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Abstract

Smooth spline surfaces can now be built with polyhedral control nets rather than just grid-like tensor-product control
nets. However, irregularities such as T-junctions, multi-sided facets, and n-valent vertices need to be sufficiently sepa-
rated. Automatically generated quad-dominant meshes, and meshes created by designers unaware of the requirements
for spline surfaces often pack irregularities too tightly.

Global refinement, e.g. via two steps of subdivision, can sufficiently separate irregularities. However, each refine-
ment quadruples the number of polynomial pieces. Moreover, first-step artifacts can lead to oscillating and pinched
highlight line distributions. We therefore investigate minimal, single edge insertion, re-connection and localized re-
finement of quad-dominant meshes to make them suitable for polyhedral splines.

Keywords: polyhedral control net, quad-dominant mesh, free-form surface, polyhedral spline, T-junction, localized
refinement

1. Introduction

Tensor-product splines [6, 9] can convert faceted
meshes into smooth surfaces provided the meshes have
the connectivity of a grid. Polyhedral splines [16] can
convert more general control nets that can include T-
junctions, multi-sided facets, and n-valent vertices – pro-
vided they are sufficiently separated. For example, non-4-
sided facets must be surrounded by quads. However de-
signers or algorithms that are unaware of this requirement
often generate almost, but not quite admissible control
nets, see Fig. 1 and Fig. 17. Typically such meshes can-
not be sent back or regenerated for improvement, but can
only be post-processed. Other than redesign by hand, cur-
rently the only option available to practitioners is global
refinement, e.g. applying two subdivision steps globally.
This separates the irregular configurations by quadrilat-
eral strips, but comes at the cost of many more polynomial
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pieces. Moreover, shape can suffer, see Fig. 2d: First step
artifacts [1], can create unwanted oscillations and pinched
highlight lines [2] and can destroy alignment with feature
lines. All these flaws are unacceptable for higher-end de-
sign.

Figure 1: Local re-connection to τ0-nets to avoid τ1 τ1 adjacency, or τ1
τ0 adjacency.

This paper therefore explores minimal local re-
connection and refinement recipes for making the mesh
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(a) τ0-net (b) Doo-Sabin (c) polyhedral spline

(d) Doo-Sabin (e) polyhedral spline

Figure 2: (a) Polyhedral input net with τ0 configuration. Applying (b,d)
Doo-Sabin subdivision, (c,e) polyhedral splines. (b,c) For context, the
configuration is surrounded by a strip of C1 bi-2 splines (green). i.e.
compare the normal variation. Uniform highlight line distribution [2] is
a popular criterion for good shape. The highlight lines (e) for polyhedral
spline are uniform, whereas (d) Doo-Sabin’s oscillate.

suitable as a polyhedral spline control net. Since neither
designers nor algorithms create random quad-dominant
meshes, we do not consider all possible scenarios. That is,
we do not seek algorithms that guarantee suitability for ar-
bitrary input meshes. Such general remeshing could be as
hard as creating sparse polyhedral spline-aware layout ab
initio. In particular, since automatic quad-dominant algo-
rithms such as [10, 19] generate ever more tightly packed
irregularities when the resolution is reduced, we assume
that the quad-count has been prescribed so that only iso-
lated small submeshes require local adjustment.

This analysis of minimal local re-connection and re-
finement recipes focuses neither on (quad-)remeshing
nor on surface construction. Rather the goal is to bet-
ter understand how to distribute algorithmic complex-
ity between generalized spline constructions and (quad-
)meshing. That is, we observe how much structure the
meshing algorithm must provide vs how complex the
spline surface must be: requiring pure quad meshes chal-
lenges the meshing algorithm whereas unstructured quad-
dominant meshes forces many specialized spline con-

structions. We therefore analyze strategies for localized
post-processing of meshes with tightly-packed irregular
points, facets and T-junctions to convert the mesh into a
control net suitable for polyhedral splines and so improve
the interplay between meshing and high-end surfacing.
Turning the resulting insights into a complete algorithmic
framework require future collaboration towards ‘spline-
aware meshing’ between meshing specialists and spline
specialists. Here our contributions are to show options
for simple, localized post-processing of insufficiently-
structured meshes:

• analyzing shape considerations for single edge inser-
tion,

• introducing local Augmented Refinement for
isotropic n-gon refinement,

• local T-gon refinement to honor preferred directions
and

• unified refinement for abutting T- and n-gons.

Outline Section 1.1 reviews constructions that generalize
bi-2 splines, including polyhedral splines. Section 2 sum-
marizes the mesh configurations that can serve as control
nets for polyhedral splines. Section 3 considers the shape
implications of adding single edges to a mesh. Section 4
introduces localized Augmented Refinement for multi-
sided facets. Section 5 introduces localized refinement
for T-gon facets. Section 6 organizing overlappiong re-
finements for abutting T-gon and n-gon facets. Section 7
compares the refined meshes and their effect on surface
shape.

1.1. Generalized bi-2 splines, and fast quad-dominant
meshing

Polyhedral splines [16] generalize tensor-product bi-
quadratic (bi-2) splines by combining algorithms from
[13, 14, 15]. The polynomial pieces of a polyhedral spline
have degree at most bi-cubic (bi-3). There is also a purely
degree bi-2 construction [18] but the shape is reportedly
not satisfactory. Bi-2 splines have minimal polynomial
bi-degree for smoothing out a quadrilateral mesh. When
the input is a quad-dominant mesh, Doo-Sabin subdivi-
sion [8] comes to mind. However, this classic general-
ization of bi-2 splines consists of an infinite sequence of
nested (contracting) polynomial surface rings and fails to
yield good shape due to artifacts generated already in the
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first steps – as the highlight line distribution [2] of Fig. 2d
demonstrates. (Similar, but lesser artifacts afflict Catmull-
Clark subdivision [5], see [11]). The highlight line dis-
tortions of classical subdivision algorithms also disqual-
ify them as a post-processing step to turn quad-dominant
meshes into pure quad meshes for splines (see for exam-
ple in [10]). Augmented Subdivision [12] yields much
better shape by adding a carefully chosen central guide
point.

We focus here on the quad-dominant meshing algo-
rithms in [10, 19], primarily because code is available
and due to the complexity and higher quad-count of strict
quad-meshing algorithms, see e.g. [3, 4, 17, 20]. There
appears to be little use trying to compile statistics on how
many meshes generated by automatic quad-dominant al-
gorithms fail to be polyhedral spline-suitable: the out-
come depends too much on the geometry of the object
and the required resolution. High resolution meshes are
almost always suitable but low quad-count is desirable
when the final shape can be captured by a few splines
rather than highly-refined quad-facet approximations.

(a) n-star-net (b) n-gon-net (c) n-polar-net

(d) τ0-net (e) τ1-net (f) τ2-net

Figure 3: Polyhedral control net patterns of [16]. The valence in (a,b,c)
is n = 5. The triangle in (d) is called a T0-gon. The pentagon in (e) is
called a T1-gon. The hexagon in (f) is called a T2-gon.

2. Meshes and control nets

Regular 3 × 3 grids of quadrilateral facets (quads) can
be interpreted as the control net of a bi-2 spline in uni-

form B-spline form [7]. A natural generalization are poly-
hedral meshes that can be interpreted as control nets of
polyhedral splines. Suitable polyhedral control nets in-
clude nodes where n , 4 quads join (Fig. 3a), nets with
n-sided facets surrounded by quads (Fig. 3b), polar nets
(Fig. 3c) and special multi-sided facets, called T-gons
with T-junctions, surrounded by quads (Fig. 3d,e,f). Many
hand-crafted models naturally include these irregularities
to merge n features (a,b,c) or adjust mesh density (d,e,f).
The triangles in configuration (c) can be viewed as quadri-
laterals with one edge collapsed to close a cylinder. This
can model umbilics such as at a finger tip.

Formally, for m > 4, a Tm−4-gon is an m-gon sur-
rounded by quads such that all its vertices are either T-
junctions or have valence 4. An τ0-net (Fig. 3d) is a spe-
cial configuration with a triangle (a T0-gon) at the cen-
ter surrounded by 7 quads. The τ0-net has two vertices
of valence 4 and one of valence 5. A T1-gon (Fig. 3e)
has one T-junction and is formally a pentagon, The T0
configuration frequently arises in quad-dominant mesh-
ing algorithms, for example [10, 19], see Fig. 4. A T2-gon
(Fig. 3f) has two T-junctions and is formally a hexagon.

A mesh is suitable for polyhedral splines if it consists of
the polyhedral patterns shown in Fig. 3. In the available
implementations, the valence n of the n-star-net, n-gon-
net or n-polar-net is expected to be less than 9, although
for polar nets the valence can certainly be higher without
harming shape.

Figure 4: Mesh generated by [19]. There are many τ0 configurations
in the mesh but only some pack irregularities too close for polyhedral
splines. (see red circles: the upper left configuration is allowable, but not
the packed τ0 configurations.) Pairs of non-separated irregular nodes,
e.g. those marked as • present no problem for polyhedral splines.
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3. Edge insertion and shape

Fig. 1 and Fig. 4 illustrate how adding or removal of a
single edge can turn the output of [10, 19] into a polyhe-
dral spline control net.

As with tensor-product patches, some basic rules
should be followed to attain good shape. To avoid ‘camel-
back’ oscillations as for tensor-product splines with con-
trol points elevated along a diagonal. For best outcomes,
T-gons should be aligned with creases as in Fig. 5g (see
the polyhedral spline surface in Fig. 5h). Placing a T1-gon
across a sharp crease (Fig. 5a) causes an unexpected (un-
wanted) dip marked by ↓ in the polyhedral spline surface
figreffig:creased. Splitting the T1-gon into a quad facet
and a T0-gon to its right, i.e. a right bias in the split to
avoid that a T -gon straddles the sharp crease, results in a
surface with a barely noticeable dip, see Fig. 5e. The dip
in Fig. 5f stems from the twisted quad in the left-biased
split (Fig. 5c) that generates a T0-gon and a straddling
quad facet. Even the right-biased option has a dip since

(a) τ1 configura-
tion

(b) τ0: right bias (c) τ0: left bias

↓

(d) τ1 surface (e) right bias

↓

(f) left bias

(g) (h) polyhedral spline

Figure 5: top rows: Base of the T1-gon (non-contracting direction) is not
aligned with the ridge. The ↓ indicates a dip. bottom row: better shape
due to aligned ridge.

the base direction along which the the grid lines are not
merged, i.e. the non-contracting direction, w,s not aligned
with the crease direction. This waviness can be avoided
by proper alignment of the base with the crease as in

Fig. 5g. (The horizontal sharp crease in the highlight lines
in Fig. 5h originates with the regular bi-2 surroundings.)
Similarly the base of a T0-gon with the valence 4 nodes
should be placed along the crease direction.

(a) quad mesh (b) polyhedral spline

(c) Augmented Refinement + polyhedral
spline

Figure 6: Quad meshes with high contraction ratios challenge polyhedral
splines. Here r = 1 : 3, i.e. 3 control nodes merge to 1 via the red,
nominally 4-sided facet. Note that, to emphasize the shape problem,
the control net is placed sideways (not symmetric) to the highlight line
direction.

Edge insertion (or removal) should not create T-gons
that have more than one T-junction more on one side than
on the other. Violating this rule means poorly graded tran-
sitions. Let r denote the ratio of the vertex count at the
sparse side divided by the dense side of the T-gon, e.g.
r = 1:2 for τ0 since there is one node at the sparse and
two at the dense end. For τ1, r = 2:3. A polyhedral spline
for a T-net with lower r, e.g. r = 1:3 in Fig. 6a, is typi-
cally not well-shaped, see Fig. 6b, even after Augmented
Refinement Fig. 6c, explained in the next section.

For tight configurations, as in Fig. 7a, edge-insertion
that splits a T2-gon into a triangle and a pentagon
(Fig. 7c), needs to be followed by local Augmented Re-
finement, (Fig. 7b), as defined next.

4. Local “Augmented Refinement”

Subdivision can be used to separate the irregularities
in an input mesh. However, already a single Doo-Sabin
subdivision step can cause oscillation in the highlight line
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(a) split (b) Augmented Refinement

(c) split T2 (d) re-connect + refine surface

Figure 7: Two T2-gons sharing a vertex. (a) each of the two T2-gons
(nominally a hexagon with two T-junctions, see black in (c)) is split into
a triangle and a pentagon, see red line in (c). (b) Augmented Refinement
of the input mesh (d) regular bi-2 patches obtained after re-connection
and refinement, 3-sided and 5-sided cap.

distribution. By adding a carefully-chosen auxiliary cen-
tral point a (see Fig. 8b), Augmented Subdivision [12] is
known to yield better shape. Here a is an affine combina-
tion of the nodes qs, s = 0, . . . , n − 1, of the n-sided facet
and direct neighbor nodes ps

+ and ps
−. At global bound-

aries, we can choose to add an outer sacrificial layer to ei-
ther mirror the immediate interior layer across the bound-
ary sequence of edges, or replicate the boundary edges to
form boundary facets of zero area. We can thus restrict
the discussion to interior faces. As for Doo-Sabin sub-
division, after one step all new nodes of the multi-sided
facet are of valence 4.

Augmented Refinement is a generalization of one step
of Augmented Subdivision. Augmented Refinement al-
lows the nodes qs to have valence that is not 4. Con-
sider the general situation of Fig. 8c: ps

− and ps
+ denote

the neighbor nodes of qs on edges directly preceding or
succeeding the polygon edges when walking around qs.
Augmented Refinement counts a neighbor ps

+ = ps
− twice

for n = 3, and leaves out other neighbors for n > 4 when

qsqs+1

(a) Doo-Sabin

qsqs+1 ps
−

ps
+

ps+1
−

ps+1
+

a

(b) Augmented Subdivi-
sion

qsqs+1

ps
+ = ps

−

ps+1
−

ps+1
+

a

(c) Augmented Refine-
ment

Figure 8: Support (stencils) of three alternative refinements. Old facet
points • and new facet points represented as ◦. (a) Doo-Sabin. (b,c)
Augmented Subdivision and Augmented Refinement: •, • and •, are
used to initialize a and generate new nodes ◦.

applying the rule

a := := µnq + (1 − µn)
p− + p+

2
, µn :=

3/5, n = 3,
2 n−2

n , n ≥ 4.
(1)

q :=
1
n

n−1∑
i=0

qi, p− :=
1
n

n−1∑
i=0

pi
−, p+ :=

1
n

n−1∑
i=0

pi
+.

(2)

This, ultimately simple, sub-selection of only some neigh-
bors and double counting for n = 3 is based on exten-
sive tests of alternative affine combinations of all neigh-
bors that show that additional neighbors are not needed
to obtain a much improved shape. To prevent the undue
flatness observed for Doo-Sabin subdivision for a convex
control net, the affine combination of averages places a
outside the convex hull. Since a is an auxiliary point and
not even part of the control net, this placement does not
imply that the resulting surface extends outside the con-
vex hull.

5. Local T-gon refinement

T-gon refinement addresses configurations where T-
gons share vertices (see Fig. 9) or even edges. While
subdivision can separate features, and Augmented Refine-
ment improves the resulting shape considerably over Doo-
Sabin, T-gon refinement is the best choice for shape near
T1-gons since it preserves the inherent preferred two di-
rections that distinguish, say a T1-gon from a pentagonal
facet.
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(a) shared vertex (b) refined mesh

(c) surface (d) e := 0 (e) e := 0.05

Figure 9: Two T1-gons sharing a common vertex.

T0-gon refinement inserts two new nodes (marked as
◦ in Fig. 10a) into the T0-gon (augmented subdivision
would generate three nodes). The weights, multiplied by
48, for the left ◦ are shown in Fig. 10a. The weights for
the right are obtained by symmetry. Connecting the new
nodes forms two overlapping τ0-nets, see Fig. 10b, a per-
missible configuration for polyhedral splines. We note
that the uniform bi-2 spline refinement stencil weights are
27, 9, 3, 9 divided by 48. The weights 4, 4, 4 of Fig. 10a,
top, can therefore be viewed as a uniform re-distribution
of a (collapsed) edge of a bi-2 spline with weights 3, 9.

For T1-gon refinement insert six new nodes into the T1-
gon, see Fig. 10c, (augmented subdivision would generate
five nodes) as follows. As step 1, (Fig. 10d), split the T1-
gon into two quads by connecting the midpoint • of the
top edge with the 3-valent T-vertex. Apply regular bi-2
subdivision to define the two new nodes marked as ◦. As
step 2, (Fig. 10e), replace the initial � by × where

× := (1 + e)� − e•, edefault := 0.05, (3)

and do alike for the right. Apply regular bi-2 subdivision
to the resulting quad to define two new nodes marked as
thick circles (the other two are obtained by symmetry).

4 4 4

27 9

(a) new nodes (b) refined net

(c) new nodes: (d) step 1

• �×

(e) step 2 (f) refined net

Figure 10: Top row: T0-gon refinement with (a) stencil weights for the
left ◦ to be divided by 48; bottom row: T1-gon refinement.

Connect the new nodes to form two overlapping τ0-nets
as shown in Fig. 10f. The rule would be simpler if we
had chosen e = 0. Then the refinement rules would be
restricted to the vertices of the T -gon. However, as illus-
trated in Fig. 9, this setting of e in place of the default
e = edefault := 0.05 results in visible artifacts.

C C

S

(a) T0-gon

TC C

C C

(b) T1-gon

C

(c) n-gon

Figure 11: Unified refinement.

1

2

3

(a) input mesh. new nodes •, • (b) refined mesh

Figure 12: Unified refinement of tight meshes with non-4-valent vertices
and T-junctions in close proximity. (a) • are defined by T-gon refine-
ment. (b) Connecting the new nodes.
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6. Unified refinement for tight configurations of T-
gons and n-gons

We can unify the refinement where T-gons and n-gons
abut and their control nets overlap. In Fig. 11, we mark
as• new nodes from augmented or T-gon refinement that
only depend on horizontal neighbor facets of the T-gon
(• in Fig. 10a for a T0-gon, and • or • in Fig. 10e for
a T1-gon). The other refined nodes are marked •. Now
denote as T-vertex the valence 3 vertex of a T1-gon, as S-
vertex the valence 5 vertex of a T0-gon, and as C-vertex
the valence 4 (corner) vertex of a T-gon. Then refinement
surrounds a

- C-vertex with one • and three • neighbors,
- S-vertex with four • neighbors,
- T-vertex with two • and two • neighbors.

Fig. 12 illustrates unified refinement. The input node 1
of valence 4 is a T-vertex in a T1-gon but an S-vertex in
a T0-gon. Input node 2 of valence 3 is a C-vertex in the
lower T1-gon but a T-vertex in the upper T1-gon. Input
node 3 of valence 5 is a C-vertex in the T1-gon but an S-
vertex in the T0-gon. Where both are regular, i.e. knot

(a) mesh (b) refined mesh

(c) surface

Figure 13: Tight configuration with two T1-gons and two T0-gons.

insertion splits patches, the refined patches smoothly join
their coarser neighbors.

7. Examples of re-connection and refinement

The input mesh of Fig. 13a contains two T1-gons and
two T0-gons. T-gon refinement into six overlapping τ0-
nets (Fig. 13b) makes the mesh suitable as control net for
a polyhedral spline of reasonable shape given the poor ini-
tial layout, see Fig. 13c.

(a) ’dyadic’ mesh (b) refined mesh

(c) surface (d) zoom

Figure 14: A rapid reduction in the number of quad strips by adja-
cent and cascading T1-gons. (a) Input mesh. (b) Refined mesh for τ0-
surfaces. (c) BB-net overlaid on the τ0-surface. Regular bi-2 surfaces,
additional regular bi-2 surfaces from refinement. (d) zoom in into area
of τ0-surfaces.

Fig. 14 features a rapid reduction in number of quad
strips using tightly packed T1-gons. T-gon refinement
makes the mesh suitable as a polyhedral spline control
net. While a skilled designer can model the reduction di-
rectly by placing τ0-nets, this requires careful placement
of twice as many facets. Compared to a tensor-product
spline with its parameter lines aligned to the circular and
vertical directions of the cylindrical shape, the highlight
lines oscillate slightly due to the alternating diagonal. The
simple configuration seems to directly admit (periodic)
LR splines or T-splines. However, these require a glob-
ally consistent interval length assignment that is not usu-
ally available in polyhedral modelling environments, and
in some cases can not exist at all. Moreover, the LR and
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T-spline implementations that we are aware of do not ac-
cept a mesh with T-junctions as an input, but require the
modeling of T-junctions within their framework.

(a) mesh (b) no refinement

(c) T0-refinement (d) Augm. Ref. × 2

Figure 15: T0-gon for merging two quad strips. (c) T0 refinement; (d)
two steps of Augmented Refinement.

(a) net (b) T-gon refinement (c) Augm. Ref. × 2

(d) T-gon refinement (e) Augm. Ref. × 2

Figure 16: Polyhedral net of Fig. 2. Surface (b,d) T0-refinement, (c,e)
two steps of Augmented Refinement.

The T0-configuration Fig. 15a is common in automo-
bile outer surface design when blending two primary sur-
faces. To better understand the cost of localized refine-
ment, Fig. 15b,c,d, compare direct modeling using (b)
polyhedral spline with (c) T0-refinement and (d) two Aug-
mented Refinement steps followed by polyhedral splines.

Although the overall shape remains visually alike, the
highlight line distribution in the area of interest is more
uniform in (b) than in (c) or (d). Fig. 16 repeats the ex-
periment for the convex net of Fig. 2. Again, Doo-Sabin
refinement (Fig. 2d) is the worst option and application of
polyhedral spline without refinement (Fig. 2e) is the best
option, compared to Fig. 16d,e where we observe slight
oscillations when the mesh is first refined. If possible, a
designer should therefore avoid refinement since refine-
ment can introduce unwanted variation in the surface.

The mesh in Fig. 17b (a submesh of the initial Fig. 1)
includes a T0-gon adjacent to a T1-gon. Moreover, one of
the T1-gon vertices (marked •) has valence 5. One T0-,
T1-gon or bi-2 refinement as applicable would yield (not
shown) a pentagon in place of v and a T0-gon that shares
one vertex with the pentagon. This would trigger a rare
second round: a T0-gon refinement and Augmented Re-
finement of the pentagon. Since the resulting shape is
worse compared to two alternatives, it is not shown here.
Inserting an edge in Fig. 17a enables T0-refinement and a
permissible n-valent star configuration at v. Even better,
re-connecting as in Fig. 17c yields sufficiently separated
τ0-nets suitable for polyhedral splines. Note that sharp
changes in the highlight lines originate in the surround-
ing bi-2 splines. The T0 configurations still have their 5-
valent vertex poorly placed with respect to the crease, as
discussed for Fig. 5. In both cases the highlight line dis-
tribution is not truly satisfactory. This is due to the place-
ment of the T-gons with respect to the crease: the τ0-nets
have their 5-valent vertex on the crease which places the
opposite line of the triangle across the crease rather than
aligned, see the discussion of Fig. 5. Fig. 18 displays the
results for some well-known larger-scale meshes. Note
that the large-scale oscillations on the bunny surface oc-
cur in the regular bi-quadratic surface, i.e. are due to the
geometry generated by the regular regions of the quadran-
gulation.

Putting it all together. At most two localized (Aug-
mented) refinements guarantee a valid polyhedral spline
control net: after one refinement, all new vertices have
valence 4 but there can be adjacent m-sided faces that
are separated in a second step. While two steps
of localized refinement represent a complete algorithm,
examples Fig. 15 and Fig. 16 indicate that opportunisti-
cally minimizing the number of refinement steps is prefer-
able. Fig. 17 shows another scenario where simple re-
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(a) add edge

•v

(b) input mesh (c) re-connect

(d) surface from (a) (e) surface from (c)

Figure 17: Detail from Fig. 1: Tight configuration with a T0-gon (red) and a T1-gon (teal) sharing an edge. One vertex v (•) of the T1-gon is of
valence n = 5. Separation by re-connection (single edge flip) yields better shape.

connection results in better shape. Ideally, future quad-
meshing algorithms will therefore arise from a collabo-
ration of meshing and spline expertise to take advantage
of the flexibility of polyhedral splines, but also respect
their layout limitations. As a practical step, until such al-
gorithms are available, and given the negligible cost of
generating and evaluating the polyhedral splines for a lo-
cal mesh, a palette of alternative local surfaces should be
presented to the designer to choose from. That is, for
each isolated cluster of tight configurations, the plug-in
or designer should test, in order until resolved,

• removal and insertion of edges to separate adjacent
T-gons,

• unified refinement of T-gons and n-gons,
• Augmented Refinement

to generate nets suitable for polyhedral splines.

8. Conclusion

We explored recipes for localized post-processing of
meshes with tightly-packed irregular points, facets and T-
junctions to convert the mesh into a control net suitable

for polyhedral splines and improve the interplay between
meshing and high-end surfacing. We gained the following
insights:

- if possible, re-connect so that T-gons appear only
isolated;

- align the non-contracting direction of T0-gons and
T1-gons with creases;

- in tight configurations, Augmented Refinement can
yield good shape near T0-gons, but not near T1-gons;

- T-refinements are preferred over Augmented Refine-
ment to preserve the two dominant directions of a
regular surface layout.

While each of the rules is easy to apply and present to a
designer, to choose from, turning the insights into an au-
tomatic algorithmic framework means that meshing spe-
cialists and spline specialists must collaborate to develop
spline-aware meshing algorithms. Increasing the number
of polyhedral spline configurations, to address yet more
complex meshes, appears to ask of splines what may be
better addressed by meshing. That is, automatic spline-
aware meshing must optimize the trade-off between the
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(a) net (b) polyhedral spline

(c) net (d) polyhedral spline

Figure 18: Two polyhedral splines (see [16] for the interpretation of colors) whose control nets are obtained by localized remeshing of meshes
generated by [10].

complexity of meshing and the complexity of spline con-
structions.

Acknowledgements. Kyle Lo implemented the code to
render Fig. 18.
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