Kęstutis Karčiauskas

Vilnius University

Jörg Peters

University of Florida

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Kęstutis Karčiauskas

Vilnius University

Jörg Peters

University of Florida

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Quad mesh = spline control net?

Kęstutis Karčiauskas

Vilnius University

Jörg Peters

University of Florida

Catmull-Clark: recursion poor shape

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Quad mesh = spline control net?

Kęstutis Karčiauskas

Vilnius University

Jörg Peters University of Florida

Catmull-Clark: recursion poor shape

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Doo-Sabin: recursion worse shape

Kęstutis Karčiauskas

Vilnius University

Jörg Peters

University of Florida

Kestutis Karčiauskas

Vilnius University

Jörg Peters

University of Florida

Kęstutis Karčiauskas

Vilnius University

Jörg Peters University of Florida

Idea: transition layer + unified cap

fill challenge: good shape, refinability

K. Karčiauskas, J. Peters (VU, UF)

E

・ロト ・回 ト ・ ヨ ト ・ ヨ ト

Idea: transition layer + unified cap

fill challenge: good shape, refinability

K. Karčiauskas, J. Peters (VU, UF)

3/17

E

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・

Idea: transition layer + unified cap

interrogation: highlight lines fill challenge: good shape, refinability

< 3 >

Transition Ring + Tensor-border

Unified (hybrid) cap = bi-4 rings + tiny cap

・ロト ・回 ト ・ ヨ ト ・ ヨ ト

Net & tensor-border

bi-3 ring

E

・ロン ・回 と ・ ヨン・

Net & tensor-border

bi-3 ring

• : DS-net

E

・ロン ・回 と ・ ヨン・

Net & tensor-border

bi-3 ring

et bi-3 ring + tensor-border

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

•: DS-net bi-2 ring + tensor-border

B-spline and BB-form (Bernstein-Bézier)

э

→ E → < E →</p>

B-spline and BB-form (Bernstein-Bézier)

→ E → < E →</p>

B-spline and BB-form (Bernstein-Bézier)

イロト イヨト イヨト イヨト

Contracting bi-4 rings

transition: from bi-3

E

・ロト ・回ト ・ヨト ・ヨト

Contracting bi-4 rings

E

・ロン ・回 と ・ 回 と

Contracting bi-4 rings

E

・ロン ・四 ・ ・ ヨン・

 C^1 guide **g** (degree 5) computed by *linear operator* from CC-net or DS-net

< E → < E →</p>

 C^1 guide **g** (degree 5) computed by *linear operator* from CC-net or DS-net

 C^1 guide **g** (degree 5) computed by *linear operator* from CC-net or DS-net

Hermite data (derivatives) \rightarrow to BB-form

 C^1 guide **g** (degree 5) computed by *linear operator* from CC-net or DS-net

イロト イヨト イヨト イヨト

Transition Ring + Tensor-border

Unified (hybrid) cap = bi-4 rings + tiny cap

イロト イヨト イヨト イヨト

extented CC-net

E

・ロト ・回 ト ・ ヨ ト ・ ヨ ト ・

extented CC-net

layout

layout

э

イロト イヨト イヨト イヨト

extented CC-net

layout

bi-3 + unified

extended DS-net

layout

bi-2 + unified

イロト イヨト イヨト イヨト

extented CC-net

layout

bi-3 + unified

Catmull-Clark

extended DS-net

layout

bi-2 + unified

Doo-Sabin

・ロト ・回ト ・ヨト ・ヨト

• One algorithm for capping both CC-nets (bi-3) and DS-net (bi-2).

- Parameterically C^1 or C^2 joined rings (except for G^1 tiny cap).
- Bi-4 rings are refinable, converge rapidly
- Can interpret CC-net as bi-2 + cap control net (see paper)
- Can also interpret DS-net as bi-3 + cap control net (not in paper: requires more machinery to obtain good shape)
- Questions?

- One algorithm for capping both CC-nets (bi-3) and DS-net (bi-2).
- Parameterically C^1 or C^2 joined rings (except for G^1 tiny cap).
- Bi-4 rings are refinable, converge rapidly
- Can interpret CC-net as bi-2 + cap control net (see paper)
- Can also interpret DS-net as bi-3 + cap control net (not in paper: requires more machinery to obtain good shape)
- Questions?

- One algorithm for capping both CC-nets (bi-3) and DS-net (bi-2).
- Parameterically C^1 or C^2 joined rings (except for G^1 tiny cap).
- Bi-4 rings are refinable, converge rapidly
- Can interpret CC-net as bi-2 + cap control net (see paper)
- Can also interpret DS-net as bi-3 + cap control net (not in paper: requires more machinery to obtain good shape)

Questions?

- One algorithm for capping both CC-nets (bi-3) and DS-net (bi-2).
- Parameterically C^1 or C^2 joined rings (except for G^1 tiny cap).
- Bi-4 rings are refinable, converge rapidly
- Can interpret CC-net as bi-2 + cap control net (see paper)

Can also interpret DS-net as bi-3 + cap control net (not in paper: requires more machinery to obtain good shape)

Questions?

- One algorithm for capping both CC-nets (bi-3) and DS-net (bi-2).
- Parameterically C^1 or C^2 joined rings (except for G^1 tiny cap).
- Bi-4 rings are refinable, converge rapidly
- Can interpret CC-net as bi-2 + cap control net (see paper)

・ロト ・同ト ・ヨト ・ヨト

 Can also interpret DS-net as bi-3 + cap control net (not in paper: requires more machinery to obtain good shape)
Questions?

- One algorithm for capping both CC-nets (bi-3) and DS-net (bi-2).
- Parameterically C^1 or C^2 joined rings (except for G^1 tiny cap).
- Bi-4 rings are refinable, converge rapidly
- Can interpret CC-net as bi-2 + cap control net (see paper)

・ロト ・同ト ・ヨト ・ヨト

- Can also interpret DS-net as bi-3 + cap control net (not in paper: requires more machinery to obtain good shape)
- Questions?

Blank

◆□→ ◆□→ ◆三→ ◆三→ 三三

 C^1 guide **g** (degree 5)

→ E → < E →</p>

 C^1 guide **g** (degree 5)

auxiliary G^1 bi-4 guide **h**

 C^1 guide **g** (degree 5)

auxiliary G^1 bi-4 guide **h**

parameterization h^{char}

- E > - E >

 C^1 guide **g** (degree 5)

・ロト ・同ト ・ヨト ・ヨト

auxiliary G^1 bi-4 guide **h**

parameterization h^{char}

g, 9*n* + 5 dofs

 C^1 guide **g** (degree 5)

auxiliary G^1 bi-4 guide **h**

イロト イヨト イヨト イヨト

→ 同 → → 目 → → 目 →

→ E → < E →</p>

Parameterizations: characteristic maps and tensor-borders

Catmull-Clark subdivision ($\sigma := \frac{1}{2}$)

イロト イヨト イヨト イヨト

Parameterizations: characteristic maps and tensor-borders

tensor-border χ_{σ}

Catmull-Clark subdivision ($\sigma := \frac{1}{2}$)

char-map

char-map

tensor-border χ_{σ}

adjustable speed subdivision ($\sigma := \frac{3}{4}$)

・ロト ・回ト ・ヨト ・ヨト

$Quad\text{-net} \Rightarrow DS\text{-net}$

æ

ヘロア 人間 アメヨア 人間 アー

$Quad\text{-net} \Rightarrow DS\text{-net}$

æ

・ロ・・ (日・・ 日・・ 日・・

$Quad\text{-net} \Rightarrow DS\text{-net}$

æ

・ロ・・ (日・・ 日・・ 日・・