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For control nets outlining a large class of topological polyhedra, not just tensor-product grids, bi-cubic
polyhedral splines form a piecewise polynomial, first-order differentiable space that associates one function
with each vertex. Akin to tensor-product splines, the resulting smooth surface approximates the polyhedron.
Admissible polyhedral control nets consist of quadrilateral faces in a grid-like layout, star-configuration
where 𝑛 ≠ 4 quadrilateral faces join around an interior vertex, 𝑛-gon configurations, where 2𝑛 quadrilaterals
surround an 𝑛-gon, polar configurations where a cone of 𝑛 triangles meeting at a vertex is surrounded by a
ribbon of 𝑛 quadrilaterals, and three types of T-junctions where two quad-strips merge into one.

The bi-cubic pieces of a polyhedral spline have matching derivatives along their break lines, possibly after
a known change of variables. The pieces are represented in Bernstein-Bézier form with coefficients depending
linearly on the polyhedral control net, so that evaluation, differentiation, integration, moments, etc. are no
more costly than for standard tensor-product splines. Bi-cubic polyhedral splines can be used both to model
geometry and for computing functions on the geometry. Although polyhedral splines do not offer nested
refinement by refinement of the control net, polyhedral splines support engineering analysis of curved smooth
objects. Coarse nets typically suffice since the splines efficiently model curved features. Algorithm ★ is a C++
library with input-output example pairs and an iges output choice.

CCS Concepts: • Computing methodologies→ Parametric curve and surface models; •Mathematics
of computing → Continuous functions.

Additional Key Words and Phrases: polyhedral spline, free-form surface, n-sided face, C1 spline, T-junction,
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1 MOTIVATION: SPLINES AND POLYHEDRAL CONTROL NETS
The widely-used tensor-product spline [11] efficiently represents differentiable polynomial function
spaces, e.g. as finite elements. Under the acronym NURBS, tensor-product splines are widely
used to construct curved smooth geometry. Tensor-products lift many uni-variate (single-variable)
properties effortlessly to surfaces, volumes and beyond. Tensor-product splines consist of a grid-like
arrangement of smoothly-joined polynomial (or rational) pieces that are a linear combination of
finite support basis functions, called B-splines, with multipliers, called control points. The support
overlap of B-splines can be encoded by joining control points to form a grid, the tensor-product
control net. In particular when control points have three coordinates, the control net outlines the
shape of the spline surface, making it the prevailing paradigm for representing curved free-form
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geometry: the geometric shape of spline curves and surfaces can be intuitively manipulated via
their control net. The control net is therefore a powerful bridge between the discrete computational
world the continuous real world.

Fig. 1. A polyhedral control net.

However, at irregularities – where the tensor-structure breaks
down (see the 3-valent and the 5-valent point in Fig. 1) – the B-
spline and its control net are not well-defined. Commonly used
computational function spaces for polyhedral unstructured lay-
out either sacrifice differentiability near irregularities – as in the
(dis)continuous Galerkin approach [9]; or they restrict the com-
putation to individual, internally smooth spline regions linked by
penalty functions. Spline functions on triangulations [30] and radial
basis functions [6] provide built-in smoothness but are restricted to
fixed, typically planar domains. That is, they can represent general
free-form surfaces only as level sets of a tri-variate function. For
modeling complex geometric shapes, tensor-product spline (NURBS) domains are carved up into
complex regions to which the spline is restricted. This restriction of the domain is known as
trimming. Since trimming leads to a plethora of downstream challenges, the animation industry has
instead adopted a class of singular splines, called subdivision surfaces [14]. Subdivision surfaces
consist of an infinite sequence of nested surface rings and are usually approximated by a fine
faceted model [38].

(a) polyhedral net (b) subdivision (c) polyhedral spline

Fig. 2. The highlight line distribution [2] (uniform=better) of a
typical subdivision surface [7, 14] vs polyhedral spline.

Reduction of smoothness, trim-
ming and subdivision are work-
arounds that come at a cost. Compu-
tational spaces that give up on differ-
entiability when the variational prob-
lem calls for differentiability work in
too large a computational space and
may therefore yield outcomes that
are not solutions to the original prob-
lem, e.g. return non-physical discon-
tinuous flow lines. Similarly, penalty
methods require careful calibration
to converge to the proper solution.
Geometric models that are based on
trimming complicate downstream processing due to heterogeneity in size, parameter orientation,
continuity and polynomial degree: blends of blends and revisions often result in minuscule gaps in
the geometry sometimes filled in with patches that are little more than slivers with poor aspect
ratios. Trimmed many-sided domains and pinched slivers can cause computational instability that
require special integration rules for engineering analysis. Subdivision surfaces, too, require special
treatment of differentiation and integration near their singularly-parameterized central limit points
– and their shape often suffers from flat spots (widening highlight lines) as well as pinched highlight
lines, both illustrated in Fig. 2b. See [29] for a detailed analysis. Irregularities are therefore often
viewed as an obstacle when devising mathematical software.

The contribution of the provided software, Algorithm ★, is to extend bi-quadratic (bi-2) tensor-
product splines to more general polyhedral control net. The polyhedral control net may include
several useful types of non-tensor product sub-nets. The cost of allowing non-regular control
sub-nets is that the polynomial degree of the pieces is increased to bi-cubic (bi-3).
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(a) star-net 𝑛 = 5 (b) 𝑛-gon-net, 𝑛 = 5

circular

radial

(c) polar-net𝑚 = 5

(d) 𝑇0-net (e) 𝑇1-net (f) 𝑇2-net

Fig. 3. Six supported non-tensor-product polyhedral control net patterns. Other 𝑛 and high𝑚 are permissible.

polar

𝑛 = 5

𝑇1

𝑛 = 3

𝑛 = 5

(a) polyhedral control net

polar

𝑛 = 5

𝑇1

𝑛 = 3

𝑛 = 5

(b) spline patch layout (c) highlight lines

Fig. 4. Example of a polyhedral spline combining non-tensor product patterns in close proximity. (a) Control
net of the polyhedral spline with a tight layout: the top pole node is a direct neighbor of four nodes of valence
𝑛 = 5. 5-valent nodes are direct neighbors (b) Surface layout including bi-quadratic bi-2 splines corresponding
to the grid-like parts of the control net, 𝑛-sided star-confgurations (blue or gray), bi-3 polar caps, and surface
pieces covering 𝑇1-junctions. (c) The highlight lines [2] of the resulting surface flow well-distributed and
without kinks confirming good shape and smoothness of the polyhedral spline.

Fig. 5. Branching design without bulging (polyhedron by designer
Tony Black)

(Extending bi-3 tensor-product
splines to polyhedral control nets
and surfaces of good shape requires
polynomial degree bi-4 or higher, see
e.g. [21, 24].) Moreover, some de-
signers prefer least degree to better
control the deviation of the surface
from the outlining control net, see
Fig. 5. Also, when computational use
only requires 𝐶1 continuity then bi-2
splines are more efficient than bi-3
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splines. The polyhedral patterns listed in Fig. 3 can be in close proximity, enabling complex layouts
such as Fig. 4. A polyhedral spline is well-defined across irregularities and automatically co-joins
the bi-cubic pieces with smooth transitions. Just like the tensor-product control net, the polyhedral
control net expresses the neighbor relations of the polyhedral spline generating functions, outlines
shape and provides handles for manipulating shape: the polyhedral control net vertices can be
used as computational degrees of freedom, e.g. for least squares fitting, computing moments or for
solving partial differential equations.

We summarize input and output of Algorithm ★, with more detail to follow:
Input: A polyhedral (control) mesh.
Output: A smooth polyhedral spline (consisting of pieces) of degree bi-3.

The output polyhedral spline is by default a smooth piecewise polynomial function or surface
of degree bi-3 (bi-cubic) expressed piecemeal in Bernstein-Bézier form [13]. Or, by choice, as a
collection of uniform B-splines of degree 3 [11] with, near an irregular pattern, a separate net for
each polynomial piece. The polynomial pieces join with matching derivatives, possibly after a
known reparameterization. There are two ways to introduce creases or discontinuities if wanted: by
creating facets of zero area, e.g. placing opposing sides of a quad onto each other, or by manipulating
individual polynomial coefficients of the output. By default, Algorithm★ smoothly joins polynomial
pieces of degree bi-3 arising from

• tensor-product sub-nets (splines of degree bi-2 [13], re-expressed in degree bi-3);
• star-nets with central vertices of valence 𝑛 ∈ {3, 5, .., 8} [23], see Fig. 3a;
• nets with central 𝑛-gons, 𝑛 ∈ {3, 5, .., 8}, [23], see Fig. 3b;
• polar nets [26], 𝑛 ∈ {3, 4, 5, .., 8}, see Fig. 3c;
• T-nets [25] see Fig. 3d, 3e, 3f.

Due to the sharp degree bound proven in [27], there exists no polyhedral control net refinement
for bi-3 polyhedral splines with geometric continuity. However, the spline space can be refined by
de Casteljau’s algorithm [15] applied per piece. The algorithm collects any of the itemized sub-nets
of control points and applies a linear transformation to the sub-net to generate the polynomial
coefficients of the output pieces. The transformation automatically enforces geometric continuity,
i.e. smoothness after change of variables, between the pieces.

1.1 Literature

(a) input (b) output

Fig. 6. Algorithm ★. (a) input: polyhedral con-
trol net. (b) output: polyhedral spline rendered in
Bézierview [39].

The interested reader may find a survey on spline
trimming in the context of isogeometric design in
[31] and a survey of splines for meshes with irreg-
ularities in [37]. The latter survey characterizes the
splines as smooth after a change of variables, re-
ferred to as geometric continuity, or singular. Sin-
gular construction include those with singularities
at corners [34, 35, 40, 46], singular edges [32, 44]
and contracting faces, a.k.a. subdivision algorithms
[38]. Splines leveraging geometric continuity in-
clude [4, 10, 33, 36] and for data fitting and sim-
ulation specific to planar domains [3, 18–20].

Overview. Section 2 describes the input mesh patterns supported by the code. Section 3 explains
the (structure of the) output polynomial pieces generated by Algorithm★: howmany, how arranged,
what degree, and their inter-patch smoothness (see e.g. Fig. 6). Section 4 defines and illustrates

4



Algorithm★: Bi-cubic splines for polyhedral control nets

,
,

(a) BB-net and bi-2 patch (b) bi-2 spline nets (c) bi-3 spline nets

Fig. 7. B-spline control points ◦ [11] form a control net and BB-coefficients • [13] form a BB-net of (𝑑 + 1)2
nodes for a polynomial piece of degree bi-𝑑 .

the usage of the algorithm; and what to do in the case when the control net is not designed for
polyhedral splines in that patterns overlap to form configurations that are not supported. Note that
Eqs. (1) – (4) below provide the complete mathematical machinery for understanding polyhedral
splines: tensor-product splines and their control net (1), (2), the output surface pieces in BB-form
(3) and the smoothness relations (4) of abutting pieces by reparameterization (change of variables).

2 INPUT: POLYHEDRAL CONTROL NET
According to [11] a tensor-product spline in two variables, (𝑢, 𝑣) is a piecewise polynomial function

p : (𝑢, 𝑣) → p(𝑢, 𝑣) :=
𝑘1∑
𝑖=0

𝑘2∑
𝑗=0

c𝑖 𝑗N𝑑1
𝑖
(𝑢)N𝑑2

𝑗
(𝑣). (1)

The coefficients c𝑖 𝑗 scale the B-splines N𝑑ℓ
𝑖

of degree 𝑑ℓ and act as degrees of freedom, say for
finite element computations or to outline shape. The c𝑖 𝑗 are therefore often called control points.
Connecting c𝑖 𝑗 to c𝑖+1, 𝑗 and c𝑖, 𝑗+1 wherever possible yields the control-net. Due to variation di-
minishing property and the convex hull property, the control-net outlines the graph of the spline
function, respectively the geometric shape of the spline surface. One of the main attractions of the
tensor-product spline is this elegant bridging of the continuous and the discrete representations via
the quadrilateral grid of the control net. Computer-aided design (CAD) designers edit the control
points to fine-tune a 3D surface while automatically maintaining the desired smoothness.

Tensor-product spline control nets form grids of 𝑘1 × 𝑘2 quadrilateral faces. Specifically for our
setup, any three by three sub-net can be interpreted as the control net of the tensor-product of
B-splines N2 (𝑡 −𝑘) of degree 2 with a uniform knot sequence [13] that define one bi-quadratic (bi-2)
polynomial piece:

p : (𝑢, 𝑣) → p(𝑢, 𝑣) :=
2∑

𝑖=0

2∑
𝑗=0

c𝑖 𝑗N2 (𝑢 − 𝑖)N2 (𝑣 − 𝑗). (2)

Meshes consisting of quadrilaterals are popular in polyhedral 3D modeling where quad-strips
follow the principal directions and delineate features. When 𝑛 such directions merge, the control
net pattern forms either a star-net with an extraordinary point of valence 𝑛 at the hub, see Fig. 3a,
or an 𝑛-gon, see Fig. 3b. Often valences 3 and 5 suffice for modeling since vertices or faces with
valencies 6, 7, 8 can be split and the effect distributed by local re-meshing. However, it is convenient
to also have the freedom to include 𝑛 = 6, 7, 8 to avoid re-meshing where multiple surface regions
meet.
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High valence occurs naturally when modeling finger tips and airplane nose cones. A polar
configuration is typically used to cap such cylindrical structures. The triangles joining at the pole
are interpreted as quadrilaterals with one edge collapsed hence modeled by smoothly joining spline
pieces with a (removable) singularity at the pole.
Where two finer quadrilaterals meet a coarser quadrilateral face a T-joint results. This T gives

the name to the 𝑇1-gon (formally a pentagonal face). A 𝑇2-gon (formally a hexagon) combines the
ends two quad-strips at two T-junctions. The 𝑇0-gon similarly merges neighboring quad-strips but
has no T-junction.
Fig. 4 demonstrates that irregularities can be placed in close proximity. The resulting model

has few control points and is lightweight in the sense that few higher-order curved elements
create often elegant shape. Note though that for the code to work, the overall control net cannot
be completely unstructured. All sub-nets have to form one of the following polyhedral layout
configurations (the restriction to 𝑛 < 9 is only in the distributed code; the underlying theory allows
for higher 𝑛):

(1) tensor-configuration: a control point surrounded by 𝑛 = 4 quads, (Fig. 7b).
(2) star configuration: a control point of valence 𝑛 ∈ {3, 5..8}, surrounded by 𝑛 quads,

(Fig. 3a).
(3) 𝑛-gon configuration: an 𝑛-gon, 𝑛 ∈ {3, 5..8}, surrounded by 2𝑛 quads, one per edge

and one additional per vertex, (Fig. 3b).
(4) 𝑇0-configuration: a triangle surrounded by quads with two vertices of valence 4 and

one of valence 5, (Fig. 3d).
(5) 𝑇1-configuration: a pentagon surrounded by quads with four vertices of valence 4

and one of valence 3, (Fig. 3e).
(6) 𝑇2 configuration: a hexagon surrounded by quads with three consecutive vertices

of valence 4 and two of valence 3 separated by one vertex of valence 4, (Fig. 3f).
(7) polar configuration: a control point surrounded by 𝑛 triangles, 𝑛 ∈ {3..8}, (Fig. 3c).

Note that overlapping star configurations are admissible: a quadrilateral face may have multiple
non-4-valent vertices. For configurations other than those listed, the code does not return a corre-
sponding spline piece. [28] provides recipes for minimal localized remeshing to fix impermissible
configurations, and a localized refinement that guarantees permissibility at the cost of more pieces.
Since designers spend many years to excel at creating elegant control nets and surfaces, it is

not possible to provide a manual of best polyhedral design practices – but three recommendations
specific to the increased flexibility of modeling with polyhedral splines can be given. T-gons should
appear only isolated by a frame of quadrilaterals to avoid too rapid a transition from coarse to
fine and the non-contracting T-gon direction should be aligned with creases to avoid unwanted
dips. Localized refinement should be isotropic for configurations (2), (3), (7), but preserve the
two dominant directions of a regular surface layout for (4), (5), (6). That is for (2), (3), (7) use of
Augmented Refinement from [28] is recommended while for (4), (5), (6) T-refinement from [28] is
recommended.
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3 OUTPUT: SMOOTHLY-JOINED POLYNOMIAL PIECES OF DEGREE BI-3
Algorithm ★ outputs a polyhedral spline as a collection of smoothly-joined polynomial pieces in
Bernstein-Bézier form (BB-form) [13, 15]):

p(𝑢, 𝑣) :=
𝑑1∑
𝑖=0

𝑑2∑
𝑗=0

b𝑖 𝑗B𝑑1
𝑖
(𝑢)B𝑑2

𝑗
(𝑣), (𝑢, 𝑣) ∈ [0..1]2 (3)

where B𝑑
𝑘
(𝑡) :=

(
𝑑
𝑘

)
(1 − 𝑡)𝑑−𝑘𝑡𝑘 ∈ R are the Bernstein polynomials of degree 𝑑 and b𝑖 𝑗 are the

BB-coefficients. For surfaces in 3-space, b𝑖 𝑗 ∈ R3 and p is a piece of the surface, called a patch.
For example, a bi-3 patch has 4 × 4 BB-coefficients as in Fig. 7c. Connecting b𝑖 𝑗 to b𝑖+1, 𝑗 and
b𝑖, 𝑗+1 wherever possible yields the BB-net. Note that the BB-net is usually finer than the B-spline
control net and represents a single polynomial piece rather than a piecewise polynomial function.
(According to [12, 13] any B-spline can be expressed as multiple pieces of polynomials in BB-form
and any basis function of the BB-form can be expressed in B-spline form with suitably repeated
knots.) The BB-form is evaluated via de Casteljau’s algorithm [45], differentiated exactly by forming
differences of the BB-coefficients and exactly integrated by forming sums [15].

The output polyhedral spline pieces are (see Fig. 4, Fig. 7, Fig. 8 and examples in the user manual):

(1) (tensor-configuration) one bi-2 patch with 3 × 3 = 9 BB-coefficients,
(2) (star configuration) 𝑛 = 3, 5 patches of degree bi-3,

respectively 4𝑛 patches of degree bi-3 for 𝑛 > 5 ,
(3) (𝑛-gon configuration) 𝑛 = 3, 5 patches of degree bi-3,

respectively 4𝑛 patches of degree bi-3 for 𝑛 > 5,
(4) (𝑇0-configuration) 2 × 2 bi-3 patches,
(5) (𝑇1-configuration) 4 × 2 bi-3 patches,
(6) (𝑇2 configuration) 4 × 4 bi-3 patches,
(7) (polar configuration) 𝑛 ∈ 3..8 patches of degree (3, 2) (radial, circular) with b0𝑗 , 𝑗 =

0, .., 2 collapsed into the pole; the singular patches are surrounded by a ring of 𝑛
patches of degree (2, 2).

p

q𝛽

𝑢

𝑢
𝐸

Fig. 9. Geometric smoothness between
patches p and q to form an atlas.

At global boundaries the outermost layer recedes –
matching the behavior of uniform B-splines of degree 2,
see Fig. 1. For configurations other than those listed, the
code returns no patch. For these impermissible configu-
rations a localized re-meshing is often possible [28]. Al-
ternatively, a single Catmull-Clark refinement step guar-
antees a permissible quad mesh with star configurations
only, i.e. a net that controls a polyhedral spline surface
without holes. Caps formed by 𝑛 patches enclose the cen-
tral point without gap or overlap. To obtain a uniform degree bi-3 in all cases, any patch of degree
lower than bi-3 can be expressed as a patch of degree bi-3 by a process called degree-raising [13, 15].
Uniform degree bi-3 is the default output option.
The polyhedral spline pieces join by default without gaps or overlap and with matching first

derivatives – possibly after a reparameterization (a change of variables) as is appropriate for
manifolds. Specifically, consider the shared boundary 𝐸 between two abutting patches p and
q, see Fig. 9. Let 𝛽 : R2 → R, 𝛽 (𝑢) := (𝑢 + 𝑏 (𝑢)𝑣, 𝑎(𝑢)𝑣) be a (local) reparameterization and
p(𝑢, 0) = 𝐸 = q(𝑢, 0). We say that q and p join𝐺1 if the partial derivatives lie in the same plane and
the transversal 𝑣-derivatives of the two patches lie on opposite sides with respect to the𝑢-derivative
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Fig. 8. From left to right: Input control net (.obj) , output (.bv) polyhedral spline and highlight line distribution
of models Tee, Hand, Airplane. Patch types: gold=regular, green=𝑛-valent, silver=polar (finger tips),Cyan=T1.

along the shared boundary:

𝜕𝑣q(𝑢, 0) + 𝑎(𝑢)𝜕𝑣p(𝑢, 0) = 𝑏 (𝑢)𝜕𝑢p(𝑢, 0), 𝑎(𝑢) ≠ 0, 𝑢 ∈ [0..1] . (4)

When 𝑏 (𝑢) := 0 and 𝑎(𝑢) := 𝑐𝑜𝑛𝑠𝑡 , then we say the spline pieces join parameterically 𝐶1, short 𝐶1.
Tensor-product and polar configurations join internally 𝐶1 (the latter with a removable singularity
at the pole, see [26]). Otherwise the spline pieces join with geometric smoothness, short𝐺1. For
example, [23] uses the for 𝑛 = 3, 5 the quadratic change of variables

𝑎(𝑢) := 1 − c(1 − 𝑢)
1 − c

, 𝑏 (𝑢) := c(1 − 𝑢)𝑢
1 − c

c := cos 2𝜋
𝑛
,

to transition from the surrounding surface to one of the 𝑛 bi-3 patches of the cap and 𝑎(𝑢) := 1,
𝑏 (𝑢) := 2c(1 − 𝑢) between adjacent bi-3 patches of the cap. The reparameterizations of the T-
configurations are listed and displayed in [25] (Table 1 and column (c) of Fig.4 of [25]). Once the
reparameterization 𝛽 is chosen, the polynomial equation (4) becomes a linear system of equations
in the coefficients of p and q. For correctly selected 𝛽 and degree of p and q these systems have
been symbolically constructed and inverted , and the residual degrees of freedom chosen to yield
good highlight lines for all input nets of an extensive obstacle course [22]. Outcomes for a part of
the obstacle course are shown in the user manual. The choice of residual degrees of freedom in the
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formulas is both heuristic and mathematically grounded. Linear functionals that minimize integrals
of derivatives in symbolic form reduce the degrees of freedom to a one or two scalar weights. These
remaining weights are set by a line search near an algebraically natural default value and judged by
outcomes of highlight line distributions on the obstacle course. This mathematically-constrained
heuristic derivation of the formulas is necessary since there is no accepted mathematical theory of
what constitutes a well-designed surface – other than the absence of flaws. The absence of flaws is
judged by highlight lines flowing as uniformly as possible. Unwanted flat spots (widening highlight
lines) and creases (pinched highlight lines) are flaws.

The result are explicit formulas that relate the input polyhedral net to the output BB-coefficients
of the polyhedral spline [23], [25], [26]. Algorithm ★ is the implementation of these formulas.
Each quadrilateral bi-3 patch in BB-form can internally be partitioned and replaced by a 𝐶1-

connected spline complex that provides a local refinement hierarchy. This simple ‘T-spline’ space
of ‘elements with hanging nodes’ is not implemented here, but is described for example in [17].
When used to model free-form surfaces, the highlight line distribution is typically best within

any of the bi-3 caps for the six irregular layout configurations (2–7) and worst across the regular
bi-2 spline parts of the surface. A similar family of formulas, for patches of degree greater than
bi-3, generalizes smoother, but also more feature-erasing bi-3 tensor-product splines to polyhedral
splines suitable for high-end surface constructions (see e.g. [21, 24]).

4 USAGE

(a) Input: cube.obj

=⇒

(b) Output surface

Fig. 10. Input of Algorithm ★ and output (b) visualized with highlight lines in Bview [39].

Algorithm ★ is accompanied by a user manual. This section gives a quick overview. The input
format is .obj (Wavefront) [43], shown for a cube in Fig. 10a. The input represents a faceted free-form
shape, a topological polyhedron, possibly with global boundary and can include any combination
of the seven polyhedral layout configurations of Section 2. The output is by default a collection of
the BB-coefficients of the pieces of a smooth spline in the BView (.bv) format. We added the option
to output rudimentary IGES 128 format. The Bview format is specified at [39]. An online webGL
viewer at [39] provides surface inspection tools, such as highlight line rendering in Fig. 10b. Each
𝑥 , 𝑦 , 𝑧 coordinate is a polyhedral spline – in Algorithm ★ all three are packed together to define
the 𝑥,𝑦, 𝑧 coordinates of a free-form surface in 3-space. Note that the PatchConsumer (see the code
diagram in the user manual) also provides a commented code snippet illustrating differentiation of
the polyhedral spline patches).

Unsupported configurations result in holes in the surface. If patch count is not an issue, a
global Catmull-Clark refinement [7] of the mesh separates the configurations sufficiently so that
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the resulting application of polyhedral splines has no holes due to missing configurations. If the
patch count is critical, localized re-meshing is recommended [28].

Applications. Bi-cubic polyhedral splines have many applications: design, visualization, anima-
tion, moment computation, re-approximation, reconstruction, computation of partial differential
equations on manifolds, etc. . For example, generalizing the higher-order iso-parametric (iso-
geometric) approach of [1, 5, 8, 16, 41, 42] to polyhedral control nets without additional meshing,
[33] uses a sub-class of polyhedral spline functions to solve fourth order partial differential equa-
tions, and to compute geodesics on a free-form polyhedral spline surface via the heat equation.

REFERENCES
[1] F.T.K. Au and Y.K. Cheung. 1993. Isoparametric Spline Finite Strip for Plane Structures. Computers & Structures 48

(1993), 22–32.
[2] Klaus-Peter Beier and Yifan Chen. 1994. Highlight-line algorithm for realtime surface-quality assessment. Computer-

Aided Design 26, 4 (1994), 268–277.
[3] Michel Bercovier and Tanya Matskewich. 2017. Smooth Bézier Surfaces over Unstructured Quadrilateral Meshes.

Lecture Notes of the Unione Matematica Italiana (2017).
[4] Ahmed Blidia, Bernard Mourrain, and Gang Xu. 2020. Geometrically smooth spline bases for data fitting and simulation.

Computer Aided Geometric Design 78 (March 2020), 101814.
[5] V. Braibant and C. Fleury. 1984. Shape Optimal Design using B-splines. Computer Methods in Applied Mechanics and

Engineering 44 (1984), 247–267.
[6] Martin D. Buhmann. 2009. Radial Basis Functions - Theory and Implementations. Cambridge monographs on applied

and computational mathematics, Vol. 12. Cambridge University Press. I–X, 1–259 pages. http://www.cambridge.org/
de/academic/subjects/mathematics/numerical-analysis/radial-basis-functions-theory-and-implementations

[7] E. Catmull and J. Clark. 1978. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided
Design 10 (Sept. 1978), 350–355.

[8] F. Cirak, M. Ortiz, and P. Schröder. 2000. Subdivision surfaces: a new paradigm for thin-shell finite-element analysis.
Internat. J. Numer. Methods Engrg. 47 (April 2000).

[9] B. (Bernardo) Cockburn, George Karniadakis, and Chi-Wang Shu. 2000. Discontinuous Galerkin methods: theory,
computation, and applications. Vol. 11. Springer-Verlag Inc., pub-SV:adr. xi + 470 pages.

[10] Annabelle Collin, Giancarlo Sangalli, and Thomas Takacs. 2016. Analysis-suitable G1 multi-patch parametrizations for
C1 isogeometric spaces. Computer Aided Geometric Design 47 (2016), 93–113.

[11] C. de Boor. 1978. A Practical Guide to Splines. Springer.
[12] Carl de Boor. 1986. B (asic)-Spline Basics. Technical Report. U of Wisconsin, Mathematics Research Center.
[13] C. de Boor. 1987. B-form basics. In Geometric Modeling: Algorithms and New Trends, G. Farin (Ed.). SIAM, 131–148.
[14] Tony DeRose, Michael Kass, and Tien Truong. 1998. Subdivision Surfaces in Character Animation. ACM Press, New

York, 85–94.
[15] Gerald Farin. 1988. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide. Academic Press.
[16] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. 2005. Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact

Geometry and Mesh Refinement. Computer Methods in Applied Mechanics and Engineering 194 (2005), 4135–4195.
[17] Hongmei Kang, Jinlan Xu, Falai Chen, and Jiansong Deng. 2015. A new basis for PHT-splines. Graphical Models 82

(2015), 149–159.
[18] Mario Kapl, Giancarlo Sangalli, and Thomas Takacs. 2018. Construction of analysis-suitable G1 planar multi-patch

parameterizations. Computer-Aided Design 97 (2018), 41–55.
[19] Mario Kapl, Giancarlo Sangalli, and Thomas Takacs. 2019. Isogeometric analysis with 𝐶1 functions on planar,

unstructured quadrilateral meshes. The SMAI journal of computational mathematics (2019), 67–86.
[20] Mario Kapl, Giancarlo Sangalli, and Thomas Takacs. 2019. An isogeometric C 1 subspace on unstructured multi-patch

planar domains. Computer Aided Geometric Design 69 (2019), 55–75.
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[25] Kȩstutis Karčiauskas and Jörg Peters. 2020. Low degree splines for locally quad-dominant meshes. Computer Aided
Geometric Design 83 (2020), 1–12.
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