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Abstract

Scaffold-like surfaces, ranging from large-scale trusses to engineered micro-structures, are often sketched via repeating patterns of
nodes and edges. Offsetting these graphs turns them into meshes for which a smoothly-rounded scaffold surface ’skin’ needs to be
locally generated on the fly for production or analysis. We focus on minimal single-valence (MSV) quad meshes whose irregular
vertices all have the same valence n and closest pairs are separated by exactly one regular, 4-valent vertex. Though at a first glance
rather special, MSV meshes can model various micro-structures or trusses that occur in CAD or biology. Remarkably, bi-cubic patches
provide a smooth skin of high quality, in many practical configurations with just one patch per quad.
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(a) MSV net
(b) layout of n-sided caps

(c) highlight lines (d) added semi-crease

Figure 1: Bi-3 scaffold surface from an MSV net with irregular node valence
n = 6. (a) Irregular nodes marked •. (b) Layout of differently-colored caps
of the scaffold surface, some with superimposed Bézier nets. (c) highlight line
distribution [1] (d) Semi-crease added by localized refinement.

1. Introduction1

Repeated patterns, in biology or in CAD design, often inherit2

their structure from an underlying graph. Examples are DNA3

strands, nanotubes, octet-truss, 3D Kagome lattices etc. Off-4

setting the edges and nodes of such graphs yields quad-faceted5

beams with a special connectivity pattern: irregular nodes of a6
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(a) MSV net (b) layout

(c) highlight lines (d) Gauss curvature

Figure 2: Bi-3 tube-scaffold surface from a valence n = 6 MSV net.

single, fixed valence n are tightly packed together, separated only 7

by one regular, 4-valent vertex. Fig. 1 a and Fig. 2 a illustrate the 8

variety of structures already for one fixed valence n = 6. Other 9

shapes, not necessarily from graphs, and with valences ranging 10

from n = 3 to n = 10, are discussed in the body of this paper. In 11

[2], Karciauskas and Peters named this class of meshes, charac- 12

terized by vertices of a single irregular valence n separated by one 13

regular 4-valent vertex, minimal single-valence (MSV) meshes. 14

They introduced a corresponding class of scaffold surfaces and, 15

in the case n = 3, sphere-like surfaces. Remarkably, these sur- 16

faces are even curvature continuous (G2). But, while the exis- 17

tence of G2 surfaces consisting of bi-quartic (degree bi-4) poly- 18

nomial pieces is mathematically impressive, and a smooth join 19

of curved structures improves their integrity under forces, cur- 20

vature continuity is often not needed for scaffold surfaces. For 21

large MSV scaffolds and where G1 smoothness suffices, a reduc- 22

tion of degree, number of pieces ([2] uses macro-patches) and 23
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(a) n = 5

(b) 2010 (c) new

(d) n = 6

(e) 2010 (f) new

Figure 3: Progress in bi-3 surface quality (2010=[4]).

complexity of construction is most welcome. In contrast to the24

bi-4 macro-patch G2 of [2] our bi-3 G1 surfaces can be presented25

compactly by explicit formulas (rather than as the solution of a26

system of equations), and yet, for typical MSV meshes, the re-27

sulting surface quality is very similar to its curvature continuous28

cousin, see Fig. 2 c,d. We say remarkable because, for regular29

tensor-product splines, uniform highlight line and curvature dis-30

tribution are typically equated to high differentiability: C2 con-31

tinuity seems to be a prerequisite for good shape of bi-cubics.32

Conversely, for bi-3 patches arranged in an irregular, non-tensor-33

product layout, non-separability and interlinking of the deriva-34

tive constraints along polynomial boundaries has been shown to35

overly constrain the surfaces, see e.g. [3]. For our new scaffold36

surfaces, neither issue is of concern.37

The noteworthy contributions therefore are38

• a bi-cubic (minimal degree) scaffold surface with either 2×239

pieces for strongly twisted MSV nets or40

• one (minimal number) bi-cubic piece per quad of the MSV41

net,42

• both defined by an explicit set of (minimal) formulas that do43

not require assembling and solving a system of equations at44

run time.45

1.1. Related work46

Generating quad meshes from graphs is itself an interesting47

problem, see e.g. [5, 6, 7, 8]. For MSV nets, the challenge is48

much reduced: due to the repeating pattern and known incidence49

count, basic units can be glued together.50

For an overview of surface constructions, see the recent survey51

[9] that classifies constructions for general modeling into transfi-52

nite interpolation using rational multi-sided surfaces [10, 11, 12,53

13, 14], subdivision surfaces, e.g. [15], constructions with vertex54

singularity, e.g. [16], and geometrically continuous splines (G-55

splines) that assemble a finite number of polynomial piece to join56

smoothly after a change of variables, see e.g.[17, 18, 19, 20, 21].57

[22] proved that G-splines are directly suitable for isogeomet-58

ric analysis [23] also for unstructured layout [3, 24, 25]. Fig. 359

illustrates the improvement of smooth bi-3 free-form G-spline60

constructions from a decade ago: compare Fig. 3 b vs c and e61

vs f. For general input, like Fig. 3 a,d, the new scaffold-specific62

construction yields good highlight line distributions but formally63

1 12 4
4 25 5

3
6 36c0

cs cs+1

(a) CC-net

00 30
01 31

t

(b) Hermite t of degree 3

Figure 4: For MSV, the nodes marked ◦ must have the same valence n as the
central irregular node c0. (a) The CC-net of valence n = 5 consists of c0 and 6n
nodes cs

i , i = 1, . . . , 6, s = 0, . . . , n− 1. (b) First-order tensor-border t of degree 3
with BB-coefficients ti j, along one boundary segment, not touching an n-valent
node.

C0 surfaces with minimal normal deviation akin to [26]. By con- 64

trast to [26], our scaffold surfaces have explicit formulas, hence 65

are simpler to implement, and are G1 for MSV input, i.e. do not 66

have the limitations pointed out in [27]. 67

Overview Section 2 develops an auxiliary bi-4 surface that 68

simplifies the remaining work. Section 3 defines both the 2 × 2 69

patch per sector and the single patch bi-3 constructions. Section 4 70

compares options and points out subtle differences between 2×2 71

and single patch scaffold surfaces. 72

2. An (auxiliary) n-sided surface cap of degree bi-4 73

An auxiliary bi-quartic (bi-4) cap determines the shape and 74

other key properties of the final bi-cubic (bi-3) scaffold surfaces. 75

The input to the construction of the bi-4 cap is a network of 76

quadrilateral (quad) faces, called CC-net, see Fig. 4 a, serves as 77

input for corresponding surface pieces, called caps, whose union, 78

one per n-valent point, is the scaffold surface. The central n- 79

valent node c0 of the CC-net is surrounded by regular nodes and, 80

for now, we do not restrict the valence of the second layer of 81

nodes. (For MSV meshes every second node of the second layer, 82

marked by ◦, must be of the same valence n). We construct the 83

auxiliary cap from n tensor-product patches of bi-degree d = 4 84

(bi-4) in Bernstein-Bézier form (BB-form, [28, 29]). That is, for 85

Bernstein polynomials Bd
k (t) :=

(
d
k

)
(1 − t)d−ktk of degree d = 4: 86

p(u, v) :=
d∑

i=0

d∑
j=0

pi jBd
i (u)Bd

j (v), 0 ≤ u, v ≤ 1.

Connecting the BB-coefficients pi j ∈ R3 to pi+1, j and pi, j+1 wher- 87

ever well-defined yields the BB-net. This is illustrated in Fig. 5 b 88

for two pieces of the cap; the superscript s ∈ {0, . . . , n−1} counts 89

the n sectors of a cap modulo n. 90

To smoothly join the sectors of the cap, we relate the BB- 91

coefficients of neighboring sectors p̀ := ps and ṕ := ps+1, 92

s = 0, . . . , n − 1 by setting the coefficients p̀i j := ps
4− j,4−i and 93

ṕi j := ps+1
4−i,4− j, i = 0, . . . , 4, j = 0, 1; see Fig. 5 a. The poly- 94

nomial pieces join G1 along the common sector-separating curve 95

p̀(u, 0) = ṕ(u, 0) with BB-coefficients p̀i0 = ṕi0 if, after reparam- 96

eterization p̀(u, v) := ṕ ◦ ρ(u, v), (u, v) ∈ [0..1]2, see e.g. [30], 97

∂vp̀ = a(u)∂vṕ + b(u)∂up̀ c := cos
2π
n
, (1)

ρ(u, v) := (u + b(u)v, a(u)v), a(u) := −1, b(u) := 2c(1 − u).

Due to a(u) := −1, the sectors are treated symmetrically. We 98
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enforce (1) by setting99

ṕ01 := −p̀01 + 2cp̀10 + 2(1 − c)p̀00; (2)

p̀20 :=
(3c − 4)p̀10 + 2(p̀11 + ṕ11)

3c
; (3)

ṕ21 := −p̀21 + (2 − c)p̀20 + cp̀30; (4)

p̀30 :=
2(p̀31 + ṕ31) − cp̀40

4 − c
; (5)

p̀40 :=
p̀41 + ṕ41

2
. (6)

t
00 10 20 30

01 11 21 31

t̃00

01

40

41

20

21

↓

↓

β

H

Figure 6: Transformation Hβ := H ◦ β
of input tensor-border t of degree 3 to
tensor-border t̃ of degree 4.

To smoothly join the cap
to the surrounding surface,
we interpret the CC-net as
bi-3 B-spline coefficients
and convert the B-splines
to BB-form for the BB-
coefficients marked as • in
Fig. 4 b. This representa-
tion of first-order Hermite
data of degree 3 in BB-form
is called a tensor-border t.
While t is consistent with
(6), we have to reparameter-
ize to enforce (5). Antici-
pating the need for C1 join-
ing of adjacent scaffold caps, we choose

β(u, v) := (u, a(u)v),

a(u) := B2
0(u) + B2

1(u) +
2

2 − c
B2

2(u).

Then t ◦ β is consistent with (5). Since the first order expansion100

f (u, 0) + ∂v f |v=0v of f := t ◦ β is of degree 5 rather than the de-101

sired degree 4, we subsample as follows, see Fig. 6 . At the end-102

points (• and •), the Hermite data
(

f ∂u f ∂2
u f

∂v f ∂u∂v f ∂2
u∂v f

)
are expressed103

in BB-form of bi-degree 4. The overlapping BB-coefficients are104

averaged to obtain the coefficients with indices 20 and 21. The105

BB-coefficients t̃i0, i = 0, . . . , 4 and t̃01, t̃11 of the resulting bi-106

4 tensor-border denoted t̃ stem directly from t in degree-raised107

form, i.e. t̃11 := 1
16 (t00 + 3(t10 + t01) + 9t11). The remaining108

00
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30

40

01 01

11 11

21 21

31 31

41 41

p̀ ṕ

v v
u u

(a) local indexing

ps ps+1

ĉ

4434
24

23
33

22 32 42

43 34

43
42

33

2324

00 00
40 04

04 4032

22

(b) global indexing

Figure 5: Indexing the BB-coefficients relevant to the G1 constraints between
adjacent bi-4 sectors.

coefficients are 109

t̃21 :=
1

16(2 − c)

(
c(t01 − t00 + t31 − t30) + (4 − 5c)t10 + 3(4 − c)t11

+ (4 + c)t20 + 3(4 − 3c)t21

)
,

t̃31 :=
1

8(2 − c)

(
3(1 − 2c)t20 + 9t21 + (1 + c)t30 + 3(1 − c)t31

)
,

t̃41 :=
1

2(2 − c)

(
(1 − 2c)t30 + 3t31

)
.

At the central irregular point ĉ, we construct a unique quadratic 110

expansion, both to obtain a well-defined tangent plane at ĉ and to 111

improve the surface quality. We define a piecewise total degree 112

quadratic map q with coefficients qs
k, k = 1, . . . , 6, s = 0, . . . , n−1 113

(see see Fig. 7 a) as n pieces defined n sectors with an opening 114

angle 2π
n at the origin o (see Fig. 7 b). The explicit formulas re- 115

lating the BB-coefficients of adjacent sectors are 116
qs+1

1
qs+1

2
qs+1

3
qs+1

4
qs+1

5
qs+1

6

 :=


1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

2(1−c) −1 0 2c 0 0
0 0 0 2(1−c) −1 2c

4(1−c)2 −4(1−c) 1 8c(1−c) −4c 4c2




qs
1

qs
2

qs
3

bs
4

qs
5

qs
6

 . (7)

Once the six BB-coefficients qs
k, k = 1, . . . , 6 of one sector s are

fixed, (7) defines the BB-coefficients of the remaining sectors.
The quadratic map q becomes the quadratic expansion of the bi-
4 cap p at ĉ as follows. In each sector s the quadratic map qs is
composed with τs : [0..1]2 → R2 whose BB-coefficients τs

44 :=
o, τs

43 and τs
34 coincide with other two vertices of the domain

triangle of qs (light red in Fig. 7 b) and

τs
42 := 2τs

43 − τ
s
44, τs

24 := 2τs
24 − τ

s
44, (8)

τs
33 := κ(τs

42 + τ
s
24) + (1 − 2κ)τs

44, κ :=
4 + 3c

8(1 + c)
. (9)

Then at o the Hermite data { f , ∂u f , ∂v f , ∂2
u f ∂u∂v f , ∂2

v f} of the 117

composition f := qs◦τs in bi-degree 4 BB-form are, see Fig. 5 b, 118

the magenta BB-coefficients ps
i j of the cap sector ps: i.e. we have 119

explicitly 120
ps

44
ps

34
ps

24
ps

43
ps

33
ps

42

 :=


1 0 0 0 0 0
−1 2 0 0 0 0
− 1

3 − 4
3

8
3 0 0 0

−1 0 0 2 0 0
− 1

1+c −
c

2(1+c) 0 − c
2(1+c) 2 0

− 1
3 0 0 − 4

3 0 8
3




qs
1

qs
2

qs
3

qs
4

qs
5

qs
6

 . (10)

With reference to Fig. 5 b, the construction consists of the fol- 121

lowing steps. 122

(a) The green parts of the BB-nets (BB-subnets) are defined by 123

the tensor-borders t̃. 124

ĉ
12

3

5
4

6

2

3

5

4
6

qs qs+1

(a)

o

τs

4434
24

33
43

42

(b)

Figure 7: (a) Labeling the coefficients of quadratic map q; (b) reparameterization
τ.

3



(b) ĉ is chosen to be the Catmull-Clark subdivision limit point
[31]

ĉ :=
n

n + 5
c0 +

1
n(n + 5)

n−1∑
s=0

(cs
5 + 4cs

6), (11)

slightly corrected for n = 3 with γ5 := 5
96 , γ6 := 1

6 :

ĉ := (1 − 3γ5 − 3γ6)c0 +

2∑
s=0

(γ5cs
5 + γ6cs

6); (12)

(c) ps
22 (marked as ×) is chosen to prevent undue oscillation. Its

BB-net row and column are initialized as degree 3, degree-
raised to degree 4 and averaged at 22, yielding

ps
22 :=

1
2
(2
3

(ps
21 + ps

23) −
1
6

(ps
20 + ps

24)
)
+ (13)

1
2
(2
3

(ps
12 + ps

32) −
1
6

(ps
02 + ps

42)
)
.

(d) The remaining n unconstrained BB-coefficients ps
32 (marked125

as •) and the 5 coefficients of the quadratic expansion126

are set by minimizing the sum over the fourth derivatives,127

squared, of all n bi-4 patches ps:
∑n−1

i=0 F4ps where Fkg :=128 ∫ 1
0

∫ 1
0

∑
i+ j=k,i, j≥0

k!
i! j! (∂

i
s∂

j
t g(s, t))2 ds dt.129

For convenient implementation, the construction is computed for
a CC-net in symbolic form, just once separately for each valence
n. This expresses the BB-coefficients of each bi-4 cap patches
ps as a linear combination of the CC-net. It suffices to record the
weights of p0

33 and p0
43. Furthermore, the number of weight digits

can be reduced from the original 20 to 5 and symmetries halve
the number weights to be pre-computed. This technical part is
summarized in Appendix 1 and 3. The algorithm then simplifies
to a sequence of assignments:
Algorithm Apply (a) and (b) above, set ps

33 and ps
43 by Appendix

1, set ps
42 = p̀20 by (3), initialize, analogous to (13), (note the

superscript ∼)

p̃s
32 :=

2
3

(ps
31 + ps

33) −
1
6

(ps
30 + ps

34),

p̃s
23 :=

2
3

(ps
13 + ps

33) −
1
6

(ps
03 + ps

43).

(The relation between ps, ps+1 and p̀, ṕ was introduced at the
beginning of this section.) The smoothness between the sectors
follows from (c) and the adjustment

à21 := p̃s
32, á21 := p̃s+1

23 , p̆2 := (2 − c)p̀20 + cp̀30.

ps
32 = p̀21 :=

1
2

(à21 − á21) +
1
2

p̆2,

ps+1
23 = ṕ21 := −

1
2

(à21 − á21) +
1
2

p̆2. (14)

Remark. The adjustment (14) is a specific application of the fol-
lowing general principle. For G1 constraints (1) with a(u) := −1
and b(u) a linear function,

ṕi1 := −p̀i1 + p̆i, (15)

where p̆i is a linear combination of BB-coefficients of the curve
shared by adjacent sectors. Then ṕi1 and p̀i1 satisfy (15) and, in
least squares sense, minimally deviate from ài1 and ái1 respec-
tively if (see Fig. 8 )

p̀i1 :=
1
2

(ài1 − ái1) +
1
2

p̆i, ṕi1 := −
1
2

(ài1 − ái1) +
1
2

p̆i. (16)

p̀ ṕ

p̀ ṕ

00

10

20

30

10

20

30

01

11

21

31

11

21

31

01

11

21

31

11

21

31

(a)

ĉ

ps,c ps+1,c

ps,. ps+1,/

(b) bi-3

Figure 9: Indices of BB-coefficients in G1 constraints between 2 × 2 bi-3
sectors. (b) bi-3 BB-net of two sectors. Analogous to joining bi-4 sectors,
the BB-coefficients are alternatively labeled p̀i j := ps,c

3− j,3−i, ṕi j := ps+1,c
3−i,3− j,

p̀
i j

:= ps,.
3− j,3−i, ṕ

i j
:= ps+1,/

3−i,3− j, i = 0, . . . , 3, j = 0, 1.

3. Bi-3 caps 130

p̀i1 ṕi1p̆i

ài1 ái1

Figure 8: The BB-coefficients
p̀i1 and ṕi1 satisfy the G1 con-
straints between sectors while
minimizing the distance to á.

All the hard work for construct- 131

ing the bi-3 caps was already done 132

when constructing the auxiliary 133

bi-4 cap. Analogous to Section 2, 134

the BB-coefficients p for the bi-3 135

cap and p̀, ṕ for the G1 join across 136

sectors are shown in Fig. 9 for 137

2 × 2 sectors and in Fig. 11 a,b for 138

a single sector. 139

3.1. 2 × 2 bi-3 patches per sector 140

Fig. 9 a illustrates the relations for G1 continuity between sectors.
For the top, meeting at ĉ, the reparameterization is ρ(u, v) :=
(u, (2c(1−u)+cu)v). For the bottom it is ρ(u, v) := (u, c(1−u)v).
The G1 constraints between sectors and C1 constraints between
top and bottom patches are enforced by setting

ṕ01 := −p̀01 + 2(1 − c)p̀00 + 2cp̀10; (17)

p̀20 :=
cp̀00 + 3(c − 2)p̀10 + 3(p̀11 + ṕ11)

4c
; (18)

p̀30 := −
1
4

p̀10 + p̀20 +
1
4

p̀
20

; (19)

ṕ21 := −p̀21 −
2c
3

p̀10 + 2p̀20 +
2c
3

p̀30; (20)

ṕ31 := −p̀31 − cp̀20 + (2 + c)p̀30; (21)

p̀
20

:=
3(p̀

21
+ ṕ

21
) − cp̀

30

6 − c
; (22)

p̀
30

:=
1
2

p̀
31
+

1
2

ṕ
31
. (23)

Splitting each sector’s bi-4 patch into 2 × 2 by de Casteljau’s 141

algorithm, the operator H� is applied to all domain corners of 142

the four subpatches, see Fig. 10 : for a sub-patch f : (u, v)→ R3, 143

the Hermite data
(

f ∂u f
∂v f ∂u∂v f

)
is transformed to 2 × 2 nets (cyan 144

and blue) of BB-coefficients of degree bi-3 and these are merged 145

to form a bi-3 patch. By construction the six ◦ BB-coefficients 146

of adjacent sectors (see Fig. 9 b,bottom and Fig. 9 a) satisfy (22) 147

and (23). 148
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H�
→

Figure 10: Bi-4 to bi-3 transformation H�.

We apply the approach of (16) to set ps,c
3,1 (� in Fig. 9 a) and

ps,c
3,0 (marked �) to enforce (18) and (19) and set

ps,.
3,3 := ps,c

3,0, ps,.
3,2 := 2ps,c

3,0 − ps,c
3,0.

Then (20) and (21) hold due to

à21 :=p̃s,c
21 , á21 := p̃s+1,c

1,2 , p̆2 := −
2c
3

p̀10 + 2p̀20 +
2c
3

p̀30;

à31 :=p̃s,c
20 , á31 := p̃s+1,c

02 , p̆3 := −cp̀20 + (2 + c)p̀30,

where p̃s,c
i, j , p̃s,c

i, j are the BB-coefficients of bi-3 patches after split149

followed by H�. The BB-coefficients ◦ of patches ps,.
2,2 and ps+1,/

2,2150

are defined by C1 extension.151

We observe that the bi-4-to-bi-3 conversion process above pre-152

serves the C1 join of neighboring MSV scaffold patches. This153

proves overall smoothness. The algorithm can be run symbol-154

ically to obtain the weights of all BB-coefficients of one 2 × 2155

sector (sufficient due to symmetry) in terms of the CC-net for an156

implementation as matrix multiplication.157

3.2. Single bi-3 patch per sector158

p̀ ṕ

0001 01

11 11

21 21

31 31

10

20

30

(a)

ps ps+1

00

33

30

21

(b)
20

30

20

21 21

21 21

31 31

(c)

Figure 11: Single sector: (a) the choice of free BB-coefficients (•) for G1 con-
straints between sectors; (b) the adjacent sector patches. The BB-coefficients in
(a) and (b) are related by p̀i j := ps

3− j,3−i, ṕi j := ps+1
3−i,3− j. (c) Local correction to

ensure a C1 join.

For a single patch per sector, the G1 constraints, with the repa-
rameterization ρ(u, v) of (1), are enforced by setting, see Fig. 11 ,

ṕ01 := −p̀01 + 2(1 − c)p̀00 + 2cp̀10; (24)

p̀20 :=
1
4c

(
3(p̀11 + ṕ11) + (4c − 6)p̀10

)
; (25)

ṕ21 := −p̀21 + 2p̀20 +
2c
3

(p̀30 − p̀20); (26)

ṕ31 := 2p̀30 − p̀31. (27)

p̀ ṕ

00
01 01

11 11

21 21

31 31

10

20

30

(a)

ps ps+1
ĉ

22
32

31
21

30
00

11

(b)

Figure 12: n = 3, single sector: (a) BB-coefficients marked • are unconstrained
after enforcing the G1 constraints between two sectors; (b) all patches.

Applying H� at the four corners of the auxiliary bi-4 patch of
the sector yields an initial bi-3 patch p̃s. We retain the 2 × 2 BB-
subnet containing ĉ, i.e. ps

i j := p̃s
i j, i = 2, 3, j = 2, 3 and ps

i j := p̃s
i j

for i = 0, 1, j = 0, 1 (green BB-subnet in Fig. 11 b). The latter
do not affect the G1 join between sectors and are consistent with
a C1 join to neighboring caps: the boundary of ps and green BB-
subnet coincide with the tensor-border ts so that p̃s

20 := ts
20 and

p̃s
21 :=

1
3(2 − c)

(
3(2ts

21 − cts
20) − 2c(ts

31 − ts
30)

)
,

see Fig. 11 c. However enforcing (25) implies that (26) and the
C1 join to the neighboring bi-3 cap no longer hold: the BB-
coefficient shown as � with label 30 in Fig. 11 a needs to be the
average of its two neighbors ◦ labeled 20 and the BB-coefficients
with labels 21 respectively 31 in Fig. 11 c need to be updated ac-
cording to (16):

à21 :=p̃s
21, á21 := p̃s+1

12 , p̆2 := 2p̀20 +
2c
3

(p̀30 − p̀20); (28)

à31 :=p̃s
20, á31 := p̃s+1

02 , p̆3 := 2p̀30. (29)

The remaining coefficients ps
22 and ps

32 are given in Appendix 159

2, based on symbolic execution of the algorithm that guarantees 160

exact smoothness of the surface (before the careful truncation of 161

weights). 162

3.3. Valence n = 3 (sphere-like surfaces) 163

According to [2], the number of irregular nodes in an MSV
mesh of valence n is 8(1−g)

4−n . Since the number of nodes must be
positive, when n = 3 the topological genus must be g = 0. That
is, the topology is sphere-like. For n = 3, the G1 constraints for
single patch bi-3 sectors can be enforced by setting

ṕ01 := −p̀01 + 2(1 − c)p̀00 + 2cp̀10; (30)

ṕ11 := −p̀11 + 2p̀10 +
4c
3

(p̀20 − p̀10); (31)

p̀20 :=
1

2(3 − c)

(
3(p̀21 + ṕ21) − 2cp̀30

)
; (32)

p̀30 :=
1
2

p̀31 +
1
2

ṕ31. (33)

Initializing bi-3 patches p̃s as in Section 3.2 yields C1 joined
multi-sided caps and only (31) does not hold. The three linear
equations (31) have the unique solution

ps
22 :=

4
3

(ps
32 − ps+1

32 + ps+2
32 ) −

1
3

(ps
31 − ps+1

31 + ps+2
31 ).
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(a) n = 6
(b) (c) highlight lines

Figure 13: Classic 3D grid

We adjust the formulas from Appendix 2 for n = 3 so that ĉ =
1
3 (p0

32+p1
32+p2

32) yielding a well-defined tangent plane at ĉ. Then

ps
32 := (1 −

2∑
r=0

6∑
k=1

är
k) c0 +

2∑
r=0

6∑
k=1

är
kcs+r

k (34)

(
är=0,1,2

k=1,...,6
)

:=
1
3

1
105

( 82 295 1410 37 23092 83876
82 37 −705 295 23092 33062
−164 −332 −705 −332 691 33062

)
.

The C1 join of the bi-3 G1 caps follows by setting

ps
i0 := ts

i0, i = 0, . . . , 3; ps
i1 := ts

i1, i = 0, 1;

ps
21 :=

1
5

(ts
20 + 4ts

21) −
2

15
(ts

30 − ts
31), ps

31 :=
1
5

(ts
30 + 4ts

31).

Remark. The system of n linear equations has a unique solution164

of all odd n, but the shape is good only for n = 3.165

4. Examples and comparisons166

Minimal single-valence nets in nature or CAD design often167

represent an underlying graph embedded in R3 whose edges are168

offset to form quad faceted beams. We note that the number of169

irregular nodes of valence n in such an MSV net of genus g equals170

8(1−g)
4−n (see [2]).171

For graph embeddings that are not too distorted, the bi-3 MSV172

scaffold surfaces are visually indistinguishable from the consid-173

erably more complex G2 surfaces [2].174

For the most common regular 3D grid Fig. 13 a, already the175

single patch per sector construction yields a smooth highlight line176

distribution Fig. 13 c. Fig. 13 b shows the individual 6-sided caps177

built from 6 bi-3 patches each.178

Since 2 × 2 bi-3 caps closely follow and are typically visually179

indistinguishable from their bi-4 antecedents, we display only bi-180

3 surfaces in this section. That does not mean that the auxiliary181

caps are not needed. The auxiliary caps are critical to provide the182

shape for difficult scaffolds such as Fig. 14 b and c.183

The 2 × 2 cap construction yields good highlight line distribu-184

tions even for extreme MSV nets, handcrafted to challenge the185

algorithm. Extreme nets do, however, reveal shortcomings of the186

single patch per sector construction. Fig. 15 features two sur-187

faces of the same genus 2 with (a) n = 5 (eight irregular nodes)188

and (c) n = 6 (four irregular nodes). The difference between sin-189

gle and 2× 2 is minimal for the net in (a) so that we only display190

single. By contrast, the scaffold surfaces of net (c) exhibit strong191

differences pointed to by the ↑ in (d) and (e): in (d) the surface192

folds back into the open interior but not in (e). This can be at-193

tributed to (a) using 8 ∗ 5 = 40 quads compared to (c) 4 ∗ 6 = 24194

to capture the shape. The single patch constructions appear stiff.195

In Fig. 16 single and 2 × 2 patch constructions look very sim-196

ilar and it requires a strong twisting to bring out the differences197

due to flexibility, see ↑.198

Due to the strong interaction of nearby nodes scaffold surfaces 199

strongly smooth out their control net akin to Ck−1 splines of high 200

degree k. The scaffold surface based on Fig. 17 a shows less os- 201

cillation when using 2 × 2 patches. Fig. 17 f adds spikes to the 202

Möbius strip (whose non-orientability is indicated by the flip of 203

the spike to the right). The scaffold surfaces show much milder 204

protrusions than the spikes. The differences between the stiffer 205

single (g) and the rounder 2 × 2 construction (h) are visible in 206

magnification. Fig. 18 makes the same point for a double 207

twist, illustrating that the scaffold determines the complexity of 208

the shape. Both shapes are inspired by the structure of DNA. 209

Fig. 19 explores alternative approaches to creating single bi- 210

3 default caps in Section 3.2. Since the default replaces much 211

of its auxiliary bi-4 input, it is natural to ask whether a ‘direct, 212

local’ construction is possible by setting the 5 unconstrained co- 213

efficients of the quadratic q at ĉ (◦ in Fig. 11 ) to minimize a 214

functional Fk and then applying the G1 adjustment (28) and the 215

C1 join of adjacent caps as in Section 3.2. Fig. 19 a shows that 216

F4 yields an unacceptably creased result, F2 and F3 fare worse 217

and are not shown. Direct local construction using F5 and F6 (b) 218

and (c) looks increasingly better but still far worse than the de- 219

fault shown in Fig. 11 g,h. (Higher choices of k in Fk yield 0 for 220

bi-cubic patches.) Next we tried a ‘direct, global’ construction, 221

where we substitute in the G1 adjustment (28) and the C1 join of 222

adjacent caps and solve for all 5m terms of quadratics of the m 223

caps in the scaffold at the same time, i.e. solving the 5m×5m lin- 224

ear system of equations. The corresponding surfaces, denoted as 225

F
g

k in Fig. 19 , are still worse than the default: F g
6 yields the best 226

result, but its highlight lines oscillating more than the default. 227

The MSV net of Fig. 20 has an icosahedral structure. The 228

outcomes confirm that, for MSV nets derived by inflating the 229

edges of a graph, the visual difference between single and 2 × 2 230

is typically negligible. And even though the BB-net in Fig. 20 b 231

has high variation, the highlight lines of the single patch scaffold 232

in Fig. 20 c are uniformly distributed. 233

Fig. 21 shows design where top and bottom are joined by (a) 234

3 tubes, (e) 4 tubes and (h) 12 tubes. Although both highlight 235

line distributions in (c) and (d) are acceptable, the 2 × 2 distri- 236

bution is clearly more uniform. The top views in (f) and (g) and 237

the side view of (i) vs (j) show an undesirable flaring-out of the 238

single patch construction. Remarkably, even though inputs like 239

Fig. 16 d and Fig. 21 h are extreme, the 2 × 2 cap has acceptable 240

shape. 241

(a) n = 8, genus 13

(b) single (c) 2 × 2

Figure 14: High genus MSV net. (b) single bi-3 patch per quad, (c) 2 × 2 bi-3
patches per quad.
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(a) n = 5 (b)
(c) n = 6

←

(d) single

←

(e) 2 × 2

Figure 15: MSV net, genus 2: (a) 8 irregular nodes of valence 5 marked as •;
(b) corresponding surface. (c) 4 irregular nodes of valence 6 yielding (d,e). The
← points to where the single patch surface folds inwards while the 2 × 2 surface
looks relaxed.

(a) n = 6, g = 3

(b) single (c) single

(d) twisted (a) net

→
←

(e) single

→
←

(f) 2 × 2

Figure 16: MSV mesh, genus 3. (b) surface caps (c) highlight lines. (d) Twist-
ing the mesh leads to more creased geometry for the single patch construction
compared to 2 × 2, see←.

(a) n = 6

(b) single

(c) 2 × 2 (d) single (e) 2 × 2

(f) spiked

(g) single

(h) 2 × 2

(i) single (j) 2 × 2

Figure 17: Möbius nets.

(a) (b)
(c) (d)

Figure 18: Double twisted net.
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(a) F4 (b) F5 (c) F6

(d) F g
4 (e) F g

5 (f) F g
6

(g) single (default) (h) single (default) (i) F g
6

Figure 19: Comparing the single bi-3 default scaffold surface with alternative
single bi-3 constructions via functionals Fk .

(a) n = 10 (b) single
(c)

Figure 20: Icosahedral net. (c) highlight line distribution near the joint.

Since the number of irregular nodes in an MSV mesh of va-242

lence n is 8(1−g)
4−n , n = 3 implies sphere-like genus g = 0 and 8243

irregular nodes. That is, any n = 3 MSV net has the structure244

of a once-refined cube, see Fig. 22 a. The highlight line distribu-245

tions are good until the shape is extremely twisted in Fig. 22 g.246

The single patch algorithm strongly smoothes out distortions but247

close scrutiny of Fig. 22 i reveals that, as we knew, the surfaces248

are G1, not G2.249

5. Discussion and Conclusion250

Minimal single-valence (MSV) meshes are ubiquitous as quad251

offsets from graphs with repeating patterns. Such graphs arise252

both in design and in nature. While, structurally, MSV meshes253

are as restrictive for free-form design as are regular quad meshes,254

large repetitive arrangements of MSV themes in design and na-255

ture can form complex macro shapes as illustrated in Fig. 2 and256

Fig. 17 vs Fig. 18 . The dual graph of any triangulation (peri-257

odic to form a cylinder or non-periodic) can be offset to yield an258

n = 6 MSV mesh, see Fig. 2 . The dual graph of any quad mesh,259

can be offset to yield an n = 8 MSV mesh (see Fig. 23 , Fig. 24 )260

or, requiring 4 times as many nodes, a valence n = 5 MSV mesh.261

(a) n = 6

(b) (c) single (d) 2 × 2

(e) n = 8

(f) single (g) 2 × 2

(h) n = 9

(i) single (j) 2 × 2

Figure 21: Variants of MSV cages. (a) n = 6, 4 irregular nodes, (e) n = 8, 4
irregular nodes, (h) n = 9, 16 irregular nodes.

(a)
(b) (c)

(d)

(e) (f)

(g)

(h) (i)

Figure 22: n = 3, surfaces with the single sector. (a,d,g): MSV nets. (b,e,h):
caps, some with their BB-nets. (c,f,i): highlight lines.
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(a) quad mesh (b) dual (c) quad-offset (d) surface

Figure 24: Quad mesh, its dual, offset and n = 8 MSV surface.

One or more subdivision steps can be applied to a polyhdral mesh262

to generate a quad mesh, or its dual. Moreover, any 3D-graph can263

have its m-valent vertices replaced by an m-gon. Truncation of264

the edges meeting at the vertex and joining the new vertices to265

their truncation neighbors in order, generates graphs with ver-266

tices of valence 3. This is illustrated in Fig. 25 for a tetrahedron267

where the single patch construction is sharper-featured than 2×2,268

but both options yield good results for the truncated tetrahedron.269

Figure 23: The dual (solid) of a
quad mesh (dashed).

270

This paper introduced two271

highly efficient options for272

smoothing out MSV meshes and273

provide a smooth bi-cubic scaf-274

fold surface. Here efficient has a275

three-fold meaning: low degree276

(bi-cubic), low number of pieces277

(as low as one piece per sector,278

hence n pieces per cap and a total279

of 8n(1−g)
4−n patches for the whole280

surface), and explicit formulas281

that pre-solve the underlying equations and present them with282

necessary and sufficient accuracy for good visual display.283

From the examples and comparisons of the previous section,284

the reader can glean the trade off when choosing between the285

2 × 2 patch option (typically visually indistinguishable for the286

auxiliary bi-4 patch) whose highlight line uniformity is robust287

against large deformations, and the single bi-3 option that is op-288

timally succinct but can be too stiff for highly twisted configu-289

rations. Fig. 3 compares the single option to an older bi-3 C1
290

technique. The bi-3 construction in [26] yields good shape but is291

not C1 and uses more pieces. Asymmetric higher-order saddles292

in MSV surfaces lead to well-known shape artifacts when using293

Catmull-Clark subdivision surfaces [15]. Bi-2 constructions can294

suffer from kinks in the high-light lines already in the regular295

tensor-product part of a surface and so are out of consideration.296

The auxiliary bi-4 can serve as a final cap (with formulas pro-297

vided in Appendix 1) if the number of patches needs to be kept298

low and the shape robust against large deformations. Modern299

bi-4 G1 surface constructions yield surfaces akin to the auxiliary300

bi-4 construction presented in Section 4, but use more complex301

algorithms. Bi-4 is higher degree than wanted, considering that302

the scaffolds can be very large. Besides, if degree bi-4 were ac-303

ceptable then, at the cost of more pieces, [2] could be applied.304

Since G-splines are directly suitable for isogeometric analysis305

[23], especially for unstructured layouts [22, 3, 24, 25], the new306

bi-3 scaffold surfaces will yield additional tools for analyzing307

truss and micro-structures.308
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Appendix 1: Explicit formulas for the bi-4 cap392

Due to symmetry, it suffices to compute ps
33 and ps

43 for s = 0
from the nodes of CC-net. Then for any sector s = 0, . . . , n − 1,

ps
33 :=ȧ0c0 +

n−1∑
r=0

6∑
k=1

ȧr
kcs+r

k ; ps
43 := ä0c0 +

n−1∑
r=0

6∑
k=1

är
kcs+r

k , (35)

where ȧ0 := 1 −
∑n−1

r=0
∑6

k=1 ȧr
k, ä0 := 1 −

∑n−1
r=0

∑6
k=1 är

k. and ȧr
k

and är
k obey the symmetry relations:

ȧs
2 = ȧ−s

4 , ȧs
4 = ȧ−s

2 , ȧ
s
5 = ȧ−s

5 , ȧ
s
3 = ȧ−s−1

3 , ȧs
6 = ȧ−s−1

6 ;

äs
2 = ä−s+1

4 , äs
4 = ä−s+1

2 , äs
5 = ä−s+1

5 , äs
3 = ä−s

3 , ä
s
6 = ä−s

6 .

By Appendix 3, the weights ȧr
k and är

k can be truncated to 5393

digits after the decimal point so that it suffices to define the394

following ȧ and ä (scaled by 105 for easy readability, i.e. for395

n = 5, ȧ1
5 = 0.02129 and for n = 7, ä1

5 = .02836). We abbreviate396

N := b n
2 c, i.e. N = 3 for n ∈ {6, 7} and M := b n+1

2 c, i.e. M = 4 for397

n ∈ {7, 8}.398

399

n 105× ȧr=0,...,N
k=1,...,6 är=1,...,M

k=1,2,4,5 är=0,...,N
k=3,6

5
39 −225 −443 −225 7600 18847
0 5 239 2 2129 1737
−18 39 242 104 −303 859

14 −77 −66 3999
−5 18 36 1236
−18 89 89 −471

−291 15504
−90 10318
235 1929

6
29 −306 −788 −306 6654 17819
7 −64 169 −84 2757 2858
−13 86 388 134 −565 −508
−12 63 388 63 6 −508

11 −103 −98 3328
0 −5 5 1515
−11 98 103 −297

−428 12725
−214 9392
214 2728
428 −603

7
21 −341 −1015 −341 5861 16583
9 −126 −27 −161 3092 4345
−7 88 460 106 −339 −1299
−10 75 412 104 −303 −379

8 −115 −114 2836
2 −28 −27 1596
−5 79 79 51
−9 127 127 −636

−496 10693
−309 8460
110 3442
447 −582

8
16 −353 −1149 −353 5231 15335
9 −171 −240 −214 3214 5573
−3 61 425 52 82 −1169
−8 98 458 127 −593 −944
−7 79 458 79 −153 −944

6 −119 −121 2463
2 −47 −52 1583
−2 52 47 339
−6 121 119 −540

−525 9165
−371 7607

0 3846
371 84
525 −1472

9
13 −355 −1218 −355 4719 14167
8 −202 −423 −248 3213 6421
0 23 316 −4 504 −468
−5 106 490 123 −654 −1547
−6 81 436 98 −306 −690

5 −120 −123 2170
2 −60 −69 1526
−1 27 17 539
−4 102 96 −328
−5 130 130 −671

−531 7985
−407 6859
−92 4009
265 769
499 −1345

10

11 −349 −1243 −349 4294 13109
7 −222 −565 −266 3144 6937
1 −14 176 −52 854 431
−3 98 478 99 −538 −1772
−5 92 445 113 −500 −983
−6 79 445 79 −212 −983

4 −119 −122 1935
2 −70 −79 1450
0 5 −5 666
−2 79 70 −117
−4 122 119 −601

−525 7052
−425 6214
−162 4021
162 1311
425 −881
525 −1718

400

Appendix 2: Explicit formulas for the bi-3 single patch cap 401

Replacing in the expression of Appendix 1 ps
44 by ps

33, ps
33 by 402

ps
22 and ps

43 by ps
32, the weights in the bi-3 case are (N := b n

2 c, 403

M := b n+1
2 c): 404

n 105× ȧr=0,...,N
k=1,...,6 är=1,...,M

k=1,2,4,5 är=0,...,N
k=3,6

5
58 −336 −620 −336 10180 22919
−3 36 362 19 1681 −1465
−22 23 222 130 −657 702

20 −103 −89 4666
−8 25 48 982
−24 119 119 −1296

−389 18005
−120 11092
314 −95

6
42 −455 −1117 −455 9040 22522
8 −66 302 −108 2919 368
−19 112 406 191 −1379 −1174
−11 23 406 23 445 −1174

15 −138 −131 3932
0 −7 7 1515
−15 131 138 −902

−571 14947
−285 10504
285 1618
571 −2825

7
30 −504 −1447 −504 8031 21498
11 −162 39 −223 3660 2964
−12 136 571 166 −1204 −3052
−11 43 337 94 −147 372

11 −153 −153 3385
3 −38 −37 1732
−8 105 106 −328
−13 170 170 −1245

−662 12670
−413 9693
147 3002
596 −2363

8
23 −522 −1645 −522 7217 20237
12 −231 −263 −304 4023 5246
−6 107 591 95 −601 −3399
−10 97 417 153 −859 −634
−8 34 417 34 313 −634

9 −160 −163 2964
4 −63 −70 1791
−4 70 63 132
−9 163 160 −1041

−701 10938
−495 8861

0 3846
495 −1169
701 −3246

9
18 −523 −1748 −523 6549 18942
11 −280 −531 −355 4158 6937
−2 57 486 15 67 −2604
−8 131 532 168 −1168 −2143
−8 41 331 75 −13 321

7 −161 −165 2630
4 −81 −92 1771
−1 36 24 454
−6 137 129 −703
−8 173 173 −1160

−709 9589
−543 8088
−123 4288
355 −33
666 −2853

10

15 −514 −1788 −514 5988 17705
11 −312 −743 −384 4160 8079
1 3 314 −56 652 −1308
−6 137 589 149 −1127 −3046
−7 74 369 118 −497 −296
−6 34 369 34 232 −296

6 −159 −163 2358
4 −93 −106 1712
0 8 −8 667
−4 106 93 −379
−6 163 159 −1025

−701 8514
−567 7397
−216 4474
216 860
567 −2064
701 −3180

405

Appendix 3: Choice of truncation level 406

To determine the number of truncation digits in (35) that pre- 407

serves shape, we tested a number of challenging CC-nets. 408

Fig. 26 c shows that 3 digits fail: for a simple convex shape of 409

valence 6 shape artifacts appear near the boundary of the bi- 410

4 cap. Compare (c) to (d). Extreme zoom sometimes shows 411

minute 5-digit truncation highlight line jumps near ps
44 := ĉ. 412
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(a) n = 6 (b)

↘↙

(c) 3-digit (d) 5-digit

Figure 26: Convex extended CC-net (a) with planar sectors. (b) Layout: bi-4
cap surrounded by a bi-3 ring after one CC-refinement step and the bi-3 patches
defined by the planar sectors. (c) 3-digit truncation; ↑ point to artifacts. (d)
default 5 digit truncation;

These can be eliminated by overwriting ps
43 = ps+1

34 with p̃s
43 :=413

ĉ + 2
n
∑n−1

j=0 cos( 2π
n j)ps+ j

43 . With subscript 43 replaced by 32 and414

34 by 23, the same formulas remove minuscule jumps for a bi-3415

cap.416
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