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Abstract

Unstructured hex meshes are partitions of three-space into boxes that can include irregular edges, where n 6= 4 boxes
meet along an edge, and irregular points, where the box arrangement is not consistent with a tensor-product grid. A
new class of tri-cubic C1 splines is evaluated as a tool for solving elliptic higher-order partial differential equations
over unstructured hex meshes. Convergence rates for four levels of refinement are computed for an implementation
of the isogeometric Galerkin approach applied to Poisson’s and the biharmonic equation. The ratios of error are
contrasted and superior to an implementation of Catmull-Clark solids. For the trivariate Poisson problem on irregularly
partitioned domains the reduction by 24 in the L2 norm is consistent with optimal convergence on a regular grid
whereas the convergence rate for Catmull-Clark solids is measured asO(h3). The tri-cubic splines in the isogeometric
framework correctly solve the trivariate biharmonic equation, but the convergence rate in the irregular case is lower
than O(h4). Optimal 24 reduction is achieved when the functions on the C1 geometry are relaxed to be C0.

Keywords: tri-cubic C1 spline; unstructured hex-mesh; biharmonic equation; Catmull-Clark solids; irregular points
and edges; Poisson’s equation; convergence ratio

1. Introduction

Efficient representation of volumetric C1 fields over hexahedral meshes is of interest in areas ranging from scien-
tific data visualization to solving higher-order differential equations. For example, to visualize a flow computed by the
Discontinuous Galerkin approach currently requires substantial post-processing to extract stream lines that the theory
predicts to be smooth Walfisch et al. (2009). Engineering analysis based on splines is efficient in that it a priori bakes
in the smoothness required of the solution of higher-order partial differential equations. Splines can serve both to
define the geometry of the physical space and supply the degrees of freedom for numerical analysis on the manifold.
The case of volumetric physical space, in three variables, is of obvious high practical interest. Where symmetries
can not reduce dimension, splines need to be well-defined over unstructured partitions of the physical domain. In
particular at irregularities, where the volumetric partition into boxes does not form a topological grid layout suitable
for box-splines de Boor et al. (1993), the construction of smooth solutions is challenging. Unstructured partitions of
the physical domain into boxes can include irregular edges, where n 6= 4 boxes meet along an edge, and irregular
points, where n 6= 8 boxes meet. The challenge is that, at the irregularities, there is no consistent extension of the
individual pieces’ parametric derivatives to the whole neighborhood unless their cross-product vanishes (Peters and
Reif, 2008, Lemma 3.7).

Until recently, the literature did not offer conforming polynomial C1 splines over irregular box-complexes. One
approach in two variables introduces a removable singularity into the parameterization at irregular points, see Peters
(1991a); Reif (1998); Nguyen and Peters (2016); Toshniwal et al. (2017). This approach collapses the 1-jet of first
derivatives at the irregularity and forces the 2-jet of second derivatives of the parameterization onto a linear map. Note
that this approach differs structurally from the collapse of an edge as induced, for example, by the Duffy transform
Duffy (1982). When used for surfaces embedded in 3-space, the main shortcoming of the collapse-project approach
is poor surface shape near the singularity Karčiauskas and Peters (2017). However, for trivariate elements in 3-
space shape aesthetics are not an issue. Wei et al. (2018) generalized the approach to three variables, but without
smoothness near irregular edges, due to the ‘challenging problem ... of how to impose C1 continuity across spoke
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Figure 1: Using tri-3 C1 splines to model smooth curved domains from box-complexes and solve volumetric higher-order partial differential
equations on this geometry.

faces in an unstructured hex mesh’. Peters (2020) addressed the challenge and generalized the projection-collapse
approach to three variables: the new spline space of tri-cubic (tri-3) splines with removable singularity is C1 also
across irregularities in unstructured hex meshes is nestedly-refinable and offers 23 degrees of freedom per box.

The goal is to measure the effectiveness of the new tri-3 C1 splines for solving elliptic partial differential equa-
tions of order two and four. In particular, we want to track the convergence of numerical solutions where both the
unstructured volumetric physical domain and the solution on the domain are represented as tri-3C1 splines, see Fig. 1.
Using Galerkin’s method, this generalizes the higher-order iso-parametric approach of Braibant and Fleury (1984);
Shyy et al. (1988); Au and Cheung (1993); Schramm and Pilkey (1993) to unstructured volumetric physical domains,
and is an instance of the isogeometric approach Cirak et al. (2000); Hughes et al. (2005).
Numerical experiments with four refinement steps, i.e. with up to half a million degrees of freedom, indicate

• 24 (fourth-order) convergence rate for Poisson equations also on irregular box-complexes,

i.e. the error between the computed and the known exact solution in the L2 norm decreases by a factor of 24 under
halving of the mesh interval h and by 23 in the H1 error and 22 in the H2 norm.
For the biharmonic (i.e. fourth-order, bi-Laplacian) equation, the observed convergence rate is also

• 24 for the regular case and for C0 elements on C1 geometry.

However, although still converging to the correct solution, the

• convergence rate of singular C1 tri-3 splines on singular C1 tri-3 spline geometry is less than 24 on irregular
box-complexes.

We note that available a priori convergence estimates, e.g. of Bazilevs et al. (2006); Tagliabue et al. (2014), assume
higher smoothness of the space, typically as high as for splines on the regular box-complex. That is, these estimates
do not apply to solving the biharmonic equation with tri-3 C1 splines. A likely explanation is that the singular,
C1-constrained tri-variate spline space does not have full approximation power. On the other hand, convergence is
consistently better than that of Catmull-Clark solids MacCracken and Joy (1996); Burkhart et al. (2010):

• in all cases enumerated above, tri-3 C1 splines exhibit faster convergence than Catmull-Clark solids.

Overview. After a brief literature review of trivariate smooth elements and the bivariate antecedents of tri-3 C1

splines, Section 2 defines the tri-3 C1 splines for unstructured box-complexes. The space is C1 on local regular
grids, C2 if initialized by knot insertion on a locally tensor-product grid. The space has zero first derivatives across
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irregularities but is C1 after a change of variables and has 23 linear independent B-spline-like basis functions per
box. Section 4 shows the numerical convergence for Poisson’s equation and compares the convergence to that of
Catmull-Clark solids. Section 5 shows and discusses the convergence for the biharmonic equation and compares to
Catmull-Clark solids.

2. Smooth trivariate finite elements

The grid points of a regular partition of 3-space into boxes can be interpreted as the control points of a tri-
variate tensor-product spline with one polynomial piece per cube. The theory of such splines is well-understood, see
e.g. de Boor (1978, 1987). However complex outer shape and internal partition lead to unstructured hex-meshes,
see Meyers and Tautges (1998); Mitchell (1999); Eppstein (1999); Yamakawa and Shimada (2002); Gregson et al.
(2011); Johnen et al. (2017); Owen et al. (2017). Our improved understanding of fields via their singularity graph
Nieser et al. (2011); Liu et al. (2018) has not been matched by corresponding progress to more flexible spline spaces.
For box-complexes where the tensor-grid gives way to an irregular arrangement of boxes including irregular points
and irregular edges, there are multiple options, none of them perfect.

Geometric continuity in three variables is in principle well-understood as a change of variables between pieces,
see DeRose (1990); Peters (2002). In practice trivariate geometric continuity has been barely explored: Birner et al.
(2018); Birner and Kapl (2019) join just one pair of trilinearly parameterized face-adjacent boxes and Kapl and
Vitrih (2022) consider trilinearly parameterized multipatch volumes with exactly one inner (irregular) edge. The
challenge is the complicated interaction of reparameterizations surrounding an irregular point. This complexity is
particularly pronounced when the polynomial (tensor-)degree is low, below tri-5, which is important in three variables
to obtain manageable spline spaces (tri-4 polynomial pieces already have 125 coefficients). Yet, geometric continuity
requires increased polynomial degree near irregularities and careful book-keeping to adjust reparameterizations under
refinement. – Generalized subdivision Catmull and Clark (1978); Doo and Sabin (1978); Peters and Reif (2008)
creates an infinite sequence of nested piecewise polynomial layers that complicate analysis, e.g. computing integrals
near irregularities. Trivariate subdivision rules analogous to Catmull-Clark subdivision Catmull and Clark (1978)
have been proposed in MacCracken and Joy (1996) but come without guarantee of smoothness and approximation
order. Burkhart et al. (2010) pioneered the use of Catmull-Clark solids in engineering applications. More recent work
can be found in Altenhofen et al. (2021). Xie et al. (2020) solve the heat equation using interpolatory Catmull-Clark
solids. We compare the convergence of the tri-3 C1 splines to (non-interpolatory) Catmull-Clark solids.

Fixed-grid immersed representations, such as web-splines Höllig et al. (2001) or unstructured collections of radial
basis functions Buhmann (2009) require careful adaptation of computations near the implicitly enforced boundaries.
Penalty methods, Nitsche (1971) can add smoothness constraints as part of the solution process, at the cost of increas-
ing the size of the problem. The approach requires a judicious choice of penalty parameters.

2.1. Singular jet-collapse constructions in two variables

There are three types of singular spline spaces in the bivariate case: (1) collapse of the domain as for generalized
subdivision, (2) collapse of an edge or face as for polar constructions or Duffy-type Duffy (1982) elements with a
removable singularity, or (3) collapse the set of derivatives (jets) at irregularities in the grid. This review focuses on
the third option. Singular corner constructions that collapse the Taylor expansion (1-jet) at the irregular point by setting
derivatives to zero have been proposed by Peters (1991a); Pfluger and Neamtu (1993); Neamtu and Pfluger (1994);
Reif (1997, 1998); Bohl and Reif (1997); Nguyen and Peters (2016); Karčiauskas and Peters (2017); Toshniwal et al.
(2017). The induced singularity side-steps the vertex enclosure problem Peters (1991b, 2002), a non-trivial algebraic
requirement that arises from forcing the mixed parametric derivatives ∂u∂vf and ∂v∂uf to agree. Peters (1991a)
suggested to simply set the mixed derivatives to zero and Reif (1997) proved that, if higher partial derivatives are
suitably constrained, such singularities are locally removable. That is, the parametric singularity do not result in a loss
of geometric smoothness. In contrast to subdivision, the singular corner approach yields a finite number of polynomial
pieces compatible with existing CAD modeling environments. The resulting C1 surfaces typically have poor shape
when used for free-form design. A recent variant, proposed in Karčiauskas and Peters (2017), removes visible shape
defects but at the cost of increased polynomial degree and overall complexity. After a gap of 20 years, Nguyen and
Peters (2016) re-discovered the usefulness of singular parameterization to circumvent the challenges of refinement
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for engineering analysis and functions on irregular bivariate 2-manifolds. Combining the singular splines with PHT-
splines Kang et al. (2015), (a.k.a. bi-cubic finite elements with hanging nodes in the finite element literature) yields
a bi-cubic C1 space with adaptive refinability. Nguyen and Peters (2016) demonstrate the space’s effectiveness for
modeling and solving thin plate challenge problems of the finite element obstacle course, such as the ‘octant of a
sphere’ and the ‘Scordelis-Lo roof’.

2.2. Constructions in three variables

Wei et al. (2018) base their spline space on tri-cubics but need no jet-collapse since the space is only C0 across
extraordinary edges and vertices. Their tri-cubic C012 splines have three types of degrees of freedom: C2 spline con-
trol points (mesh vertices), C1 spline control points (8 per box) and individual BB-coefficients near the irregularities
(64 per box). Peters (2020) built a tri-3 C1 spline space with singular parameterization. The space offers 8 degrees of
freedom per box.

3. Tri-3 C1 splines on unstructured box-complexes

This section gives a brief summary of the tri-3 C1 splines defined in Peters (2020), starting with the definition
of an unstructured box-complex. The spline space has 23 basis functions per box, see Fig. 2a. By default, the map
x : R3 → R3 that defines the geometry of the physical domain, is initialized by interpreting the vertices of the box-
complex, wherever possible, as B-spline coefficients de Boor (1978, 1987). Knot insertion (averaging) converts the
C2 spline coefficients into C1 spline coefficients (of a C2 function). Then, at each irregularity, a well-behaved linear
function is determined and composed with a singular local volumetric re-parameterization x̆ consistent with the local
layout of the box-complex. All first derivatives of x̆ are continuous, albeit zero across irregularities. However, since
the inverse x̆−1 is well defined, the local expansion of the linear function composed with x̆ can be reparameterized
to remove the singularity. The polynomial pieces of the spline space therefore join not just nominally C1 (with a
singularity), but smoothly over the whole box-complex. The tri-3 C1 spline space can reproduce linear functions and
is refinable. Each box with an irregularity is dyadically split into 23 sub-boxes to localize the operations that make the
spaceC1. Splitting allows irregular points to be in close proximity without interfering with one another, and simplifies
the space’s use for computations: every input box, regular or irregular, uniformly contributes exactly 2×2×2 degrees
of freedom.

Notation and Indexing Analogous to a simplicial complex, a box-complex (a.k.a. hex-mesh) in R3 is a collection of d-
dimensional boxes, 0 ≤ d ≤ 3, called d-boxes. Boxes of any dimension overlap only in complete lower-dimensional
d-boxes. A 0-box is a vertex, a 1-box an edge, a 2-box a quadrilateral and a 3-box is a quadrilateral-faced hexahedron.
A box without prefix is a 3-box.

Irregularities. For d < 3, an interior d-box is regular if it is completely surrounded by 23−d boxes and, for 3 > d̄ > d,
all incident d̄-boxes are regular. For example, for a vertex to be regular, all edges incident to it must be regular. In R3,
a regular vertex (d = 0) is surrounded by 8 boxes, a regular edge (d = 1) by 4 boxes and a regular quadrilateral face
(d = 2) by 2 boxes. Interior faces are always regular since they are shared by exactly 21 boxes.

Within stacked bi-variate irregularities, we define a 0-box to be semi-regular box (blue point in Fig. 2b) if (i) the
box is shared by exactly two edges that are each surrounded by the same number of ne 6= 4 boxes and (ii) the box is
fully surrounded by 2ne boxes. An edge connecting two semi-regular points is a semi-regular edge. A 1-box that is
not a semi-regular edge but is surrounded by ne 6= 4 boxes is called an irregular edge. A point that is neither regular
nor semi-regular is an irregular point.

Boxes with at least one irregular point are evenly split into 2m sub-boxes so that the sub-boxes contain at most
one irregular point each. A box is regular if all its vertices are regular. Otherwise the box is irregular.

Example: Two layers of five boxes share a semi-regular point (blue in Fig. 2a). If the top and bottom 5-valent point
are not semi-regular, the two edges forming the axis are irregular. If the stacked configuration were to continue to a
third layer of five boxes, the middle edge is a semi-regular edge. The dotted lines in Fig. 2a hint at the partition of the
C1 spline into polynomial pieces near edge irregularities. Fig. 2b illustrates an irregular point enclosed by four boxes.

�
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(a) (b) 3 = 3, d = 1 (c) 3 = 3, d = 0, n = 4

Figure 2: : (a) The 8 control abscissae csα, (b,c) Irregularities. (b) Two irregular edges joining at a semi-regular vertex (•) due to stacking an
irregular bivariate quadrilateral mesh.. (c) Four boxes in R3: one irregular point of valence n = 4 and four irregular edges of valence n1 = 3.

Polynomial pieces, corner inner and index-wise nearest coefficients. A tri-3 C1 spline consists of polynomial
pieces c represented in tri-variate tensor-product Bernstein-Bézier (BB) form (see Farin (2002) or Prautzsch et al.
(2002)):

c(u, v, w) :=

3∑
i=0

3∑
j=0

3∑
k=0

cijkB
3
i (u)B3

j (v)B3
k(w). u := (u, v, w) ∈ � := [0..1]3, α := (i, j, k), (1)

whereB3
k(t) :=

(
3
k

)
(1− t)3−ktk are the Bernstein-Bézier (BB) polynomials of degree 3 and the row vectors cα ∈ Rm

are the BB-coefficients. De Casteljau’s algorithm can be used to evaluate the BB-form of Equation (1) and to re-
express a polynomial on a subdomain of [0..1]3. Connecting cα to cα+ej whenever cα+ej is well-defined, yields
a mesh called the BB-net. Setting αi := 0 (or, symmetrically αi := 3) for exactly one i ∈ {1, 2, 3} leaves 4 × 4
BB-coefficients that define c restricted to a quad face of the domain cube. Setting αi := αj := 0 for i 6= j yields the
BB-coefficients of a polynomial restricted to an edge Ek in the direction ek, i 6= k 6= j. The 23 BB-coefficients cα
with α ∈ {0, 3}3 are called corner BB-coefficients since they are the values of c in the domain corners u ∈ {0, 1}3.
Two BB-coefficients csα and csβ are index-wise nearest if there is no csγ with ‖α− γ‖1 < ‖α− β‖1 in the `1-norm.

The tri-3 C1 splines. The splines are constructed by the following Algorithm 1.

Algorithm 1 Construction of tri-3 C1 splines
Input: box-complex with vertices vβ and values vβ .
Output: Tri-3 C1 splines

• Initialize the 23 inner BB-coefficients bsα := (xsα, y
s
α) ∈ R3+1, 1 ≤ αi ≤ 2 of each tri-3 piece by B-spline to

BB-form conversion (knot insertion). In regular regions the splines are therefore initially C2.

• Set the inner BB-coefficients of faces, the edges and finally the vertex as the average of their index-wise nearest
neighbors.

• For irregular boxes only, apply de Casteljau’s algorithm to split each tri-3 piece into 23 pieces.

• For irregular sub-boxes apply the operator P of the Appendix (from (Peters, 2020, Sect. 6)).
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Figure 3: Isogeometric maps

The isogeometric approach. Let � be a cube and

x : s ∈ � ⊂ Rm → ξ = (ξ1, . . . , ξn) ∈ Ω ⊂ Rn

be the geometry map that defines the physical domain, see Fig. 3. The func-
tion u : � ⊂ Rm → R is to be determined so that u◦x−1satisfies constraints,
for example as a solution of the Poisson equation or the biharmonic equation.

4. Solving Poisson’s equation over unstructured hex meshes

Wei et al. (2018) use a supercomputer implementation to solve Poisson’s equation to analyze mechanical models
similar to those Fig. 1. Their tri-variate splines are akin to Nguyen and Peters (2016) and therefore to the tri-3 C1

splines in Peters (2020), but differ both in that they are truncated to transition from irregular to regular regions of
C2 tri-3 splines and require no jet-collapse because they are C0 near irregular edges. For the Poisson equation, their
numerical tests yield straight lines with a slope consistent with optimal convergence, e.g.O(h4) for theL2 error. (They
also point out that purely C0 splines have too many degrees of freedom and that (finite) C1 splines over irregular box-
complexes, i.e. tri-3 C1 splines, still await study in the literature.) For Catmull-Clark solids, combined with Wei et al.
(2017), Wei et al. (2018) report sub-optimal convergence.

To ensure correct implementation of the tri-3 C1 splines and the overall computational framework, and since the
solution of second-order elliptic equations is of interest of its own right, we test the convergence of the tri-3 C1 splines
to the solution of Poisson’s equation over the physical domain Ω = x(�):

find u : Ω→ R :

{
∆u = −f in Ω,

u = 0 on ∂Ω.
(2)

The weak form of Poisson’s equation, projected into the C1 space of basis functions Bj , i.e. Galerkin’s approach, is∫
Ω

∇uh · ∇Bi(x−1)dΩ =

∫
Ω

fBi(x
−1)dΩ, uh :=

∑
j

cjBj(x
−1).

This can be rewritten as the matrix equation Kc = f to be solved for the coefficient vector c of uh where

Kij :=
∑
α

∫
�

(∇Bi)tJ−tα J−1
α (∇Bj)|det Jα|d�, fi :=

∑
α

∫
�
f · Bi · | det Jα|d�. (3)

Here the sum is over all pieces αwhereBi has support and Jα := ∇sxα. Boundary constraints are enforced following
(Elman et al., 2014, Chapter 1): we split the set of basis functions {Bi} into two sets: I := {B0, · · ·Bn} and
B := {Bn+1, · · ·Bn+nδ}, with

uh =

n∑
i=0

ciBi +

n+nδ∑
i=n+1

ciBi,
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Figure 4: Optimal Poisson convergence

where the basis functions in I vanish on the boundary while those in B
are nonzero on the boundary and vanish towards the interior. We set the
coefficients of the functions in B to enforce the boundary conditions,
leaving the basis functions in I free to solve the system of equations.
For the convergence experiments, we chose Ω := [0, 6]3 partitioned
as shown in Fig. 5, i.e. as a: tensor grid, 35-extruded mesh or sphere
octant. To accurately measure the error, we chose

f := (6π2/9) sin((πx)/3) sin((πy)/3) sin((πz)/3). (4)

Then the exact solution of (2) is

u = 2 sin
(πx

3

)
sin
(πy

3

)
sin
(πz

3

)
. (5)
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(a) tensor grid (b) 35-extruded mesh (c) sphere octant

Figure 5: Three main test box-complexes.
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Figure 6: Poisson’s equation solved in terms of the tri-3 C1 spline. Error norms decreasing with h. The dashed lines labeled with n show slopes
of 2−n.

Starting with tensor grid as a basic ‘sanity’ test, we refine each of the three types of meshes, solve and measure the
errors. The error plots in Fig. 4 and Fig. 6 are consistent with optimal O(h4).

The experiments ran on an Intel Core i7-6700K running at 4.0GHz with 16Gb of DDR4 RAM. The algorithm was
implemented leveraging the data structures of OpenVolumeMesh Kremer et al. (2012), a C++ library. All integrals
were computed using Gauss Quadrature with 43 Gauss points. The number of degrees of freedom in the test case
tensor grid are 64, 512, 4,096, 32,768, and 262,144. This corresponds to, respectively, 8, 64, 512 4,096, and 32,768
hex elements, each with 8 degrees of freedom. The element count for 35-extruded mesh and sphere octant are very
similar.

4.1. Comparison to Catmull-Clark solids

For further comparison and to calibrate with respect to a competing, easy-to-implement (in)finite element ap-
proach, we coded Catmull-Clark solids following MacCracken and Joy (1996); Burkhart et al. (2010). Catmull-Clark
solids are assumed to be C1 at irregular points C1 across irregular edges, and C2 elsewhere. In the bivariate setting
Pan et al. (2016) report convergence of O(h2) and Liu et al. (2020) report an L2 convergence of O(h2.5) for the 35-
mesh (one slice of the 35-extruded mesh). For trivariate interpolatory Catmull-Clark solids, (Xie et al., 2020, Fig 7)
observe an initial decay in the L2 error of O(h3.52) with the error concentrated at irregularities. Catmull-Clark solids
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Figure 7: Volumetric Catmull-Clark elements: convergence of the error for Poisson’s equation.

are therefore a natural competing representations for functions over unstructured box-complexes. Here the vertices
of the input mesh are the degrees of freedom (as opposed to the 23 control points per box of the tri-3 C1 spline). On
sub-complexes without irregularities, the function can be evaluated using de Boor’s algorithm. Otherwise, we locally
perform Catmull-Clark solid subdivision until each Gauss point is enclosed by a regular neighborhood, so that we can
evaluate. The coefficients of the outer boundary of the mesh are set to enforce (zero) Dirichlet boundary conditions.
Fig. 7 shows the convergence of Catmull-Clark solids to the solution of the Poisson equation to be suboptimal and
approximately O(h3).

5. Solving the biharmonic equation over unstructured hex meshes
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Figure 8: Optimal convergence, bihar-
monic on tensor grid.

One of the applications of the biharmonic equation is the stream func-
tion formulation of Stokes and Navier-Stokes equations. A classic approach,
e.g. Ciarlet and Raviart (1974); Falk (1978); Arnold and Brezzi (1985), is
to rewrite the biharmonic fourth-order partial differential equations as as a
system of first order equations. Numerical solutions then typically require
post-processing to yield a proper higher-order approximation. Using a fi-
nite difference multigrid approach, Pan et al. (2019) report solving on a
tensor-product grid of size 5123. Gómez et al. (2008) model fourth-order
Cahn-Hilliard flow on a regularly partitioned cube. This and the T-spline
constructions Wang et al. (2013, 2012) do not discuss convergence rates.
For the regular tensor grid and C2 splines Tagliabue et al. (2014) predicts a
convergence of O(h4). Our implementation of tri-3 C1 spline achieves this
rate, also for a geometrically displaced grid, see Fig. 8.

To accommodate irregular box-complexes, discontinuous Galerkin ele-
ments with polygonal boundaries have been applied, see e.g. Wells et al.
(2006); Xia et al. (2007); Mu et al. (2014). Koh et al. (2022) state optimal numerical convergence for quad meshes,
but provide no data for hexahedral meshes. Their approach matches boundary data via a penalty function. Below, we
will compare the results of tri-3 C1 splines to Catmull-Clark solids on unstructured box-complexes. The authors of
an efficient implementation of Catmull-Clark solids on unstructured box-complexes Altenhofen et al. (2021) were not
aware of publications that cover Catmull-Clark solid convergence for fourth order equations. (Recall that the estimates
of Bazilevs et al. (2006); Tagliabue et al. (2014) rely on higher than C1 smoothness for fourth order problems and
therefore do not apply.)

The biharmonic equation

find u : Ω→ R :


∆2u = −f in Ω = x(�),

∇u = 0 on ∂Ω

u = 0 on ∂Ω,

, (6)
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has the weak form∫
Ω

∆uh(x−1) ·∆Bi(x−1)dΩ =

∫
Ω

fBi(x
−1)dΩ, uh(x−1) :=

∑
j

cjBj(x
−1) (7)

that can be rewritten as the matrix equation Kc = f to be solved for the vector of coefficients c where for ξ = x(s) ∈
Ω,

Kij :=
∑
α

∫
�

(∆Bi(x
−1(ξ)))(∆Bj(x

−1(ξ)))|det Jα|d�, fi :=
∑
α

∫
�
f · Bi · | det Jα|d�.

Here the sum is over all pieces α where Bi has support. By the chain rule, and denoting as J−1
(:,k) the kth column of

the inverse of the Jacobian J of x and s := x−1(ξ),

∆ξ(uh ◦ x−1) =

m∑
k=1

J−t(:,k)HJ
−1
(:,k) + U ·X J(ξ) := (∇sx)(s), H(ξ) := (∇s∇suh)(s),∈ Rm×m,

X(ξ) := ∆ξ(x
−1(ξ)), U(ξ) := (∇suh)(s),∈ Rm. (8)

For the convergence measurements, we chose Ω := [0, 6]3 partitioned as shown in Fig. 5, and chose f so that the
solution is

u = 8 sin2
(πx

3

)
sin2

(πy
3

)
sin2

(πz
3

)
. (9)

For Catmull-Clark solids we observe sub-optimal convergence in the first steps already on the perturbed tensor
grid, see Fig. 9. On the 35-extruded mesh and sphere octant the convergence drops to sub-quadratic.
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Figure 9: Volumetric Catmull-Clark convergence of the error for the biharmonic problem.

Fig. 10a indicates for tri-3 C1 splines O(h3) convergence in the L2 norm and optimal convergence in the H1

and H2 norms for the 35-extruded mesh. For the sphere octant, see Fig. 10b, the convergence deteriorates notably
in the third and fourth refinement. Since the computations do not betray any of the usual signs of a software bug
and have been carefully and repeatedly checked – indeed the computations still converge – this observation points to
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Figure 10: Convergence of tri-3 C1 spline and variants for the biharmonic equation
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a gap in the published theory of numerical convergence that, while intriguing, lies outside the scope of the present
investigation into the numerical properties of tri-3 C1 splines over box-complexes. As a further observation, the error
on the tensor grid is maximal near high curvature. For the 35-extruded mesh and sphere octant the error is maximal
near, but not at the irregularities. Finally, since the integrals in matrix K and right-hand side f are computed using
Gauss points interior to each polynomial domain, K and f are well-defined, regardless of smoothness. However,
when the space of functions permits jumps in the derivative that the weak formulation of the biharmonic equation
does not allow, the solution of linear equation (7) may not be a solution to the Galerkin projection of the biharmonic
equation. Nevertheless using the same C1 parameterization x of the physical domain geometry, but relaxing the
space of analysis functions uh to be only C0 – by not applying the projection P – yields near-optimal convergence
rates also for the irregular meshes, see Fig. 10c,d.

6. Conclusion and future work

When solving the Poisson equation with tri-3 C1 splines, the convergence rate is optimal, i.e. in line with the regu-
lar tensor-product case for the test problems. For biharmonic equations on unstructured hex meshes, the isogeometric
approach using tri-3 C1 spline converges to the correct solution. Intriguingly, the observed convergence rate in the
irregular case is less than in the regular case – and an implementation error is very unlikely. Combining tri-3 C1 spline
geometry with C0 functions in the isogeometric setting recovers the convergence rate of the regular tensor-product
case. This indicates a knowledge gap in the theory of a priori numerical convergence estimates. A likely explanation
is that the singular, tri-variate C1 spline space lacks full approximation power at irregular points – and this raises the
question whether and what cost-effective remedy exists and is needed to have maximal convergence rate for fourth
order elliptic problems.
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Appendix: C1 projector P

This brief summary condenses the longer exposition and motivation of the steps in Peters (2020). We use the same
notation. Applying P ensures C1 continuity, via removable singularity, of the tri-3 C1 splines corresponding to the
irregular sub-boxes Hs, s = 1, . . . , n. Let csα ∈ R3 be coefficients of Hs with cs0 the central irregular point. Denote
by α ∈ T the labels of the direct neighbors of cs0 and by α ∈ G the labels of the 2-neighborhood of cs0. The values
yα for α ∈ T are collected in the n-vector yT .

1. Compute a best-fit linear map ` to the BB-coefficients csα, α ∈ T , e.g. by computing a vector `̀̀ as

`̀̀ :=(btT bT )−1btT yT ∈ R3+1, btT := (. . . , bsα, . . .) ∈ R3×n, (barycentric coordinates of the csα) (10)

bsα := σ[csα, 1]M−1 ∈ R3+1, α ∈ T, σ :=

n∑
s=1

3∑
j=1

‖cs0 − csej‖
3n

, M−1 :=

[−1 1 1 −1
1 −1 1 −1
1 1 −1 −1
1 1 1 1

]
/4.

2. For each irregular sub-box Hs, compute the polyhedral intersection qs by solving the 9× 9 system

[qs, µ]

[
I3 I3 I3
C1 0 0
0 C2 0
0 0 C3

]
=
[
cs2e1 , c

s
2e2 , c

s
2e3

]
, 0 ∈ R2×3, µ ∈ R6. (11)

where I3 is the 3 × 3 identity matrix, ej(i) = 1 for i = j and zero otherwise are the (local unit) labels of
the three directions emanating from the irregular corner of Hs, nk is the valence of the edge with label ek and
Ck ∈ R2×3 are first two rows of Qnk(c2ek+ej − c2ek), j 6= k where Qnk is defined in (15). Check that the
system is well-conditioned, i.e. the sub-box is well-formed (Peters, 2020, Def 2)).

3. For each irregular sub-box Hs, compute the BB-coefficients of the singular parameterization x̆s by

x̆sα :=


x̆s0 :=

∑n
j=1 qj/n, if α1, α2, α3 < 2; (singularity)

csα if αk = 2, αi, αj ∈ {0, 1}; and nk = 4;

x̆s2ek :=
∑nk
j=1 qjk/nk, if αk = 2, αi, αj ∈ {0, 1}; and nk 6= 4;

qs + 2−αi
4 (qjk − qs) if αk = 2, αj = 2, αi ∈ {0, 1} and nk 6= 4.

(12)

4. For each irregular sub-box Hs, for α ∈ G,

xsα := x̆sα, ysα := `(x̆sα) = b̆sα`̀̀ ∈ R, where b̆sα := [x̆sα, 1]M−1. (13)

For each inner BB-coefficient of a semi-regular edge of valence n the bi-variate 2-neighborhood ‘orthogonal’
to the edge is transformed via the jet-collapse and projection Pn. Pn is applied to each coordinate cσα of (csα, y

s
α)

separately, generating xab := (xsab)s=1,...,n ∈ Rn defined by

xs11 := xs10 := xs01 := xs00 :=
1

3n

n∑
σ=1

cσ11 + cσ21 + cσ12 ∈ R, s = 1, . . . , n, (14)

x21 := x00 + κQn

(
2(c21 + c←12) + c→21 + c12

)
∈ Rn, Qn :=

(
cos

2π(i− j)
n

)
i=1..n,j=1..n

∈ Rn×n,

x12 := x00 + κQn

(
c21 + c←12 + 2(c→21 + c12)

)
∈ Rn, κdefault :=

√
2

4n cos πn
.

(15)

5. For every face with BB-coefficients cij0 shared by an irregular sub-box Ha and a (regular or irregular) sub-box
Hb, enforce regular C1 continuity by averaging

baij0 = bbij0 := (baij1 + bbij1)/2, baα := (csα, y
s
α).
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