
User manual: Polyhedral splines

JÖRG PETERS∗, University of Florida, USA
KYLE SHIH-HUANG LO∗, University of Florida, USA
KȨSTUTIS KARČIAUSKAS, Vilnius University, Lithuania

ABSTRACT
This user and developer guide provides usage and testing examples of polyhedral spline algorithms,
accompanying the article

Jörg Peters, Kyle Shih-Huang Lo, Kȩstutis Karčiauskas. Algorithm xxx: Polyhedral
splines. ACM Trans. Math. Softw. xx, x, Article xx (202x), xx pages.

The package is implemented in the C++ programming language and can be compiled and executed
either in the Linux, macOS or Windows operating systems.

1 INSTALLATION
Environment settings: Succesfully tested versions are listed in parentheses.

• Operating system: Linux (Ubuntu 20.04 LTS) or macOS (Catalina 10.15) or Windows 10
• Dependencies: OpenMesh (8.1), CMake (3.16.3)
• Compiler: g++ (9.3.0) or Apple clang++ (11.0) or Visual Studio 2017

Note:
• CMake creates a makefile that will automatically download and install OpenMesh into
/Source/External using the source with commit hash pointing to the tested version. Note that,
depending on internet connectivity, the download of external libraries may allow for a coffee
break: OpenMesh ∼60 MB and the remainder, including the submission code, ∼10 MB.

• The implementation is expected to be compatible with equivalent or higher versions than those
listed in parentheses, with little or no modification.

Compilation:
For UNIX-based system:

$ unzip polyhedral_spline.zip
$ cd ./polyhedral_spline
$ mkdir build
$ cd ./build
$ cmake ../Source
$ make

Note: macOS users need to make sure $PATH includes path to qt5 bin folder

Authors’ addresses: Jörg Peters, University of Florida, Gainesville, USA, jorg.peters@gmail.com; Kyle Shih-Huang Lo,
University of Florida, Gainesville, USA, kyles; Kȩstutis Karčiauskas, kestutis.karciauskas@mif.vu.lt, Vilnius University,
Lithuania.

1

For Windows:
1. Launch x86 Native Tools Command Prompt for VS 2017
2. Run commands for UNIX-based system except for make
3. Launch PolyhedralSplines.sln with Visual Studio 2017
4. Set configuration to Release mode and switch platform to Win32
5. Build solution

Note: Windows users need to make sure environment variables include the path to the QT bin
folder

2 USAGE
Fig. 1 juxtaposes the visual and the file representation of input and output of a cube.
• Input: mesh (with semi-structured layout) in .obj file format
• Output: BB-coefficients in .bv file format. The BView file format (.bv) is described at (https:
//www.cise.ufl.edu/research/SurfLab/bview/#file-format)

(a) cube with the four vertices of one face in red. (b) Input: cube.obj with vertex indices of one face
marked red.

(c) A bi-3 BB-net of 4 × 4 BB-coefficients
of one of the 24 patches is marked in blue
except one row in green.

(d) Output file cube.bv listing 4 × 4 rows of
𝑥,𝑦, 𝑧 colored corresponding to (c).

Fig. 1. Example showing geometry left and file format right. Run ./PolyhedralSplines ../test
file/cube.obj on input file (b) illustrated in (a) to generate cube.bv. (d) Load cube.bv into BView to display
the BB-nets in (c). The blue and green entries in (d) correspond to the highlighted 4 × 4 BB-net in (c).

2

https://www.cise.ufl.edu/research/SurfLab/bview/#file-format
https://www.cise.ufl.edu/research/SurfLab/bview/#file-format

Execution:
For UNIX-based systems:

$./PolyhedralSplines /path/to/filename.obj

Example: ./PolyhedralSplines ../testfile/cube.obj
Note: test .obj files are in /testfile.

To raise the degree of all patches to a uniform degree 3 × 3 use the option -d or –DEGREE_RAISE:

$./PolyhedralSplines -d /path/to/filename.obj

For Windows:

$ PolyhedralSplines.exe /path/to/filename.obj

$ PolyhedralSplines.exe -d /path/to/filename.obj

View the output .bv file:
Users can view the surfaces defined by .bv files using either the online or the desktop version
of BView. BView provides surface inspection tools such as patch coloring, Gaussian curvature,
highlight lines and more.
(https://www.cise.ufl.edu/research/SurfLab/bview/)

3 PROGRAM STRUCTURE
Fig. 2 shows the coding diagram of the implementation of polyhedral splines. The solid arrows
on top define the data flow. The dashed lines indicate dependency on the structure pointed to.
The outside package OpenMesh provides graph (half-edge) data structures to traverse the input
mesh. The other key data structures are Matrix and Patch. Each instance of Patch contains the
components of a bivariate patch in BB-form. Pool initializes and keeps the pointers to instances
(algorithms) defined in PatchConstructor.

A developer can replace the Mesh reader by internal routines that send a mesh to ProcessMesh.
Developers can write their own PatchConsumer routine ‘Other’ to work with the polyhedral splines
output, e.g. to compute the derivative of the patch in the u-direction. (PatchConsumer.hpp contains
a commented code snippet for computing the derivative of a BB-patch in the 𝑢 direction – by
scaling, by the degree in 𝑢, the difference of BB-coefficients [𝑖][𝑗] and [𝑖 − 1][𝑗].) The distribution
comes with two instances of PatchConsumer that convert the patches, to Bezierview .bv and IGES
128 .igs format, respectively, with .bv the default.

4 TEST RESULTS
Tables 1-4 list flat examples of all supported test configurations and the result flat BB-nets. Fig. 3,
Fig. 4, Fig. 5 shows The figures of the input mesh and of the BB-net are independently scaled.

3

https://www.cise.ufl.edu/research/SurfLab/bview/

Fig. 2. The coding diagram of Polyhedral splines. Solid arrows represent data flow, dashed arrows dependence.
(The TwoTrianglesTwoQuadsConstructor is part of the polar patch construction.)

5 LICENCE
LPGL. The intent is

- research use: free and cite this article.
- commercial use: contact the first author.

4

Table 1. Input flat control net configurations (.obj) and output BB-nets (.bv).

Config. Type Input (.obj) Output (.bv)

Regular
(plane2x2.obj)

T0
(T0.obj)

T1
(T1.obj)

T2
(T2.obj)

3-gon
(ngon3.obj)

5

Table 2. Input flat control net configurations (.obj) and output BB-nets (.bv).

Config. Type Input (.obj) Output (.bv)

5-gon
(ngon5.obj)

6-gon
(ngon6.obj)

7-gon
(ngon7.obj)

8-gon
(ngon8.obj)

Polar n=3
(polar3sct.obj)

6

Table 3. Input flat control net configurations (.obj) and output BB-nets (.bv).

Config. Type Input (.obj) Output (.bv)

Polar n=4
(polar4sct.obj)

Polar n=5
(polar5sct.obj)

Polar n=6
(polar6sct.obj)

Polar n=7
(polar7sct.obj)

Polar n=8
(polar8sct.obj)

7

Table 4. Input flat control net configurations (.obj) and output BB-nets (.bv).

Config. Type Input (.obj) Output (.bv)

EOP. n=3
(eop3sct.obj)

EOP. n=5
(eop5sct.obj)

EOP. n=6
(eop6sct.obj)

EOP. n=7
(eop7sct.obj)

EOP. n=8
(eop8sct.obj)

8

Fig. 3. Shape gallery 1 (left: input net, middle: polyhedral spline (green: bi-2, red bi-3), right: highlight lines)

9

Fig. 4. Shape gallery 2 (left: input net, middle: polyhedral spline (green: bi-2, red bi-3), right: highlight lines)

10

Fig. 5. Shape gallery 3 (left: input net, middle: polyhedral spline (green: bi-2, red bi-3), right: highlight lines)

11

	1 Installation
	2 Usage
	3 Program structure
	4 Test results
	5 Licence

