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Abstract

Purpose: Soft-tissue manipulations, such as collecting, stretching or
tearing tissue, are a common component of surgery. When too much
force is applied, these manipulations result in a residual plastic defor-
mation that surgeons should be aware of and that should be modeled
by surgical simulation.

Methods: Many tissues, vessels and organs can be modeled as offsets
of curved simple shapes with primary directions, e.g., radial and axial
for cylinders yield a rectangular mesh whose normal offset naturally
yields a hexahedral mesh that can serve as a thick shell. Other organs
are easy to embed into and deform following a hex mesh. We extend
existing code for the volumetric finite element method (FEM) to model
tissue plasticity as hexahedral thick shells or embedded organs. Specif-
ically, the work extends the open source Simulation Open Framework
Architecture (SOFA) and its newest hyperelastic deformation addition,
Caribou, with focus on surgical simulation. The extension factors defor-
mation gradients into (corotational or hyperelastic) elastic factors and
plastic factors and enforces volume preservation. Limits on per-element
twist, twist torque, material hardening and bounds on plasticity where
elements invert avoid the need for re-meshing.

Results: Our hexahedral FEM avoids the biased outcomes of asymmet-
ric coarsely-partitioned tetrahedral FEM. Caribou’s hyperelastic FEM
is extended to hex-FEM stretching plasticity. Our high-order accurate
blended-vertex deformation enables coarse hex meshes to model large
plastic rotational and stretch deformations without re-meshing. We com-
pare a vertex-blended to a cell-centered piecewise constant approach;
contrast plasticity based on corotational FEM and hyperelastic FEM;
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and test the computation under mesh refinement. The volume is pre-
served also for large deformations.

Conclusion On-the-fly generated hexahedral meshes can directly be
used as finite element domains for plastic deformation based on coro-
tational or hyperelastic elasticity. The outcome is suitable for surgical
simulation.

Keywords: hyperelasticity, plasticity, tissue, surgery simulator, laparoscopic.

Fig. 1: Laparoscopic surgery simulation: excessive stretching of fatty tissue
with a grasper results in a vestigial plastic deformation at |

1 Introduction

Internal soft tissue holds vessels and organs in place. Skillful removal, e.g. by
tearing such tissue, is an important surgical skill that requires appropriate
approach and force. Beyond a level of force, the tissue does not return to its
initial position after release. Realistic simulation of tissue manipulation should
therefore model plastic deformation. Over-stretching of tissue or organ walls
must be monitored and displayed, e.g. as vestigial plastic deformation, see
Fig. 1, to teach correct surgical technique.

The Simulation Open Framework Architecture (SOFA) [2] and its recently
added Caribou component [3] offer corotational elastic, respectively hypere-
leastic deformations (that can handle elastoplastic deformation under larger
strain) but plastic deformations currently only for linear tetrahedral-based
finite elements. Algorithmically-generated tetrahedral meshing is subject to
strong changes in layout, already for small changes of the enclosing surface.
Luckily, for most tissues required for surgical simulation, it is therefore natural
and efficient to generate meshes as an offset from a quadrilateral (curved) base
surface: For example, fatty tissue can often be presented by offsetting a curved
quadrilateral grid, see Fig. 3 (b); and thick-walled organs, say of the gastro-
intestinal tract or blood vessels, naturally have cylindrical structure, see Fig. 1.
Fig. 3b shows an organ embedded into a free-from 'morphing’ (deformation)
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Fig. 2: Plastic deformation, SOFA tet-elements: stretch (top four) lacks
symmetry. Twisting (bottom) lacks plasticity. (left) initial (right) final defor-
mation; see also [1].

grid of hexahedra. Such embedding is readily available in SOFA and can be
computed, for example, via polycube maps [4]. All cases yield an immediate,
low-cost, predictable approximation via a hexahedral mesh.

To apply SOFA’s existing algorithms for plasticity to real-time simulation
of soft tissue, in the laparoscopic training environment Toolkit for Illustration
of Procedures in Surgery (TIPS) [5] split the naturally arising hexahedra into
tetrahedra. This resulted in excessive stiffness, see Fig. 2, top; and asymmetry,
when tessellating minimally, hence asymmetrically, see Fig. 2, bottom. The
point is that splitting a natural hexahedral mesh into tets is fraught with
problems even when, as in the example, the tetrahedralization has a good
aspect ratio.

(a) tearing tissue

(b) plastic stretching and bending

Fig. 3: Models for interactive surgical training. (a) Tearing a peritoneal sheet.
(b) Free-form deformation cage of hexahedra enclosing the liver.
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While tet-meshes typically lack the feature alignment and symmetry of
offset-generated hex elements there is currently no hex-FEM code available
for modeling plasticity in an interactive surgery simulation environment. This
paper describes a SOFA-extension to plastic FEM using hexahedral elements.
Our ‘blended-vertex approach’ carefully calibrates higher accuracy and sim-
plicity of computation for real-time applications. An extension of SOFA to
hex-based linear co-rotational elasto-plastic FEM, and to third-order accurate
blended-vertex deformation [6] to hex meshes was introduced in our MICCAI
contribution [7]. The latter can model large plastic deformations by regularly-
arranged coarse hex meshes instead of high-resolution irregular tet meshes.
For completeness, we review the underlying plastic decomposition scheme for
stretching and rotational plasticity and the trade-off between the piecewise
constant, cell-centered, plastic rotational deformation and our 'blended vertex’
deformation. The new contributions are:

e addition of a refinement test to characterize rotational plastic deformation
based on corotational elasticity;

® extending the stretching plasticity deformation to hyperelastic FEM pro-
vided by Caribou, while preserving the volume also for large deformations,
and

® comparing plastic stretching when the underlying elastic model is hypere-
lastic vs the corotational model.

Note that we do not apply the approach of [6] to elastic deformation of the
hex mesh, but only to plastically deform the material mesh, separately from
the elastic deformation.

The hyperelastic computation is currently not fast enough for real-time
surgical training scenarios. We therefore do not add and compare plastic rota-
tional deformations for the hyperelastic model. Stretching a bar in interactive
simulation allows estimating the loss of realism, if any, that is incurred by
using the real-time corotational elastic model in place of the more sophisticated
hyperelastic model.

2 Background

Engineers and mathematicians have long debated the relative advantages of
tetrahedral vs hexahedral finite elements for modeling elasticity. [8, 9] argue
that linear tetrahedral (tet) meshes generate noisy contact pressure and shear
stress distributions leading to uneven peak pressures whereas hexahedral
meshes exhibit a smooth and more uniform pressure distribution. The authors
of [10] state that quadratic tet-elements yield results on par with tri-linear
hex-elements (and advocate non-polynomial polyhedral elements in [11]). In
practice, linear (total degree) tetrahedral elements and tri-linear elements on
hex-partitions are both commonly used for real-time simulation of soft tissue.
Tri-linear hex elements perform better over viscous regions, are more flexible,
and have higher accuracy than linear tetrahedral elements [12, 13]. SOFA offers
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both tet and hex elements for elasticity computations. Partitioning organ mod-
els into tetrahedra is well automated (e.g., [14] ) whereas quick and reliable
coarse hex-meshing remains difficult [15-18]. Moreover, preserving the vol-
ume for realistic simulation is more tricky for hex-elements than for linear tet
elements: plastically deformed tissue should neither artificially swell nor disap-
pear. The well-known co-rotational FEM [19] models primarily linear elastic
stretching in a major direction since it factors out rotational components (the
displacement is treated as RX — x , where R describes the element rotation,
in the notation developed in the next Section). The material point method
(MPM, [20-23]) excels at modelling granular plasticity of materials like snow
or sand, but not soft tissue, and SPH-type approaches do not take advantage
of the available regular quad-offset structure of organs that have a pair of pri-
mary directions, e.g., axial and radial for cylinders, forming quadrilateral mesh
and whose orthogonal offset naturally yields a regular hexahedral thick shell.

The linear elasticity model assumes small strain [24]. To handle large rota-
tions and still use the (low cost) linear model, the corotational method [19]
factors out large rotations. To extend the model to large non-linear defor-
mations, the hyperelastic material [25] bases the stress—strain relationship on
one (of many possible) strain energy density functions. This approach requires
updating the linear equations solved at each time step and is therefore slower
than the linear approaches without global matrix updates.

A plasticity model should include a decomposition rule, a flow rule, yield
criteria and a hardening rule [26]. The decomposition rule splits the overall
deformation into elastic and plastic components. The classic approach splits
into elastic and plastic deformation using the additive model, ¢ = €® + €P.
While simple, this scheme is accurate only for infinitesimal strains and fails
for large deformations. To support compressibility, and for higher numerical
stability [27-29] recommend the multiplicative decomposition of the deforma-
tion gradient into elastic and plastic factors. The yield criteria determine the
state where the material transits from elastic to the elastoplastic region. In 3D
this is a transition surface based on the stress tensor. Commonly-used yield
criteria include the Maximum Shear Stress Criterion and the Von Mises yield
criterion. The theory of plasticity holds that plastic flow only occurs when the
stress stays at the yield surface for some time. The plastic flow rule describes
the plastic strain increment based on plastic flow rate and flow direction. The
hardening rule determines how the yield surface changes under plastic defor-
mation. The two common hardening models are the isotropic hardening model
that describes the expansion or shrinking of the yield surface, and the kine-
matic hardening model that preserves the size but moves the center of the
yield surface along the strain hardening line.

This paper contributes new aspects to the decomposition rule.
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3 Methodology

A material deforms plastically when tensile, bending, compressive or torsion
stresses exceed its yield strength. Let x be the start position, possibly plasti-
cally deformed in the previous iterations, and X the deformed position in world
space. With s the reference (domain) coordinates, the gradient J := [2%:],

Os;

characterizes infinitesimal displacement. The deformation gradient ’
0% 0%0s  O0X Ox ;s o

“ox = osox—asas) 90 M

of a deformed hex element with vertices v* is denoted F, when measured at
element center o := Y, v’/23 of the hex, F; when measured at vertex i and,
for our hyperelastic hexhedral extension, F, at each of 8 Gauss points g per
hex. Gauss points are optimal sampling points for polynomial quadrature [30].
For plastic deformation, for every hex k and vertex i, we will also compute
blended gradients Ff := (F¥ + F%)/2. This average is inspired by Eq (19) of
[6], see the Appendix.

World space Rest space Material space

space, elastically deformed (where the surgery takes place), (middle) rest space
(plastically deformed separate elements with local vertices ¢, i') and (right)
material space (deformation relaxation to form a consistent mesh).

To support compressibility, for better numerical stability, and since the
classic additive (strain) decomposition, ¢ = € + ¢P, holds accurate only for
infinitesimal strains and fails for large deformations, [27-29] recommend a mul-
tiplicative decomposition of the deformation gradient into elastic and plastic
factors.

Plasticity decomposition. The multiplicative decomposition can model
incompressibility by enforcing that the determinant of F does not change. We
base our plasticity decomposition on a multiplicative decomposition. We apply
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the singular value decomposition F = UDV7T where U,V are orthogonal
(rotations or reflections) and D is a diagonal matrix. Then

F = (UVT)(VDVT) = RS, (2)

see Fig. 4, is a factorization of the total deformation F into a symmetric
positive-definite right stretch tensor S, oriented by a polar, orthogonal rotation
tensor R. Extracting, in the spirit of [28], the elastic components R¢ of R and
S¢ of S yields a decomposition into elastic rotation, plastic rotation, elastic
stretch and plastic stretch,

F = R°RPS°S?. (3)

Once the overall deformation is computed, and the elastic component based
on either the corotational or a hyperelastic model is removed, the treatment
of plasticity is independent of the elastic model. RP and S? are computed
separately, see Fig. 4, middle. This computation of the plastic components
also applies to hyperelastic FEM but S¢ updates the stiffness matrix at each
step.

Plastic stretching. From the blended vertex deformation gradient (for
corotational FEM) and the deformation gradient at Gauss points (for hyper-
elastic FEM), we compute the right Cauchy-Green strain tensor C := FTF,
the Green-Lagrangian strain tensor E := 1(C —I) and the second Piola-
Kirchhoff stress tensor o. Akin to [29], the plastic stretch deformation for
plastic flow rate v, plastic yield stress 7, time step At with von Mises stress

lo||:=+/30:0is

Db
(det D)1/

lofl =~

e

Plastic rotation for corotational FEM. Splitting R = R°RP? is non-
trivial since the material rotation stems from a combination of shape change
such as shear deformation and rigid body rotations [31] making it difficult to
uniquely separate out the rigid body rotation. Luckily, in surgical setting, we
can neglect inertia-related factors and angular velocity (anatomy does not spin
freely), so that plastic rotation can be assumed to solely depend on rotational
distortion. We hence measure rotational distortion as the magnitude of the
angle based on geodesics on the unit sphere defined as [32]

SP = V( VT 4= min{rAt , 1} (4)

®(R1,Ra) := [|log(RiR3)| € [0, 7).

For the polar decompositions FX = REU (at the center o of hex k) and
Ff = Efﬁf (blended at vertex i local to hex k), we compute ¢F := @(ﬁf, RE).
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Omitting the superscript k,

where I3 is the identity matrix, 7% € [0, 7] the rotation yield-threshold and
v® € [0,1] the rotational plastic flow rate.

Computing the plastic rotation per vertex allows for strong distortion. An
alternative rigid rotation RE at the hex center,

RER2 = RIR.L7, (6)
ﬁ = I/RAt(J)k - TR)/(J)IC + CD(I& Ro))7 (Z;k = Inax ¢57

iChex®

better preserves element shape, but is less accurate.

Material hardening. We update the plastic yield threshold 7 + 7+ k|||
and the rotation yield threshold 77 < 7% + kn¢¥ to model the isotropic
hardening per time step. In the kinematic hardening model the center of the
elastic region shifts under deformation. We shift the stress at the center by the
stress o at the Gauss node: a +— a + /ﬂﬁ. The parameter x controls the
amount of work hardening (or softening) per time step.

Plastic update. The rest positions of hex k (see Fig. 4,middle) are updated
ylj « y]; + Sty (7)

where ¢ labels the vertices of the hex in the co-rotational model and the Gauss
nodes in the hyperelastic model, SP is the corresponding plastic stretch and
u, := R,%, — x, is the non-rigid displacement [19].

The rotation map (see Fig. 4) is updated as

vertex (Gauss) plastic rotation: H’; — H’; ﬁz, resp. (8)

cell-center plastic rotation: IT* < IT* R2.

Equations (4) and (5) imply that det(S?) = det(RY) = 1. Nevertheless the
local element volume can change, because each vertex has a separate plastic
offset. Fortunately, the ratio 3, of the deformed volume divided by the original
volume, can be accurately computed based on the exact volume from the
Jacobian J. With short time steps At animating the volume restitution, we
update

yi eyl +(yP —o")(1 - B)At. 9)
The material space vertex x; with global index j surrounded by hexes Nj is
updated x; < ZkeNj H’;y(’;/nj, where in the corotational model y’; are the

n; vertices corresponding to x;,and in the hyperelastic model y’qC are the n;
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(a) linear-corotational elastic + plastic

(b) hyperelastic + plastic

Fig. 5: Stretching test. (fop) initial stretch. (bottom three) deformation for
high, medium, low plasticity material. Bars are clamped on the left.

Gauss nodes closest to x;. see Fig. 4. This fuses the vertices y¥ of the elements
to form a consistent material.

4 Results and Discussions

Compared to [7], which was based on SOFA 19.12, our new implementation
extends SOFA 21.06 and its new Caribou component. In particular, we add
hexahedral hyperelastic elements in Caribou. All results are computed on Win-
dows 10 with a i7-9700K CPU and 8G RAM, executing at 80 hex/ms on
SOFA v21.06. The time steps immediately after release are the most expensive,
adding ca 20% to SOFA’s run time for elastic-only co-rotational FEM.

TIPS [5] can now leverage plasticity of anatomical features for laparoscopic
surgical procedure training. Tearing of a peritoneal sheet is illustrated in Fig. 3
(a) and plastic free-form deformation in Fig. 3 (b). In (b) a piecewise trilinear
function on a coarse hexahedral mesh transforms an embedded much finer
mesh.

Fig. 5 compares the stretching of bars consisting of 90-hex elements for two
different elastic models and varying parameters 7 and v. The force is applied
to the end of the bar at the face center. For co-rotational elasto-plasticity
Fig. 5(a) the Young’s modulus is 3000, Poisson ratio 0.45 stretching force 350,
yield threshold 7 (top to bottom): 1000, 1500, 1500, plastic creep v: 0.4, 0.2,
0.1. For hyperelastic plasticity Fig. 5(b) the Young’s modulus is 3000, Poisson
ratio 0.45, (linear) stretching force 1000, yield stress (top to bottom) 1500,
1800, 2000 and plastic creep: 0.25, 0.2, 0.15. The plastic deformations preserve
cross sectional symmetry.

Fig. 6 compares blended vertex plastic rotation and the cell-center plastic
rotation by twisting the bar, see (a). In (b) and (c) each row has different
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(b) blended vertex method (c) cell-center method

Fig. 6: Twist and plasticity. top to bottom: high, medium, low rotational
plasticity material. (a) initial twist, (b,c) final plastic deformation (side view
and cross-section view).

rotational plasticity flow rates v®, and rotational plasticity yield thresholds
7. The initial twisting force is tangent at all the four edge centers of the bar’s
end cross-section face. The vertex blending better preserves the cross-sectional
shape than the cell-centered approach but distorts each local element more.
The cell-centered approach better preserves the local box shape but distorts
the cross-sectional view.

For all configurations of Fig. 5 and Fig. 6, the final deformed volume
matches with the input volume to less than 1%. The material hardening param-
eter k := 0.2 chosen for all test cases proved effective in preventing ill-shaped
material elements during large plastic deformations: the plastic yield threshold
is reached and causes fracture before an element becomes too distorted.

Twist torques exerted by lap surgery instrument heads [33] are extremely
low. Choosing robustness over exact physics for unrealistic high-torque interac-
tions, our implementation switches off plasticity before an element is inverted.
The elastic FEM solver then handles the elements robustly [34].

Fig. 7 compares FEM beam simulations of our method with the Abaqus
C3D8R and C3D8 hyperelastic plastic model using Abaqus 8-node hex ele-
ment with hyperelastic plasticity (Neo-Hookean, C1=833, D1=1E-05 ) in (a),
(c), and our 8-node hex elasto-plasticity (Young’smodulus 5000, Poisson ratio
.45) in (b) and (d), and the hyperelastic parameters set to be consistent with
linear elasticity for small strain. Fig. 7 shows remarkable agreement on stretch
(within 5%) and location of highest deformation during temporal evolution
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Fig. 7: FEM beam simulations: Abaqus (left) and our methods (right). Final
stretch of (a) and (b), respectively (¢) and (d) visually agree.

.

35?__

(a) linear-corotational elastic + plastic (b) hyperelastic + plastic

Fig. 8: Stretch refinement tests. (a) Co-rotational elastic (b) Hyperelastic left:
initial mesh; right: final plastic deformation.

between the two models. For one time step of the 90 element bar, the Abaqus
model of the beam requires ca. 65 ms (ca. 15 frames per second), our hyper-
elastic plasticity ca 140 ms (due to updating the stiffness matrix), while our
corotational plasticity (no matrix update needed) runs comfortably in real-
time at ca. 1 ms per step. Since the hyperelastic model is not currently suitable
for real-time surgery simulation, rotational plasticy was not implemented.

Fig. 8 and Fig. 9 analyze behaviour of the models for different levels of
granularity. Fig. 8 shows that that applying the same stretch force at the center
of the beam cross section results in a visually similar deformation, localized
and commensurate with the level of resolution, for co-rotational elastic and
hyper-elastic for the regime of forces typical for surgical simulation. Fig. 9
compares outcomes of twisting forces for the blended vertex method and the
cell-center method. As in Fig. 6, the trade -off between overall deformation
and localized deformation of the hex-elements is apparent. Since all operations
are local, e.g. per vertex, and no matrix is assembled to solve, the run time
scales linearly with the hexahedra when refining the models.
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(a) initial twist

(b) blended vertex method

-
e
225

(c) cell-center method

Fig. 9: Twist refinement tests. (a) initial maximal twist (b,c) final plastic

deformation (side and cross-section view)

Limitations. To avoid the need for re-
meshing our implementation relies on the
material hardening to prevent overly dis-
torted elements. Re-meshing is usually
also unnecessary because the hex elements
are much more flexible than linear tet
elements: a coarse hexahedral mesh can
handle even the large twist deformation,
where as tet elements tend to be much
stiffer (see Fig. 10). If the distortion is
nevertheless too large, the deformation
algorithm switches to purely elastic where
elements invert.

To avoid ambiguity on polar rota-
tion, the maximal per-element rotation is
capped below 7. (The rotational angle of
the full object can be much larger, propor-
tional to the number of pieces in the twist
axis direction).

[Wicke et al., 2010]

'0

Our
Fig. 10: Twisting comparison
left: tetrahedral FEM with re-

meshing [29] ; right: our hexahe-
dral FEM
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Appendix: Blending deformation gradients

Eq (19) of [6] reinterprets, for a tetrahedron with vertices v, the third-order
accurate ‘Phong blending’ of the center deformation F, and the vertex defor-
mations F; as the ‘half-gradient’ formula: ), 3; (ffi + %(x — v’)) Here S;,
short for f3;(x), are the barycentric coordinates of x, i.e. x = >, 3;v’. Then
> Bi(x — v') = 0 and, for a constant matrix F,, >, 3;F,(x — v') = 0 so
that 3, 8; (¥¢ + EifFe (x — v¥)) is an equally valid reformulation of the ‘half-
gradient’ formula. On a hex element with 8 vertices vi7¥ and /3, the univariate
barycentric coordinates of tri-linear elements Y=, >, 3=, 8861 (x — vi7*) = 0
and our tri-hex analogue is >, >, 3=, 88,5 (v0 4 EidtFe(x — viik)).

Note that In both the corotational and the hyperelastic approach big rigid
body rotations are neutralized prior to averaging F; and F( so that singularity
of F; + F, due to large rotations is ruled out. In the corotational approach,
big rotations are explicitly removed from the deformation gradient. In the
hyperelastic approach, the Green strain tensor (E) combines RTR = 1, i.e.
rotations cancel.
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