L-shaped sectors d°, s = 0,...,n — 1, and a limit point ¢y of the
subdivision surface.

In this following, b(u) is either the linear function p(1 —u)+vu
or the quadratic function u(1 - u)?; in latter case, considering the
caps of degree bi-d we assume that along the boundary p|,— is
of degree d — 1. Hence in either case the function b(u)d,p is of
degree d. Denoting its BB-coefficients e;, we get

, . . 1
Pi1 == —Pit +2pjo + & 4
and write out, for linear b(u),
d=73:[ez,e3] := [2v(P20 — P10) + (P30 — P20), 3v(P30 — P20)];
d=4:ey,e3eq] := [2v(P20 — P1o) + 2u(P30 — P20)>
3u(P3o — P20) + v(Pao — P30), 4v(Pao — P30)],

noting that e;, i = 0, 1 are obtained from —e,;_; by exchanging
1 < vand Pg_ro < Pro, kK = 0, 1. For quadratic b(u) := (1 - u)?
we only need

2 . R
d=4: e := 5#([’40 - P30)-

| 41 rv 01
wyvu
‘ |
11 1
® N .
p |Y
; ®
* o
d |
d dl

(a) general solution

(b) "top’ case

T )

(d) targets points [

(c) ’bottom’ case

Figure 7: BB-subnets involved in the G'-constraints between adjacent sectors.
(a) General structure: solid arrows indicate parameterization by u, hollow ones by
v. (b) BB-subnet attached to ¢ ('top’), (c) BB-subnet adjacent to the innermost
subdivision surface ring ("bottom’). (d) Guiding the cap by target points [].

At the ‘top’, i.e. at the central point ¢y = Pgo, see Fig. b, b(u)
is defined by u := 2¢ := 2 cos(2n/n) so (@) implies for i = 0 that
Po1 := —Por + 2¢Ppio + 2(1 = ¢)Po. By recurrence, all pj, and

P}, for s > 0 can be expressed in terms of [‘)81, P}, and ¢o. This
yields a well-defined tangent plane. When i = 1, we rearrange

N

N N , Vi
P20 : Voo +d(Pr1 +P11)+2(dC—C—d—§)P10) )

1
:2ad—n<

to treat BB-coefficients p;; and P;; as unconstrained (free).
Therefore the circulant system of equations at ¢y is satisfied and
we can concentrate on local G'-constraints between sectors.

At the "bottom’, connecting to the last subdivision ring r, see
Fig. |Z|c, we choose b(u) either linear as u(1 — u) or quadratic as
u(1 — u)®. In the linear case, e; := 0 and (E[) implies pgyo :=
%(pdl + Pa1). Since v := 0, in (@), a solution for i =d — 1 is

. 1 . ) .
Pa-10 := m(d(Pd—l,l + Pa-1.1) — 4Dao) - (6)

In the quadratic case e;_; := 0 =: ey; that is py_;o := %(pd_,»,l +
pd—i,l) fori = 0, 1.

The ‘middle’ sections are under-constrained and are set to
closely match target points 2;; and 4;;, see Fig.[7]d. Minimiz-
ing (P — ;)% + (Pi1 — 4;)° for the BB-coefficients p;; and p;;
while enforcing (@) for fixed pyo yields the formula

. Lo 1
i1 = 5(@ —a;) +Pio + €,
Dir = 5 — ) + b + e

pi=pa— (@ —-4a). (7)

To apply the results local to two patches p and p to the n-sided
cap, we set p := p* and p := p”l, s =0,...,n—1. Fig. a,b
illustrates this re-labelling for the auxiliary bi-4 cap by juxtapos-
ing local and global indices.
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(a) G' constraints, local indexing

(b) patch layout, global indexing

Figure 8: cap®*: (a) local G! constraints; (b) structure of cap®*.

4. Bi-4 caps

We now specialize the basic ideas of Section[3]to arrive at vari-
ants of bi-4 caps with different layout or formal smoothness prop-
erties. This section introduces cap®™ in Section[#.T|that encapsu-
lates the shape of all subsequent caps of this paper, but meets the
innermost surface ring of bi-4 subdivision only C°. This section
also defines cap® in Sectionthat achieves a C! connection to
the innermost bi-4 subdivision ring at the cost of using a 2 X 2
macro-patch for each of the n sectors of the n-sided cap.

aux

4.1. The auxiliary bi-4 cap

The construction of the cap®* is inspired by the bi-4 cap con-
struction in [21]. The constructions differ since, in our set-
ting, the input data are different: d°, s = 0,...,n — 1 of (]Z[)
and an undetermined central point ¢y. Following the frame-
work of Section [3.3] Fig. [8|a shows the BB-subnets contributing
to the G'-constraints between sectors, with b(u) := 2¢c(1 — u).
B-coefficients, marked as black bullets in Fig. |§|a are uncon-
strained; Py is fixed by (B). Fig.[8]b shows the structure of cap™*.
Since C! smoothness of input tensor-border t is not consistent
with (@), t is re-parameterized to t o 8 where

Bu,v) = (u, a(v),
mm:%@+ﬁ@+£&%@.

aux

¢ := cos(2n/n),

®)

The BB-coefficients of the first-order expansion along the

01 11 21 41
® [ 2
] 1 t 4
1B
0 ‘L 4
21 -
OQ ZQ 4
(a) bi-4 (b) bi-3

Figure 9: Transformation of input tensor-borders t — f and t¢ — .

boundary curve form a tensor-border of degree 6, Fig.[0]a,middle.
The 3 X2 corner-jets, marked by cyan and blue dashed boxes, are
expressed in bi-4 form and merged by averaging at overlapping
locations. The result is the tensor-border t preserving the bound-
ary: to:=to,i=0,...,4. Lett; :=t;; — to. Then

C(i() + 6t2 - 8t3 + 3t4)
122 - ¢) ’
C(2t3 - t4) ~ Cf4

2 T U=ty +
22-¢) @ M MT ¢

for == tor, 1 =ty By =ty +

©))

E31 =13 +

The tensor-border t (gray in Fig. ) satisfies the G'-constraints
between sectors. As explained in Appendix [0.1] the remaining
BB-coefficients of cap?™* are also affine weighted combinations
of the input points d}; and co. Therefore the algorithm can
be implemented by computing the BB-coefficients of the n
bi-4 output patches by multiplying [co, d*] by the matrix that
encapsulates the cap construction.

Algorithm cap?"*:
The bi-4 patch of each sector is obtained as follows, see Fig.[§]:

1. The input tensor-border t defines the gray underlaid BB-
subnets in Fig.|§|a,b, i.e. pfj fori e {0,...4}, j€{0,1} (and
the diagonally symmetric ones) by (9).

2. Appendix Section|9.1|presents the formulas for p3; and pj;,.
Py, := P2o is defined by @) (note the switch to local in-
dices).

3. With target points set by (T7) formula (7) defines p3, := pa:.

4. By symmetry, only p5, remains, and is defined by (T8).

We summarize the properties of cap™*.

Summary 1. The outer boundary of cap™ matches the last ring
of bi-4 subdivision surface. cap™ consists of n bi-4 patches that
. . 1
join G*.

4.2. The C" bi-4 cap®

(a) 2 x 2 layout,
0 global indexing

—01

(c) four jsx3 jets for
sampling

(b) G!

Figure 10: capEE: (a) global structure. (b) G! constraints with local indices. (c)
Constructing the 4 corner jets j3x3 for sampling the central quadrant of cap™*.
In the rop,right quadrant of the left square of (c), the 4 jets overlap in almost
identical BB-coefficients and so, misleadingly, appear to form a bi-4 patch.

Quadrupling the number of patches to a 2 x 2 layout, see
Fig.[I0]a, the gray-underlaid BB-coefficients represent the input
tensor-border t, split into two. Therefore cap® is C!-connected
to the last bi-4 subdivision ring. We choose, see Fig. @b,

2
top: p ~ p with b(u) := 2¢(1 — u) + gcu, (10)

2
bottom: B ~ B with b(u) := §C(1 —u)*, ¢:=cos(2r/n). (11)
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The BB-coefficients marked e are locally unconstrained (free)
and e coincide with the corresponding BB-coefficients of the
split tensor-border t.

The key to good shape is central bi-4 piece p attached to cy.
We compute the four jsx3 corner jets of one sector at the corner
points of 7! o #, where 7 : R> — R? is the planar cap™* whose
tensor-border d stems from the degree-raised characteristic map
of Catmull-Clark subdivision and ¢y coincides with the origin;
7 is taken from [28] adjusting for the input data, see Fig. [I0]c.
Then the center piece p of cap™is assembled, as illustrated in
Fig. [, from cap™* composed with each of the four 3 x 3 corner
jets jaxz. All BB-coefficients are affine combinations of the
BB-coefficients of cap™* and Appendix [9.2]lists all the derived
weights explicitly to facilitate implementation.

Algorithm cap®:
Each sector’s BB-nets is obtained as, see Fig. @]a,b:

1. The split input tensor-border t defines the gray underlaid
BB-subnets in Fig.[T0]a,b.
2. Py is calculated as (B) and

. 1 . . R ,
Pao = ﬁ( = 6P20 +20p3p +4p,  — 240) .

N N N N
3. Setp = Paos P, = 2P0 — P30, B, = —5(@,, +P,) +
%(pm + D, ). Then (@) defines p; and pir, i = 2,3,4.

4. The yellow-underlaid BB-subnet in Fig. a is the C2-
extension of the central bi-4 piece. The BB-coefficients
marked as [ serve as target points for defining pﬂ and [’)21

via formula (7).

We summarize the properties of cap™.

Summary 2. The outer boundary of cap® joins C' with the in-
nermost bi-4 subdivision ring. Each sector of the n sectors of
cap® consists of 2 x 2 C'-joined bi-4 patches, and abutting sec-
tors of cap® join G'.

5. Bi-3 caps

We derive three types of bi-3 caps. All three are internally
smooth. EeTf)EE in Section has the simplest layout, consisting

of 2X2 patches per sector; as Sectionclariﬁes E@EE empirically
has excellent highlight line distributions despite a slight normal
discontinuity with the innermost bi-3 subdivision ring. A vari-

ant of cap” is introduced in Section cap’ features a novel
9-piece layout (but not a 3 x 3 split) of each sector, and reduces
the normal mismatch still further. Section derives cap’ from
cap®: cap’ guarantees a C'-connection to the innermost bi-3
subdivision ring and introduces a different 9-piece layout. Since
the bi-4 cap™™* is the starting point for all three bi-3 cap construc-
tions to complete bi-3 subdivision surfaces, we transform the C?-
connected bi-3 tensor-borders t° and t' to a bi-4 tensor-border t
as described in Section [3.2] Equation (T).

In the derivations we use two transformations 7', and T, that
map bi-4 patches to bi-3 patches, see Fig. [[1]. 7, maps a bi-
4 patch to a single bi-3 patch preserving 2 X 2 corner-jets jox»
marked [] and [J in Fig. [IT]a in bi-4 form and merged to form
the bi-3 patch. T, splits the bi-4 patch into 2 X 2 and retains the
3 X 3 corner jets j3x3 with BB-coefficients e and e in bi-3 form
to define the corners of the 2 X 2 macro-patch that is completed
by internal C' joining (that fortuitously turns out to be C?), see

Fig.[TT]b.

.......

.......

.......

.......
.......

.......

(a) Ty: bi-4 — bi-3 (b) To: bi-4 — 2 X 2 bi-3

Figure 11: Transformations 7 and 7.

5.1. The almost smooth EEZ)EH

We transform cap™* into a cap with 2 X 2 bi-3 pieces Fig.[I2]b
and apply T to each piece. Choosing for G! constraints between
sectors, see Fig.[[2]a,

top: p ~ p with b(u) := 2¢(1 — u) + cu, (12)

bottom: B ~ B with b(u) := c(1 — u), c :=cos(2n/n) (13)

yields the BB-coefficients of EEf)E, marked in Fig. b as e and
we retain o in Fig.[12]a.

(a) G' (b) 2 x 2 layout

Figure 12: Almost smooth bi-3 EﬁﬁEE. (a) G! constraints; (b) global structure.

We set P3g := Poo + %(Ezo = P1o), define p;; and p;, i = 2,3,
by formula (7) with [ in Fig. [I2]b as target points; and set those
marked as o by C!-extension of p and p.

The 2 x 2 bi-3 sectors are G'-connected but need to be joined
to the last subdivision ring. For

B, v) = (u, d“ ), (14)

0w = a(Y). a'w) = a(> + 2
') = a(3), a'@) = a(5 + ),
k

and a’(‘), aj, ag the BB-coefficients of a*(u), the transformations

h* : t — T of the bi-3 tensor-borders analogous to the bi-4 case
are

Tk ._Fk - _ ¢k ._ 1k Tk
#.=%.i=0,...,3  t#=¢-¢,

_ _ oo 2 ) ,
& =1, +ath, & =8, + 5(a’; —dtt + dbik, (15)

- - o~ - 2 . .
k . Tk kik Tk ._ 1k k kyik kik
6y, = +ayt;, 6, =t + g(al —a)t; + ast; .

The transformed tensor-borders t* form the gray-underlaid
BB-subnet in Fig. b. G' continuity between the sectors
is preserved since the transformation retained the BB-subnet
underlaid-gray in Fig. [[3]a.

Summary 3. &7[353 consists of n sectors of 2 X 2 C'-joined bi-3

patches. Abutting sectors join G'. Eﬁf)EE is C'~¢-connected to the
last subdivision ring.
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5.2. The almost smooth cap’

By increasing number of sector pieces to 9 and retaining inter-
nal smoothness and good shape, the small normal discrepancy to
the last subdivision ring is further reduced as explained in Sec-
tion[7l

[ t!
] ]
(a)2x2 (b) 9 pieces

Figure 13: Transformations A* for the C!~¢ cap’ construction.

In each sector all patches of EﬁﬁE see Fig. a, except for the
central piece, are uniformly split as displayed in Fig. [[3]b: for
two patches the split in one direction, for one patch in both di-
rections. The correspondingly split tensor-borders are denoted t*,
k=0,1,2,3. Then EEf)g is obtained replacing the gray-underlaid
BB-coefficients by h*(t*), k = 0,1,2,3 where df, af, a5 are the
BB-coefficients of a(u) := a(i—i + %u) and #* the transformation

defined by (13).

Summary 4. cap’ consists of n sectors of 9 C'-joined bi-3
patches. Abutting sectors join G' and 557;9 is C'~¢-connected

to the last subdivision ring.
5.3. The smooth cap’

The EZTﬁEE and cap’ surfaces have good highlight line distribu-
tions. Here we investigate what price must be paid to enforce
formal smoothness constraints, and this leads to a novel split into
9 patches, see Fig. [[3]c.

C
o -
— <—l ~

b

R

(a) [6] (b) [5]

(©) cap’

Figure 14: G' constraints with reparameterization b* across the sector boundary
s for smooth bi-3 caps.

We start with the observation that smooth transitions are not
algebraically tricky: following [6], we can cover a sector with
2 X 2 macro-patches by choosing b%(u) := 2¢(1 — u)?, b'(u) := 0;
that is, two thirds of the BB-net straddling the sector boundary s
is parametrically C' connected, cf. the BB-coefficients marked
o in Fig. [I4]a that are equidistant and opposite from the BB-
coefficient on s. [5]] covers a sector with 3 X 3 patches and uses
bo(u) = 2¢(1 — u) + cu, b'(u) := c(1 — u)?, b*(u) := 0 so

that one half of the BB-net of two adjacent sectors is C' con-
nected, cf. the BB-coefficients marked o in Fig. ['I_Z]b. The chal-
lenge is the uniformity of highlight lines. Various experiments
indicate that uniformity improves when strict C! constraints are
pushed away from the central point ¢y. Therefore cap’® uses four
pieces along the sector boundary and Po(w) :=2¢(1 — u) + %‘Cu,
b'(w) := 3c(1 — u) + 3cu, b*(w) := 3c(1 — u) + weu, b*(u) :=
wc(1 — u)? which confines the strict C! pairs to those marked
in the gray underlaid BB-subnet. (The parameters 2c, ‘3—‘0 and
%C are inherited by subdivision from capE.) Further experiments
indicate that setting w close to the midpoint of interval [é, 41'1] as
w = %(% + }T) = 4—90 yields empirically the best highlight lines.
Denoting the BB-nets along s as p* and p¥, the BB-coefficients
marked as o are defined by C! extension of adjacent upper piece.
The BB-coefficients marked e are for now unconstrained (free)
and the BB-coefficients marked as e are obtained from the input
tensor-border, pj, is defined by (3). Once the BB-coefficients
on s and the target points [ have been decided upon, the BB-
coefficients pf, pf. i = 2,3, k = 0,1,2, follow from (7). In
summary, the G' constraints hold for

D =Dl — 4% + 4D

Do :=woDYy + @1DY + 23 + D3Py + WaDp,

Do :=@1DY + @2D5 + D33 + a3,

D30 :=@1PYy + @23 + W33y + Wapyg + WPy + DD,
where

1 .
79902 — 414w + 327
(i =4w(99* — 408w + 28), @3 1= —6w(23w — 2),

= —12w(33w” — 147w + 10),

4
@y 1= 2033w =2), @y = 1= ) o

r=1
3w-16

W = w4 , W :=15—-3w, W3 := 1=, 4 :=—01;
9 12 .. 9
w1 :=2—Ow— 5 wy:=9— gw, w3 = Wy + 5
3 .. 1
W4 ':=— W1, W5:==, We:=—=.

4 1 5 3 6 3

We now adjust the construction of cap® to bi-3 input replacing
the gray-underlaid BB-net in Fig. [I0]a by the input bi-3 tensor-
borders degree-raised to degree bi-4. An intermediate collection
of smoothly-joined bi-3 patches is constructed by applying T to
the central bi-4 piece and T, to the three others. Keeping the
resulting BB-coefficients marked e or gray-underlaid in Fig. [I5]a
fixed, those marked (] serve as target points in (7). Finally the
BB-coefficients marked e are obtained by C! extension of the
adjacent single bi-3 patch.

To reduce the number of patches per sector from 13 to 9 and
improve the cap, the 4 pairs ¢, r of bi-3 patches are merged and
transformed to 4 bi-3 patches m in a following way, see Fig. [I5]b:
we set ll := 2 ¢ —10; the o remain fixed. This transformation pre-
serves first order Hermite data along the boundaries defined by o.
The yellow underlaid BB-coefficients are obtained by C! exten-
sion and a subsequent split of two m patches to restore internal
smoothness of the sector.

Summary 5. cap’ consists of n sectors of 9 C'-joined bi-3
patches. Abutting sectors join G'. cap’ is C'-connected to the
last subdivision ring.
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Figure 15: Construction of the smooth bi-3 cap® with 9 pieces per sector.

6. Gregory-type cap® and polynomial counterpart cap®®

Gregory’s approach [22] for combining inconsistent data was
used in [32]. [33] generalized the approach to construct a smooth
multi-sided surface by rationally averaging a series of interior
BB-coefficients. cap® uses this approach to combine the BB-
coefficients p;; of 651353 and p;; of the input tensor-borders €, t'.

Fig. a shows the cyan BB-net of EaTﬁEE and, in black, the tensor-
border and o of increasing size mark locations of inconsistency
for one direction. Then setting

bo;u* + porv byu? +pryy
01 =———> > °N:*= ">
us+v u-+v
b~ u)* + parv . bau(l— u)* + p31v
AT AWy (I—ul+v

yields C' 2 x 2 macro patches per sector, that join G' to one
another and C! to the last subdivision ring. (The diagonally sym-
metric rational BB-coefficients have u < v exchanged.)

(a) cap®

Figure 16: Sector of the smooth rational cap® and its polynomial single piece per
sector bi-5 alternative.

While Gregory’s rational averaging reconciliates inconsistent
data so that the resulting caps have reasonable shape, the im-
plementation and conversion to rational BB-form is non-trivial:
cap? patches are rational of degree bi-7 and require special care
at the corners where both numerator and denominator vanish. A

more economic alternative, see Fig.[T@b, is to degree-raise cap®™*

to bi-5 and split the sectors into 2 X 2 pieces, reparameterize the
input bi-3 tensor-borders as & := ¥ o g with the g* of (14). See
Appendix for the construction of cap®® illustrated in Fig. |§|b.

7. Interplay of smoothness, quality, degree and complexity

Referring back to the comparison of inter-sector constraints in
Fig. [14], we observe that simple construction can yield low de-
gree bi-3, but at a noticeable cost to shape: the constraint pattern
in Fig.[T4]a from [6] yields simple, 2 x 2 per sector bi-3 surfaces
that join the input ring C', but, as Fig. [3|g illustrates, yields a
poor highlight line distribution.

The construction [19], with its 2 X 2 sector layout of de-
gree bi-4 pieces, requires structure adjustment via a transition
ring, namely to match the subdivision rings and reduce the inter-
sector constraints to the structure in Fig. [T4]a, in degree bi-4
form. The analysis of Fig. 20| indicates that such a transition
already by itself harms the shape of high-quality subdivision.
To be sure that the structural
transition causes shape prob-
lems, we also extended the GZ
construction (cf. Fig. Blg) to
degree bi-4, denoted GZ4 be-
low. Fig. [I7] illustrates the re-
sulting poor surface quality.

Increasing the complexity
of the reparameterization to
yield the constraint pattern of
Fig.[T4]b fails to improve high-
light lines substantially, see
Fig.Blc (a slightly unfair com-
parison, due to not having ap-
plied any subdivision steps, but
still indicative). The discussion of Fig. 20| shows that adding a
transition ring to accommodate the data also fails. Only the more
complex constraint pattern of Fig. c, used by cap’ and hidden
in its pre-calculated formulas, leads to formal smoothness and
good quality for degree bi-3. Increasing the degree to bi-4, cap™
also yields uniform highlight lines and has the additional advan-
tage that these bi-4 surfaces are G'-refinable whereas bi-3 caps
can not be G'-refinable [28]. Another option to design the
high quality multi-sided bi-3 internally smooth caps with 2 x 2
patches per sector comes at the cost of mismatch of normals on
the boundary. In [20] a maximal normal mismatch of < 0.1° was
reported, sufficient for automobile class A surfaces. We call this
C'~¢ continuity. Initial subdivision steps reduce the mismatch
below relevance for most applications.

For a convex net and n = 8, Fig. compares capping ASS,
including with GZ4. The highlight lines of cap™ are on par with
EEﬁE and cap™; cap® has slight oscillations at the transition to
the last AS ring, and these are more accentuated for cap®, partly
because the BB-coefficients averaged differ more than for the
low valencies. From afar, both cap® and GZ4 surfaces look
good, but the drastic difference in the highlight lines under zoom
demonstrates the influence of the reparameterizations even in a
small area after many refinement steps.

Fig. [I9] juxtaposes the caps after step 2 (left column) and 6
(right column) of bi-3 AS subdivision, corresponding to mini-
mally, respectively maximally many steps in practice. The nor-

mal mismatch for EEf)EE is < 0.1? in all tested cases and the high-
light line distribution is on par with the strictly smooth cap®.
The highlight lines of 6559 are also visually indistinguishable

Figure 17: GZ4 capping AS* with
input Fig. [B[a.
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(a) input net (b) AS® + cap

(c) zoom GZ4 (d) Gz4

(e) zoom cap®® (f) cap®®

(g) cap? (h) cap’

Figure 18: Comparison of caps under zoom via highlight lines. (b) bi-3 surround-
ing surface, AS® subdivision rings (gold) and cap.

from those of cap_, but the normal mismatch for cap’ after AS®
is < 0,0081°. While this is formally C-¢, the mismatch is
less than 8 digits after the decimal point (arccos(0.99999999) ~
0.0081028°), a level of accuracy acceptable in most modeling

packages. For AS?, the highlight lines of EEI)EE and cap® barely
differ; cap9 exhibits waviness, milder for capG. Under zoom,
after AS®, cap® exhibits fainter waves than cap®.

Fig.[20] explores how even high-end surface constructions fail
to produce a good cap for high-end subdivision due to the need
to transition to their input data. Focusing on roughly the same
surface region from the center as in Fig. [I9e, Fig. 20]a shows
the cap of [[7] applied after six steps of AS via a cyan bi-3 tran-
sition ring: the cap joins G' with the transition and is internally
G' consisting of 2 X 2 bi-4 sectors; Fig. @b shows unexpected
highlight line oscillations. Fig.[20]c,d show similar noise intro-
duced, by inserting just the transition and then switching back to
the original high-quality subdivision AS- rather than continuing
throughout with AS steps as in Fig. [20]e.

Fig. [21] illustrates that even the new caps cannot fix the struc-

(a) input net

rh e

(b) AS? + cap (d) AS® + cap

(c) zoom (e) zoom

(f) cap”

, N~

(h) cap’

IS ==
)é_§

x
_\
%

() cap® (k) cap®

IS i
)é%

=
%

(m) cap®

(i) cap’

(1) capG

Figure 19: Cap comparison: bi-cubic caps and cap®. The zoom region for the
left column is shown in (c) for the right in (e).
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(c) transition (d) ASS + cyan + AS® (e) AS"3 + cap™®

Figure 20: How transitions to accommodate the ring structure rule out otherwise
high-end caps, here [[7] and AS".

| (

(d) AS* + cap™

o~

@n=17 (b) layout (c) [31* + cap™®

Figure 21: High-quality caps require high-quality subdivision.

tural problems introduced by lower quality subdivision with the
AS layout, e.g. [3].

Limitations While higher-degree, more complex caps can be ap-
plied without subdivision, taking into account second-order Her-
mite data, we focused here on the covering simpler, low degree
options that assume that the input data stem from a high-quality
bi-3 or bi-4 subdivision scheme after r > 1 subdivision steps.
These subdivision schemes smooth the features of the initial con-
trol net so that highlight lines vary smoothly although only first-
order Hermite data is captured at the transition to the cap.

Adjusting to subdivision algorithms that generate k X k macro-
patches for each of the three pieces of an L-shape is possible. We
restricted any detailed treatment to the most common subdivision
schemes that feature at most a 2 x 2 split.

8. Conclusion

The preceding sections exposed and compared alternatives for
smoothly filling, with caps of degree bi-3 or bi-4, the multi-sided
hole left in a surface after generating a fixed number of bi-3
or bi-4 subdivision rings. While a number of solutions exist in
the literature, the recent introduction of improved subdivision al-
gorithms reveals their comparatively poor shape characteristics.
The gamut of the new bi-3 or bi-4 caps trades formal enforce-
ment of algebraic mathematical smoothness constraints for good
shape inherited from a control net and improved subdivision. The
exhaustive overview of choices comes with explicit formulas for
implementation.
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9. Appendix

This Appendix contains the remaining technical formulas for
the implementation of cap®*, cap® and cap”. For n = 6, the
formulas and their use of tables A are illustrated in Section
and for K in Section[9.2] The tables forn = 3,5,7,8,9, 10 follow
in Section[9.4]and Section[9.5] Section[9.3|lists the key formulas
for cap®®.

9.1. Tables and assignments of cap™™
Labeling the sectors of cap™*

§=0,...,n—-1, wesetpj, :=co,
n—1 n—1
P33 (=o€ + Z Z Ry Pay i= doco + Z Z w4, (16)
=0 k=1 =0 k=1
n—1 n—-1 12

12
S S -
r=0 k=1

One choice for ¢ is the modified Catmull-Clark limit point of
[21]. For an efficient tabulation, due to rotational symmetry of
the construction, it suffices to store only p(3’3 and f)SS. Without
sacrificing quality, a,g and & need only be stored up to 5 digits
after the decimal point precalculated as tables A%, and A}, of size
n x 12, for valences n = 3,5, ..., 10:

.7

a = (A}313)r+1,k7 alr( = (A43)r+1 e r=0,...,n-1

105 105

For example, forn = 6

1436 1266 -941 -12151 1266 -16291 7231 28028 -941 7231 -12151 28028
277 -781 -37 -1546 2015 -5212 7211 —-685 —35 -2622 —5284 14625
-588 712 93 4226 -398 6127 -1523 —-10354 546 -2833 5314 -11427
—-295 -1078 -228 4221 -1078 6388 —1714 -7693 -228 —1714 4221 -7693
-588 =398 546 5314 -712 6127 -2833 —-11427 93 -1523 4226 -10354
277 2015 -35 -5284 -781 -5212 -2622 14625 -37 —-1546  -685
472 922 —153 -4706 356 —6185 1426 11036 -235 —4224 8448
472 356 235 —4224 922 —6185 3453 8448 -153 —4706 11036
A() o— 0 —-565 —82 481 565 0 2026 -2588 82 —481 2588
43 *7 | 472 =922 153 4706 -356 6185 —1426 —11036 235 -3453 4224 -8448
—472 =356 235 4224 -922 6185 -3453 —8448 153 —1426 4706 -11036
0 565 82 —481 -565 0 2026 25838 —82 2026 481 —2588

Tables A?j for other valencies n are listed in Section To en-
sure smoothness at the central point ¢ after the 5 digit truncation,
we recompute

6
A33

n—1
s+J

Pl = o+ = Z cos<—1>p43 :

calculate the gray-underlaid BB-coefficients in Fig. [§] by Equa-
tion (9) and set the target points as
. 2. N [N R
) = §(P31 +Pu) - 8([’41 + Po1) (17)
and 4, analogously. Then p,g follows from @), P21 and po; from
and
(18)

s 1 2 s s 1 S S
P :=§(§(P21 +Py3) - g(pzo +Pag))+

1 2 N S 1 S 5
E(g(pu +P3,) — E(I’oz + p42))-

5

11

9.2. Tables and assignments of cap®

We define the BB-net p, of the central piece attached to ¢ in
terms of the BB-coefficients p;; of cap™* and tabulated K{J‘? as

4 4
f’rs = ZZK;;PU', 0<rs<2,

rs € {00, 10,20, 11,21, 22},

K = =Ky )i, j+1s

Klr; = K" for (rs) € {01,02, 12} by symmetry and we need not
superscrlpt p,s since all formulas are the same for each sector.
The 5 digits-after-decimal-point weights «! J‘?, scaled by 10°, are
recorded in tables K’ I’; (whose size does not depend on the valence
n) of size 5 x5 for ij € {00, 10,20, 11,21, 22}, size 4 x 10 for K%
and 1 x 5 forij € {41,43}:

520 1935 2698 1672 388 48 1156 2971 2684 819
6 1935 7195 10032 6216 1444 | ¢ 115 4057 10713 9772 2998
Koo 1= | 2698 10032 13987 8667 2014 ’K1o :=| 71 5320 14468 13334 4113
1672 6216 8667 5371 1248 ~11 3088 8675 8082 2507
388 1444 2014 1248 299 S5 6600 1045 183 52
~12 77 2508 3928 1745 -
122 2501 6001 5066 1441
K?® T37.163 8276 13945 0267 ) KO = [ 158 6001 15442 13660 4056
20 34 69 10216 18456 8439 |» K11 o0 2006 13e60 13950 935
=7 2 29 1142 2360 220 1441 4056 3739 1156
-3 28 276 252 —110 520 1935 2698 1672 388
6 34 181 5196 7798 2994 | [935 7195 10032 6216 1444
KS, :=| -57 200 11712 19522 8520 |, K, := | 2698 10032 13987 8667 2014 |.
265 9310 16842 7743 1672 6216 8667 5371 1248
0 —42 2498 4869 2326 388 1444 2014 1248 299
4971 16014 19346 10387 2091 3897 13537 17542 10056 2159
KO = [ 474 9864 21987 17212 4554 224 7434 18325 15519 4407
3 -= | —198 572 18471 26871 9912 —131 162 13444 21737 9160
0 0 0 32641 24048 O 0 0 24048 19263

Kgl 1= (669 17942 40744 32115 8530 ) ,
The tables K" for n # 6 are listed in Section[9.3] Then

Ky := (00057133 42867) .

Pas := paa, L3 := KiLs, Par = —< K} L4, Paz 1= —<Kij3L4,

1 1
105 105 105
Ls := (P30, P31, P32, P33)",  La := (Pao, Pat, Pa2, Pazs Paa)”
Ls := (P30, P31- P32, P33, P34> Pa0s Pat, Pa2, Pazs Pas)”
and Po2, P13, P23 Pra and P34 are obtained symmetrically. The

Psjand pj3, j = 0,1,2, are used as target points when applying
formula (7).

9.3. Key formulas for cap”

With the notation of (T3)), f:f.‘ ,i=0,...,
boundary coefficients and

5 are the degree-raised

k k k
n - . 2_ 3. 6a;. 9ag.
), = B + 226, ) o= T8+ 2B+ 2+ 2
01 00 5 5 00 5 10 25 0 25 (19)
3ak 9a* 9ak
LRI QT S 1 a'i o
200 T 5100 020 " 50 07 25 50

The BB-coefficients £ 5 T k = O 1,2, are obtained from tk by
replacmg tk by t i and tk by ,, and ai by az—r This yields
cap® con51st1ng of n internally C T 2 x 2, G'-connected sectors
of degree bi-5 and so that the shape of cap™* is preserved and the
cap® is smoothly (G') connected to the surrounding surface.

9.4. Tables of cap™ forn =3,5,7,8,9,10

3 3735 632 -2084 -2364 632 —18746 2016 32437 -2084 2016 -2364 32437
A33 —2375 -463 591 1449 663 11628 -2072 —13537 318 -4796 1838 -24860
—2375 663 318 1838 —463 11628 -4796 —24860 591 -2072 1449 -13537

3 1099 931 -1396 -47 -982 —5424 -214 10784 993 3340 -2045 6941
A43 = 1099 -982 993 -2045 931 -5424 3340 6941 -1396 -214 -47 10784
=2199 50 402 2093 50 10848 -3125 —17726 402 -3125 2093 -17726

622

623

624

625

626
627

628

629
630

631

632

633

637
638
639

640

641
642

643
644
645

646

), 647
), 648



2204 772 -672 -11013 772 -18467 8745 27997 -672 8745 -11013 27997
=17 —1650 1314 405 2298 -2062 7090 -9026 —681 —4544 —1446 8416

—821 -481 -450 3525 -978 8506 -3961 -7218 401 -2854 5848 -13513

—821 -978 401 5848 481 8506 -2854 —13513 —450 -3961 3525 -7218
=17 2298 -681 —1446 —1650 -2062 -4544 8416 1314 7090 405 -9026

748 992 -308 —4082 -77 -7121 1589 11465 122 4806 -3959 7485
748 =77 122 -3959 992 -7121 4806 7485 -308 1589 -4082 11465
—285 —1040 384 1634 690 2720 1380 -6839 -313 -3823 1436 -398

=925 -565 114 4970 -565 8802 -3953 —11712 114 -3953 4970 -11712

—285 690 -313 1436 —1040 2720 -3823 -398 384 1380 1634 -6839

905 1420 -947 —-12433 1420 -13541 5533 26973 -947 5533 -12433 26973
316 —115 —676 -3449 1746 -6342 6191 5161 150 —1238 -7741 17950
=347 -667 48 3922 79 3540 272 -9730 647 -2805 3116 -6235

-219 -816 —144 3946 -1045 5171 -1558 -7103 -32 =720 5210 -9992

-219 —-1045 -32 5210 -816 5171 =720 -9992 —144 —1558 3946 -7103

-347 79 647 3116 —-667 3540 -2805 —6235 48 272 3922 -9730

316 1746 150 -7741 -115 -6342 -1238 17950 —-676 6191 -3449 5161

292 829 -103 —4892 512 5111 1133 10460 —298 2418 -4345 8610
292 512 -298 —4345 829 5111 2418 8610 —103 1133 —4892 10460
72 —190 —268 —526 522 —1262 1882 276 169 —1005 —1755 4433
-202 =750 -36 3688 -178 3537 70 —8265 314 -2387 2703 —4932
—-324 -744 222 5126 -744 5673 -1971 —10583 222 -1971 5126 -10583
-202 -178 314 2703 -750 3537 -2387 -4932 -36 -70 3688 -8265
72 522 169 —1755 —190 —1262 —1005 4433 -268 1882 -526 276

591 1414 -860 —12362 1414 —11319 4266 25644 -860 4266 —12362 25644
277 284 -878 -4935 1547 -6516 5087 8897 142 —426 -9092 19402
=175 —477 —-158 2850 355 1448 1261 -7111 670 -2423 673 ~—1155

-200 —675 5 4149 -760 4280 -1154 -7987 156 —851 5227 —10070

-85 —-896 -225 4187 -896 3950 448 -7135 -225 -448 4187 -7135
-200 =760 156 5227 -675 4280 -851 —10070 5 -—1154 4149 -7987
=175 355 670 673 —477 1448 -2423 -1155 -158 1261 2850 -7111
277 1547 142 -9092 284 -6516 —426 19402 —878 5087 —4935 8897

188 740 -81 -4867 548 -4258 889 9829 -272 1740 -4363 8453
188 548 -272 —4363 740 -4258 1740 8453 81 889 -—4867 9829
78 34 304 —-1304 499 -1763 1572 2125 157 -482 -2519 5447
—78 —499 —157 2519 -34 1763 482 5447 304 -1572 1304 -2125
—188 740 81 4867 -548 4258 -889 -9829 272 -1740 4363 -8453
—188 —548 272 4363 -740 4258 -1740 -8453 81 -889 4867 -9829
=78 =34 304 1304 -499 1763 —1572 2125 —157 482 2519 -5447
78 499 157 -2519 34 -1763 -482 5447 -304 1572 -1304 2125

404 1348 —759 —12094 1348 —9646 3377 24259 -759 3377 -12094 24259
227 509 -892 —6004 1397 —6317 4166 11224 83 35 -9742 19792
—74 -263 -325 1500 511 -42 1702 -4014 620 -1931 -1405 2869
-162 =569 29 4103 -473 3338 -614 -8175 311 -1113 4369 -8366
=73 =715 —-146 3788 -828 3390 -586 -6376 —-176 -88 4620 -8060
—73 -828 —176 4620 -715 3390 -88 -8060 —146 -586 3788 -6376
-162 —473 311 4369 -569 3338 —1113 -8366 29 -614 4103 -8175
=74 511 620 —1405 -263 -42 -1931 2869 -325 1702 1500 -4014
227 1397 83 9742 509 -6317 35 19792 -892 4166 -6004 11224

128 663 -67 -4736 538 -3620 709 9204 -230 1298 -4305 8157
128 538 -230 -4305 663 -3620 1298 8157 —-67 709 -4736 9204
68 161 —285 —1860 478 —1926 1280 3293 126 -211 -2951 5945
-23 291 -206 1455 68 669 662 -3112 261 -1033 215 -96
-104 -607 —31 4090 -372 2951 -264 -8061 274 -1372 3280 -6092
—136 —639 158 4811 -639 3852 -1068 —-9238 158 —1068 4811 -9238
-104 =372 274 3280 -607 2951 -1372 -6092 -31 -264 4090 -8061
-23 68 261 215 -291 669 -1033 -96 -206 662 1455 -3112
68 478 126 -2951 161 -1926 -211 5945 -285 1280 -1860 3293

288 1265 —667 —11711 1265 —8382 2750 22899 —667 2750 —11711 22899
183 630 -836 —6723 1276 —5989 3446 12618 22 298 -9969 19602
=18 -76 -422 164 598 -1052 1838 —1121 534 -1469 -2996 5803
—118 —-458 —18 3677 -240 2395 -132 -7429 403 -1234 3100 -5911
—78 =597 -47 3766 -690 3036 -611 —-6599 -53 -189 4701 -8364
-34 -709 -226 3838 -709 2773 59 -6262 -226 -59 3838 —6262
-78 —690 -53 4701 -597 3036 -189 —8364 —47 -611 3766 —6599
—118 =240 403 3100 -458 2395 -1234 —5911 —18 -132 3677 -7429
—18 598 534 -2996 -76 —1052 —1469 5803 —422 1838 164 -1121
183 1276 22 -9969 630 —5989 298 19602 —836 3446 —-6723 12618

90 598 57 —-4556 512 -3140 578 8614 —-190 1002 -4197 7802
90 512 -190 -4197 598 -3140 1002 7802 -57 578 -4556 8614
56 231 -250 -2234 455 -1940 1043 4010 96 —-66 -3175 6135
0 -138 -214 581 138 0 686 -—1313 214 -686 -581 1313
=56 -455 -96 3175 -231 1940 66 —6135 250 -1043 2234 -4010
-90 =598 57 4556 -512 3140 -578 -8614 190 -1002 4197 -7802
=90 =512 190 4197 -598 3140 -1002 -7802 57 -578 4556 -8614
—56 —231 250 2234 -455 1940 -1043 —4010 -96 66 3175 -6135
0 138 214 -581 -138 0 —-686 1313 -214 686 581 -1313
56 455 96 -3175 231 -1940 -66 6135 -250 1043 -2234 4010

Tables of cap® forn =3,5,7,8,9,10

327 1368 2144 1493 389
1368 5717 8958 6238 1628 3
2144 8958 14035 9773 2552 |, K

=20 592 1992 2128 749
—53 2613 8540 9042 3169
i=| =32 4309 13717 14402 5027

1493 6238 9773 6805 1777 10 13 3150 9787 10193 3543
389 1628 2552 1777 476 12 861 2617 2704 945
5 =35 1043 2638 1409 -4 -48 -73 -13 15
17 —86 4946 11532 6066 3 —48 1078 3911 4419 1635
19 -29 8772 18747 9834 |, Kll ‘= =73 3911 13074 14173 5086
8 58 6902 13411 7143 —13 4419 14173 15080 5340
1 36 2034 3552 1977 15 1635 5086 5340 1882

2 -4 -98 -112 36 327 1368 2144 1493 389
17 =72 1963 5275 3111 3 1368 5717 8958 6238 1628
32 -94 7789 17993 9776 |, K22 1= 2144 8958 14035 9773 2552
20 26 9517 19650 10484 1493 6238 9773 6805 1777

4 53 3804 7016 3812 389 1628 2552 1777 476
2005 9796 17942 14605 4458 2591 11572 19213 14025 3793 )
b

.— | —180 3913 15948 20129 8326 —111 5309 18508 20636 7522

87 -207 8362 24122 14316 102 30 12469 24362 16357

0 0 0 19112 27518 O 0 0 27518 25852

1= (=312 8294 33180 41653 17185 ), Kiz 1= (00043718 56282 ),

459 1764 2539 1625 389
1764 6773 9751 6239 1497 5 62 3639 10133 9615 3058
2539 9751 14038 8982 2155 |, KIO := 40 5050 14316 13669 4361
1625 6239 8982 5747 1379 -5 3110 8986 8635 2764
389 1497 2155 1379 343 -8 717 2114 2045 664

25 982 26838 2536 804

5
K3,

5
K3, :

K3 =

5
K

7
Ky :

7
Ky :

K! =

21

7 ._
K] =

8 .
Ky -
8 .
K, :
8 ._
K3, =

8 ._
K=

-106 281
0 0

6081 17693 19303 9359

—320 1089 21845 27491
0 0 0 36829 23491

-6 40 2079 3563 1675
-19 90 7412 13312 6286
—18 43 9900 18606 8852
—4 25 5871 11533 5542
0 —17 1304 2675 1306

-2 12 139 132 =50
—18 93 4273 7115 3075

=30 113 10755 19222 8900

-14 7 9373 17678 8418
0 25 2747 5440 2647

4154 14586 19206 11240 2466 3553 13105
241 8306 20760 17897 5189
15935 26175 10992 -74

0 29478 24419 0

(351 15675 39657 34337 9980 ) , KZ3

570 2071 2819 1705 386

2071 7519 10234 6191 1404
2819 10234 13930 8426 1911
1705 6191 8426 5097 1156

386 1404 1911 1156 278

—17 109 2848 4225 1788
—52 218 8904 14426 6232
—47 83 10401 18315 8131
-9 -63 5374 10262 4703
3 =36 1035 2143 1024

-5 44 398 355 -169
—47 258 5913 8324 2911
—-80 263 12371 19706 8235
=36 -1 9225 16207 7274
0 -55 2324 4471 2114

8 62 86 21 -10
62 2071 5427 4915 1496
86 5427 14874 13861 4326
21 4915 13861 13098 4130

—10 1496 4326 4130 1321

459 1764 2539 1625 389
1764 6773 9751 6239 1497
2539 9751 14038 8982 2155
1625 6239 8982 5747 1379
389 1497 2155 1379 343

18084 11067 2539
18553 16869 5135
13051 23203 10465

9
0 24419 21684)

:= (000 54293 45707 ) ,

68 1298 3194 2795 829
158 4382 11143 9873 2950
92 5515 14555 13069 3931
—18 3064 8434 7681 2327
-21 633 1829 1691 528

27 173 214 40 -28
173 2845 6433 5165 1398
214 6433 15834 13485 3860
40 5165 13485 11836 3468
—28 1398 3860 3468 1042

570 2071 2819 1705 386

2071 7519 10234 6191 1404
2819 10234 13930 8426 1911
1705 6191 8426 5097 1156

386 1404 1911 1156 278

680 11025 22752 16674 4143 316 7810 18117 14556 3927

—268 847 20393 27246 9124 -176 236

13699 20608 8291

5597 16996 19351 9792 1858 4172 13853 17124 9349 1908 )
9

0 35036 23730 0
K], := (942 19576 41319 30538 7625 ) , K,

611 2180 2913 1730 385

2180 7770 10383 6167 1373
2913 10383 13876 8241 1835
1730 6167 8241 4894 1090

385 1373 1835 1090 255

=22 135 3117 4468 1814
—65 262 9370 14796 6195
—57 90 10514 18193 7900
—10 —78 5209 9858 4457
4 —42 959 1988 945

-6 60 504 442 -222
—-58 323 6470 8739 2835
-98 311 12837 19825 8019
-43 -11 9138 15721 6936
1 -66 2198 4184 1961

0 23730 17504

:= (00059191 40809 ),

85 1413 3368 2879 837
193 4635 11467 9942 2911
107 5657 14606 12860 3796
—25 3041 8248 7384 2198
-25 606 1742 1588 487

35 217 258 43 =35
217 3121 6762 5230 1363
258 6762 16113 13340 3714
43 5230 13340 11437 3272
—35 1363 3714 3272 966

611 2180 2913 1730 385

2180 7770 10383 6167 1373
2913 10383 13876 8241 1835
1730 6167 8241 4894 1090

385 1373 1835 1090 255

857 11902 23250 16250 3859 394 8103 17943 13849 3593

8506

13886 19729 7684
0 23491 16189

1701 4395 14093 16800 8837 1738 )
b

Kfl 1= (11172 20789 41640 29383 7016 ) , KffS := (000 60687 39313 ).

9 .
Ky -

9 ._
K =

9 ._
K3, =

9 ._
K =
9

Ky

10 ._
Ky =

10 ._
Ky =

10 ._
K, =

10 ._
Kl :=

10
K,y

6456 18199 19238 9038

644 2266 2986 1748 384

2266 7963 10493 6146 1349
2986 10493 13828 8099 1778

1748 6146 8099 4743 1041
384 1349 1778 1041 242

—25 158 3328 4663 1831
=75 295 9719 15082 6162
—66 93 10583 18089 7727
—12 -91 5081 9554 4277
4 —46 904 1876 889

-6 74 592 515 -268
-67 377 6903 9062 2771
—114 346 13173 19902 7856
=50 =21 9057 15346 6690
2 74 2104 3974 1856

100 1505 3505 2943 842
220 4831 11712 9989 2881
118 5762 14636 12697 3694
—-31 3020 8105 7163 2103
-29 585 1677 1513 459

43 253 292 44 40
253 3340 7012 5275 1335
292 7012 16315 13222 3605
44 5275 13222 11138 3130
—40 1335 3605 3130 908

644 2266 2986 1748 384
2266 7963 10493 6146 1349
2986 10493 13828 8099 1778
1748 6146 8099 4743 1041
384 1349 1778 1041 242

1005 12572 23583 15916 3656 460 8329 17801 13324 3354

=357 1298 22995 27610 8030
0 38278 23265

1= (1364 21705 41823 28518 6590 ) , K23

671 2334 3042 1762 383
2334 8114 10577 6128 1331

3042 10577 13788 7988 1735
1762 6128 7988 4628 1005

383 1331 1735 1005 229

-28 176 3496 4822 1841
—83 321 9986 15305 6134
-73 94 10627 18003 7594
—12 —-101 4979 9318 4142
5 —49 863 1793 847

-7 86 666 576 =307
=75 422 7244 9320 2717
—126 372 13422 19955 7730
-55 -31 8987 15053 6504
2 81 2032 3816 1778

1592 4574 14275 16550 8461 1617
14008 19047 7254 |°

0 23265 15192

:= (00061869 38131 ).

111 1579 3613 2993 845
242 4986 11900 10023 2857
126 5841 14654 12568 3616
=36 3002 7992 6993 2032
=31 569 1628 1456 441

49 283 319 44 45
283 3516 7207 5306 1313
319 7207 16465 13126 3520
44 5306 13126 10907 3023
—45 1313 3520 3023 871

671 2334 3042 1762 383
2334 8114 10577 6128 1331
3042 10577 13788 7988 1735
1762 6128 7988 4628 1005
383 1331 1735 1005 229

6750 18577 19172 8793 1512 4719 14417 16354 8177 1529
1127 13090 23816 15651 3505 515 8509 17685 12923 3179
—%86 1%72 23874 27715 7639 -260 400 14109 18497 6940 |°

0 39372 23110 0
:= (1522 22410 41932 27858 6278 ) , K3 := (000 62747 37253 ).

0 23110 14408

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689
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