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Abstract

When the full-scale storing and retrieving of volumetric models is cost prohibitive, intersection queries require intelligent access
to pieces generated on demand. To conform to a given curved outer shape without clipping, such models are often the result of a
non-linear free-form deformation applied to a geometrically simpler, canonical model. The additional challenge is then to relate the
intersection query back to the pieces of the pre-image of the conforming curved model.

Motivated by 3D print slice generation of massive mapped material micro-structure, this paper presents an algorithm to traverse a
planar slice of a volumetric mapped model that is too large to be treated as an explicit model. The algorithm safely reduces the large-
scale slicing problem to many small-scale problems that can be solved by existing slicing techniques. With the pre-image partitioned
into boxes, the algorithm activates boxes to generate micro-structure only where the non-linear image of the box can intersect the
given plane. Active boxes are intelligently traversed to guarantee both full coverage and minimize a front of active boxes.

Keywords: very large volumetric models, free-form deformation, slice-traversal, on-demand mesh processing.

Figure 1: Mapped micro-structure and slice plane. A non-linear free-form de-
formation, assembled from 150 maps deforming simplicial domains, bends the
micro-structure to follow a curved outer bubble surface. The purple slicing plane
selects pieces to be activated/generated. For ease of exposition, the example is
low-resolution. The lower left illustrates a more typical finer resolution.

1. Motivation1

State-of-the-art 3D printers are capable of printing structure2

at the micrometer [1] and even nanometer [2] scale. Additive3

manufacturing therefore, in principle, allows designs that spa-4

tially vary and optimize the material properties of objects via5

their micro-structure [3, 4, 5, 6]. However, representing a one6

meter cube with micrometer structures challenges existing stor-7

age capacities and access: the natural response, to generate the8
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micro-structure on demand has to cope with fine-scale micro- 9

structures over regions up to one million times larger than the 10

feature size [7, 8]. Therefore local micro-structure generation 11

must be activated with a tight focus on the query. For 3D print- 12

ing of very large models with micro-structure, only the immedi- 13

ate neighborhood of the material deposition plane, called slicing 14

plane, should be generated in chunks that are each small enough 15

to be treated by existing slicing algorithms. 16

The enumeration of all and only those chunks that can strad- 17

dle the slicing plane is the algorithmic contribution of this paper. 18

Moreover the traversal by enumeration is coherent and jump- 19

minimizing (to reduce printer head movement) and applies when 20

the micro-structure is non-linearly mapped to conform to an outer 21

boundary shape. We also minimize the storage cost by avoiding 22

storing all chunks that straddle the slicing plane, storing only a 23

minimal subset at any given time. 24

One can make micro-structure conform to a complex curved 25

outer boundary by subjecting the material to a collection of free- 26

form deformation maps gγ : R3 → R3, γ = 1, . . . ,N [9, 10]. 27

This approach allows separating reasoning about the micro- 28

structure and its embedding into physical space. By contrast, 29

clipping the un-mapped micro-structure to match the shape can 30

easily compromise structural integrity along the boundary sur- 31

faces as supporting struts are chopped off and left dangling. As 32

this paper’s running example of a free-form deformed micro- 33

structure, Figure 1 shows a curved union of bubbles filled with 34

a mapped Kagome micro-structure, adapted from [11, 12]. Fig- 35

ure 2 shows one printed piece, a box filled with the character- 36

istic interleaved tri-hex planes of the 3D Kagome lattice. (The 37

insets show the basic structural piece, each node connected to 38

six neighbors to guarantee minimally rigidity, and an intention- 39

ally constructed hole retaining the connectivity.) More generally, 40

the micro-structure can be any that fills on-demand and deter- 41

ministically so that chunks fit together without unwanted gaps or 42

overlap. 43

While effective for modelling, on-demand generation of 44

mapped micro-structure presents a challenge. One would like 45

to only generate those pieces whose images straddle a given slic- 46

Preprint submitted to Elsevier August 6, 2021



ing plane since generating and testing the entire micro-structure1

is too expensive. Pulling back the interrogation from the mapped2

image to the original model turns the slicing plane into a com-3

plex shape even when we restrict gγ to be close to the identity:4

the pre-image of the plane is the result of applying the inverse of5

the free-form deformation, e.g. the inverse of a polynomial map.6

This paper presents an algorithm that organizes slicing of very7

large mapped micro-structures at the meta level, i.e. identifies8

the pieces of the un-mapped micro-structure that need to be acti-9

vated for localized, on-demand micro-structure generation. This10

reduces the slicing challenge to chunks of the mapped micro-11

structure that are small enough to be treated by existing slicing al-12

gorithms. For these very large micro-structures the slice-traversal13

algorithm14

– efficiently predicts what pieces of the original un-deformed15

micro-structure need to be generated and mapped to guar-16

antee complete coverage of the slicing plane;17

– organizes the traversal of the pieces to hold in memory only18

pointers to a subset of these pieces;19

– is agnostic to the choice of micro-structure but leverages the20

advantages of local, on-demand micro-structure generation21

schemes; and22

– reduces the large-scale slicing problem to smaller-scale slic-23

ing, permitting the use of existing slicing algorithms for24

smaller pieces.25

This paper focuses purely on the challenge of traversal of26

boxes that reduce the printing problem to manageable chunks.27

The paper does not aim to add insight into other topics of additive28

manufacturing such as support-structures[13], under- or overfill29

[14] or mechanical or multi-material properties of specific micro-30

structures. Local chunks are treated as black boxes to be sliced31

by existing algorithms.32

Since the algorithm delegates the slicing at the level of the33

micro-structure as a black box, the actual micro-structure can be34

any that fills on-demand and deterministically so that chunks fit35

together without unwanted gaps or overlap. The algorithm re-36

quires that the free-form deformation maps {gγ : γ = 1, . . . ,N}37

have a bounded Jacobian and are globally injective. This avoids38

extreme distortions and multiple cover that micro-structures39

should avoid. Tight bounds on the maps are based on second40

Figure 2: Example of a box, here filled with a printed 3D spline-modelled
Kagome lattice and variants such as upper right inset a hole irregularity. The
lower right inset illustrates how 6 struts join at every internal point and form the
micro-structure of Figure 1.

derivatives of the gγ. Figure 1 shows a deformation map of piece- 41

wise total degree 3. The partition of the macro-shape into curved 42

simplices is taken from [12] but can be generated by any simpli- 43

cial decomposition algorithm. The algorithm partitions the pre- 44

image domain into box-shaped chunks. 45

Overview. Section 2 reviews prior work on slicing very large 46

mapped volumetric models. Section 3 defines the slicing prob- 47

lem and the partition into boxes. Section 4 establishes a close 48

numerical bound for the image of a box under a polynomial map. 49

Section 5 presents the fat front algorithm for efficient, low mem- 50

ory and jump-avoiding traversal of all intersections between a 51

plane and (the mapped boxes partitioning) a polytope. Section 6 52

analyzes the complexity of the fat front algorithm. Section 7 53

compares run time, storage, printer head movement, and time per 54

box of the fat front algorithm to three alternative graph traversal 55

algorithms. 56

2. Slicing Very Large Volumetric and Mapped Models 57

Models of volumetric micro-structure are very large if they can 58

not be stored explicitly but have to be generated in chunks, on 59

demand. Models are mapped if they are not originally defined in 60

physical space but are subjected to a free-form deformation map 61

from R3 to R3. There are a number of options for representing 62

very large micro-structure models and mapped models. 63

Besides data-driven solid texture synthesis, see e.g. [15, 16], 64

procedural micro-structures provide a rich source of on-demand 65

volumetric data, see eg. [17, 18] for a programmable pipeline 66

that synthesizes multi-material 3D printed objects. A Function 67

Representation (FRep) defines a geometric object implicitly by a 68

real continuous function p. The scalar inequality x ∈ R3 : p(x) ≥ 69

0 identifies regions that belong to the micro-structure [19, 20, 21, 70

22, 23, 24]. One option of a scalar field is the voxelized signed- 71

distance map in physical space [25]. A free-form deformation 72

or mapping can additionally be applied [26]. Contours of curved 73

FReps can be extracted, e.g. using marching cubes [24]. 74

A common modeling approach is to generate a base shape and 75

to decorate it with repeating micro-structure in a base cell, pos- 76

sibly with variation [6, 27, 28]. By constrast, Voronoi foam-like 77

structures [29, 30] are aperiodic micro-structures generated di- 78

rectly in physical space. 79

While micro-structures generated explicitly in physical space 80

can be easily tiled, inducing curved shape on the micro-structure 81

by curved clipping can destabilize the now-exposed partial struc- 82

ture. Using the signed distance to the bounding surface [17, 18] 83

an additional conforming wall at the boundary can be generated. 84

An alternative is to subject a given micro-structure to a free-form 85

deformation. A micro-structure conforms when shape and size of 86

the unit cells can adapt to the macro shape of its design bound- 87

ary. Shape conforming lattices avoid having a partial cell located 88

on boundary. For micro-structure to be used with state-of-the-art 89

modeling and analysis tools, they should be defined in the para- 90

metric space of the elements. For example, isogeometric analysis 91

[31, 32, 10] uses parametric maps, splines or Bézier functions to 92

define geometry. Defining micro-structure in the domain of a 93

free-form deformation is also necessary to leverage the standard 94

tools of computer-aided geometric design [11, 27, 26]. 95

Many classes of sufficiently fine-scale micro-structures be- 96

have as if they were a continuum, with the continuum behav- 97

ior increasing in accuracy as the micro-structure is made finer 98

[33, 21, 22]. This allows for specification of functionally graded 99

material properties of procedural models while still treating 100
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Figure 3: Non-linearity of the pre-image of the slicing plane. Left: Simplex ∆ partitioned into boxes 2β. The green boxes map to hexahedra that straddle the slicing
plane. Middle: gγ(∆) covered by overlapping hexahedra that each enclose one gγ(2β). The slicing plane is purple. Right: The full set of maps {gγ : γ = 1, . . . ,N} with
the exterior face of the specific gγ(∆) marked yellow.

them with continuum analysis, and has been successfully inte-1

grated into analysis tools to optimize micro-structure to match a2

spatially-varying compliance matrix [3, 4, 5, 6].3

Our algorithm applies to any of these micro-structures placed4

in the domain of a free-form deformation map g as long as a5

construction deterministically fills each box on demand. Peri-6

odic micro-structures qualify. Aperiodic and randomized micro-7

structures qualify if, after fixing a random seed, repeated calls on8

the same box return the same micro-structure.9

Surface slicing algorithms take as input a triangulated surface10

and return a set of oriented curves representing the intersection11

of that surface with a set of slice planes. These curves are used12

to generate infill and machine instructions for the printer. Our13

focus is on selecting relevant subsets (boxes) of micro-structure.14

We treat the final slicing operation as a black box.15

For accelerating the slicing of volumetric structures, ray cast-16

ing and bitmaps can be leveraged, e.g. to optimize slicing for17

slender truss-based structures where manifold .stl representations18

are highly inefficient [34]. Hierarchical regular lattice representa-19

tions consisting of straight beams and circular balls transformed20

by translation or dilation to accelerate ball localization queries21

can be taken advantage of [35]. Both approaches depend on a22

specific representation.23

Leveraging massively parallel architecture, GPU-based meth-24

ods for model slicing can provide up to a 30x speedup over25

similar CPU-based algorithms [36, 37, 38] and out-of-core slic-26

ing algorithms reduce the memory burden for larger meshes by27

keeping the mesh on the hard drive rather than the memory of28

the computer[39, 40]. However, these out-of-core methods have29

quadratic complexity in the number of triangles and so are cost-30

prohibitive for very large volumetric models. An optimal slicing31

algorithm [41] can be designed to have complexity linear in the32

number of triangles, the number of slice planes, and the num-33

ber of triangle-plane intersections – provided the slices have uni-34

form thickness. However, this algorithm takes as input the entire35

mesh, and is therefore impractical for very large mapped volu-36

metric models.37

The algorithm to be presented treats very large, mapped micro-38

structures by traversing sufficiently small chunks, generated on-39

demand.40

3. The slicing problem for mapped micro-structure41

One way to make the micro-structure conform to the outer42

hull of an object, is to clip it. However clipping can desta-43

bilize the structure at the boundary, leaving dangling pieces of 44

edges. Instead, in the following, the micro-structure is made to 45

conform by applying a family of local free-form deformations 46

g = {gγ : γ = 1, . . . ,N} , see Figure 3, that preserve its combina- 47

torial and topological structure. 48

When slicing the deformed curved shape, the traversal algo- 49

rithm must activate all chunks of the domain that contain orig- 50

inal structure whose on-demand generated image straddles the 51

slicing plane. The chunks must be sufficiently small so that ex- 52

isting slicing algorithms can be applied as a black box. The chal- 53

lenge in this setting is to pull the interrogation back from the 54

plane intersection of the mapped image to the original model – 55

without truly inverting the trivariate (piecewise polynomial) map 56

(see Figure 3). Given the number of samples needed, a numeri- 57

cal inversion to trigger generation of the domain boxes is neither 58

practical nor, due to gaps and overlap, safe; and also encounters 59

convergence challenges [42]. 60

The 3D printing of objects by layers requires slicing the im- 61

ages of one or more canonical domains ∆ mapped by a collection 62

of free-form deformations g = {gγ : γ = 1, . . . ,N} by a sequence 63

of planes pλ, λ = 1, 2, . . . , L. Let n ∈ N be a tessellation number 64

that guarantees that splitting ∆ into boxes 2β with indices β of 65

side length at most 1/n can be handled by a black box slicing al- 66

gorithm from the literature suitable for the micro-structure. Then 67

the slicing problem can be stated as follows. 68

Definition 1 (Slicing Problem). Given a set G of maps gγ : 69

∆ → R3, γ = 1, . . . ,N, a set of planes pλ ∈ P, λ = 1, 2, . . . , L, 70

and a constant n, enumerate for each λ and for each γ the set of 71

indices β of all boxes 2β ⊂ ∆ of side length at most 1/n such 72

that gγ(2β) ∩ pλ , ∅. 73

The key to efficiency is to activate only those boxes whose im- 74

age can overlap a current slice plane pλ. To this end, we specify 75

the maps gγ and the boxes 2β in more detail. 76

3.1. 3D free-form deformations gγ 77

The algorithm applies to a family of piecewise smooth free-
form deformations gγ; for example piecewise polynomial map-
pings such as trivariate tensor-product B-splines. Here we con-
sider polynomial pieces gγ of the 3D deformation [43] in total
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Figure 4: Slice through a mesh of a kitten. Left: The object in 3-space consisting of curved images of simplices. Middle: Focus on a single mapped simplex intersection
with one slicing plane. One face of this mapped simplex is shown in yellow on the kitten. Right: The partition of the intersection into fat fronts, alternately color-coded.

degree k Bernstein-Bézier form (BB-form), see e.g. [44]:

gγ : ∆ ⊂ R3 → R3
∑

αi = k, αi ≥ 0, (1)

gγ(u) :=
∑
α

gγαBα(u), Bα(u) :=
k!

α0!α1!α2!α3!

3∏
i=0

uαi
i .

The domain ∆ is a simplex and the BB-coefficients gγα form a lat-1

tice, called the BB-net, that connects coefficients whenever one2

index coordinate is increased (and hence another decreased) by3

1. The BB-net outlines the the image and gγ(∆) must lie in the4

convex hull of the BB-coefficients.5

Figure 3 illustrates the challenge of finding the pre-image of6

the slicing plane. From right to left, on the right, the map consists7

of images of simplices under maps gγ in total-degree BB-form.8

The image of a one map is highlighted in yellow and shown en-9

larged in the middle of Figure 3 covered by hexahedra. Each hex-10

ahedron encloses the image under gγ of one box of the domain11

partition, Figure 3, left. (Section 3.3 explains the partition of the12

domain in detail.) The pre-image of the slice plane (purple) is13

highly non-linear; the green boxes in the domain (Figure 3, left)14

are the candidates to be sliced.15

Injectivity of each gγ and indeed of the whole collection of16

maps g is mandatory when generating micro-structure since we17

cannot deposit material twice in the same location. In any case,18

large deformations are impractical when they stretch or squeeze19

the micro-structure beyond its free space. We therefore make the20

following assumptions.21

a1 The Jacobian determinant det∇gγ of gγ is nonzero and22

bounded: 0 < m0 ≤ det∇gγ ≤ m1.23

a2 The number of boxes n per edge of the domain ∆ is suffi-24

ciently large so that the pre-image of pλ does not intersect25

any box more than once.26

a3 Pre-images of curves have dimension 1 (are not fractal).27

Standard slicing places the print bed parallel to the xy plane at28

z = z029

3.2. Repeated slicing30

Since we assume that we cannot store the micro-structure of31

the O(n2) boxes that intersect a slice plane, we must regenerate32

box micro-structure for the adjacent slice.33

Denote by zγ the minimal z coordinate of all BB-coefficients34

of gγ and zγ the maximal z coordinate of all BB-coefficients. By35

the convex hull property of the BB-form, pλ can intersect gγ only 36

if zγ ≤ z(pλ) ≤ zγ. The testing can be sped up by sorting the gγ 37

by least zγ for a plane sweep [41]. 38

This reduces the Slicing Problem to one plane and one map. 39

Figure 5 shows how multiple map-slices join to form a global 40

slice. Figures 3 and 4 focus on two aspects, non-linearity of the 41

pre-image and efficient traversal, of a single map gγ of the family 42

of maps.) 43

Figure 5: 2D slice of Figure 1 to show how multiple sliced pieces join. Note
that the unequal size of the black bounded regions does not indicate distortion but
slicing of the deformed simplices at different depths. Each facet records one of
594,641 intersections between a hexahedron and the slice plane. Each mapped ∆

is sliced independently of the others. The color pattern stems from the traversal
via the fat front (FF) algorithm introduced in Section 5.

3.3. Partitioning the domain ∆ into boxes 2β
44

Since we assume that O(n2) storage is excessive and only O(n) 45

storage is permissible, we cannot explicitly subdivide at the out- 46

set to generate a 1/n partition and then apply the convex hull test 47

to obtain maps and bounds on each piece. Nor can we sort the 48

labels of O(n2) pieces whose convex hull intersects into a range 49

list. Trading work for storage, a generate-and-test regimen using 50

on-the-fly subdivision is also not possible since that has work 51

complexity O(n2). 52

4



000 100 200 300 400

001

001

102002

003

bottom

middle

top

bottom

middle

top

bottom

middle

top
a b

c d

e f

g h i

j k

l m

n o

a = (i+1, j, k-1)

b = (i+1, j+1, k-1)

c = (i, j, k-1)

d = (i, j+1, k-1)

e = (i+1, j-1, k)

f = (i+1, j, k)

g = (i, j-1, k)

h = (i, j, k)

i = (i, j+1, k)

j = (i-1, j, k)

k = (i-1, j+1, k)

l = (i, j-1, k+1)

m = (i, j, k+1)

n = (i-1, j, k+1)

o = (i-1, j+1, k+1)

Figure 6: The brick layer’s partition of a simplex ∆ with boxes for resolution n = 5. The box highlighted in red and strictly inside ∆ has a full neighborhood. The
slices show that an internal box, h, has at most 4+6+4 neighbors in a, b, . . . , o. The relative indices of the neighborhood are enumerated on the right and are the same
regardless of how fine a partition is chosen.

Figure 7: Top view of two layers (black, red) of the brick layer’s partition of
the cube domain [0, 1]3. Every second row of the black layer is shifted by 1/4 of
a box width. In the red layer, both x and y are shifted by 1/2 in addition to 1/4
shifting in alternating rows. Each vertex has at most 4 incident boxes: three in
one layer plus one in the adjacent layer.

Instead, we partition the domain ∆ into boxes 2β, where β is1

the triple index illustrated in Figure 6. The boxes fill the domain2

∆ without overlap so that, unlike when superimposing a uniform3

grid on ∆, we do not encounter partially filled boxes or clipped4

boxes.5

The chosen brick layer’s partition is motivated by the need to6

avoid processing the same micro-structure neighborhood repeat-7

edly at very different times. That is, we want to minimize the8

number of 2β joining at a common point. The most efficient way9

to partition a polynomial in BB-form via de Casteljau’s algorithm10

into constituent pieces, by always halving a longest edge [45].11

This results in up to 48 sub-simplices meeting at a vertex. The12

more labor-intensive partition of [46], splitting the difficult octa-13

hedral domains into tetrahdra, yields locations where 32 pieces14

meet. By comparison, a regular grid-like partition into cubes has15

8 2β meet at a vertex, as do various oct-tree refinements.16

Another goal is to avoid extended fault lines through the ma-17

terial. Unlike for other tasks, such as creating spline surfaces,18

here T-junctions not only pose no problem but they are beneficial19

to prevent too many shear planes meeting – as brick layers and20

Lego enthusiasts have long discovered. We therefore partition so21

that at most four boxes, the minimal number, meet at a vertex. 22

The brick layer’s partition of a cube domain (see Figure 7) 23

shifts alternating layers in z of a regular n × n × n grid partition. 24

Every second layer is shifted in both x and y by one half of `, the 25

side-length of a box. Within each layer, alternating rows are ad- 26

ditionally shifted in x by `/4. This reduces the number of boxes 27

incident on any vertex to at most 4. 28

The brick layer’s partition of a simplex ∆ with n layers is alike 29

except that layer k is partitioned into n− k rows and row j is split 30

into n− k− j boxes. Every even row j is shifted by `/2π to break 31

symmetries. Then only 4 boxes are incident on any vertex. The 32

shift yields one partial box on the left and another on the right. 33

At the apex, the paving degenerates into a tetrahedron but this is 34

not a problem since the goal is only to identify neighbor boxes 35

in ∆. Each box is identified with the indices (i, j, k) = ( box, 36

row, layer ) as illustrated in Figure 6. Each box has at most 14 37

neighbors (4 above, 6 in the same layer and 4 below) explicitly 38

listed in Figure 6, right. 39

The restriction of gγ to a skew box 2β with horizontal top and 40

bottom planes (z = const in the domain) is exported to the black 41

box slicing algorithm as gγ ◦2β. 42

4. Bounding the image of a box 2β 43

This section shows how to tightly bound the image of a box 44

2β to quickly test whether a box should be tagged for micro- 45

structure generation and slicing. The approach first bounds the 46

whole map gγ and then proposes a fast, tight estimate that re- 47

quires only a few evaluations. 48

4.1. A tight enclosure of gγ(∆) 49

The key to efficiently activating polyhedral sub-regions 2β of 50

∆ is to determine whether gγ(2β) intersects the slice plane. We 51

reduce this query to a query on the simpler BB-net – without 52

subdivision! We will only consider tight enclosures of the curved 53

images gγ(2β). Due to their conservative, outer approximation, 54

neighboring enclosures will typically overlap – but this is of little 55

5



Figure 8: The traversal of a slice of a map gγ of total degree 4.

consequence since the enclosures are never explicitly computed1

but only serve to identify their domain boxes.2

To efficiently compute the tight enclosures, consider the four
corner vertices vi of the domain ∆ and the (trivial) linear inter-
polant ` : ∆ → R3 of the simplex T spanned by the images of
corner vertices gγ(vi) = gγα, α := 3ei in physical space. The
necessary enlargement of T depends on how much gγ(∆) differs
from `. Generalizing an estimate in [47] to the trivariate total
degree case we have

sup
u∈∆
‖gγ − `‖ ≤

1
8

∑
i, j∈{1,2,3}

lil j sup
u∈∆
‖∂uiu j g

γ‖, (2)

where li is initially the unit length of the domain with respect to3

variable ui. Here the mixed partials i , j are counted twice for a4

total of 9 terms of which only 6 are distinct.5

In our example gγ is of total degree 3. Therefore ∂uiu j gγ is lin-
ear, and each of the six distinct mixed partial derivatives attains
its maximum at one of its four vertices. As is well-known for
polynomials in BB-form [48], the values of ∂uiu j gγ at each of its
four vertices are a multiple (here 3 · 2) times the second differ-
ences at the vertex. For i , k , j and k ∈ {1, 2, 3, 4}, we compute
the second differences of the BB-coefficients

di jk := gγ3ek
− gγ2ek+ei

− gγ2ek+e j
+ gγek+ei+e j

. (3)

Denote the z-coordinate of di jk by z(di jk). Then gγ(∆) is enclosed
by offsetting T in z by

µz :=
6
8

∑
i, j∈{1,2,3}

lil j max
k
|z(di jk)|, (4)

(and alike in x and y, but we will only need the z estimate). Note6

that this computation is done only once for each gγ and not re-7

peated for each 2β.8

4.2. A tight hexahedron enclosure 3β of gγ(2β)9

If we split each edge of the domain ∆ into n = 2ν pieces then10

lil j in (4) becomes 4−ν times the initial unit edge length. Let11

vβi be the vertices of a box 2β and let 3β be the hexahedron in12

the physical space spanned by the 8 points gγ(vβi ). Note that in13

general 3β , gγ(2β) since 3β is a simpler object than the curved14

gγ(2β) and that 3β is easy to compute. Since any hexahedron 3β
15

can be split into tetrahedra, 3β enlarged by µ/4ν in x, y, z tightly16

encloses gγ(2β). To guarantee that all boxes are tagged whose17

non-linear images can intersect the slicing plane, it suffices to18

– compute the images gγ(vβi ) of the box corners,19

– test for intersection the edges of 3β with the planar slice 20

with a tolerance of µ/4ν. 21

A positive outcome in the second step then identifies any 2β
22

whose image can intersect the slicing plane. Note that the testing 23

against the 12 edges of 3β can stop after the first positive test. 24

While tighter bounds of the images of the 2β can be obtained, 25

e.g. by explicit subdivision of gγ or by sleves [49], we expect the 26

number of boxes 2β to be very large so that 4−ν is the dominant 27

factor and so the cheapest test against 12 edges of 3β, based on 28

a single initial estimate (4), is most efficient. 29

Let zi be the z-coordinates of the corners gγ(vβi ) of 3β, i = 30

1, . . . , 8. After subtracting a constant, the slice plane is z ≡ 0. 31

The intersection test can therefore be further simplified to check- 32

ing whether one point is close to zero, or the interval between 33

two zi straddles zero. 34

Intersection Test, degree 3: 35

Tag β as an index of a box to be activated if 36

– for some i, |zi| < µ/4ν or 37

– for some i , j, ziz j < 0. 38

Our typical examples show total degree 3 Bézier functions 39

where the simple bounds Equation 4 apply directly. Using Equa- 40

tion 2, we can bound images of higher degree maps: Figure 8 41

illustrates multiple components for one piece gγ of total degree 42

4. 43

5. Slice-traversal algorithm 44

Even when the only one slice plane and one map gγ interact, 45

the traversal of all boxes cannot be stored since it consists of 46

O(n2) indices. We would like to limit storage of box IDs to O(n) 47

and minimize jumps from one hexahedron to the next since this 48

would correspond to unproductive printer head movement. 49

Definition 2 (Slice Traversal Problem). Given a map gγ : ∆→ 50

R3, a plane p, and a constant n, discover the set of all indices β of 51

boxes 2β ⊂ ∆ of side length at most 1/n such that gγ(2β)∩ p , ∅ 52

and such that no more than O(n) indices need to be stored at any 53

time. 54

Definition 3 (jump length). The jump length between two 55

nodes is the minimal distance between their hexahedron slices, 56

i.e. zero where the two gγ(2β) ∩ p touch. The total jump length 57

is the sum (1-norm) of the jump lengths. 58

As before, we illustrate the algorithm with a polynomial map 59

gγ of total degree 3 in Bernstein-Bézier form. ∆ is a simplex, and 60

p a single plane with normal (0, 0, 1). 61

5.1. Map-plane intersection 62

Let each box be represented by a node with an edge connecting 63

it to its neighbor boxes. The nodes are the centers of its hexahe- 64

dron’s intersection with the plane, see • in Figure 9. Then the 65

traversal can be formulated as a graph traversal problem on an 66

unknown graph. 67

One approach is to lexicographically search through all box 68

IDs to discover those whose images intersect the plane, which we 69

refer to as the brute force algorithm. This brute force algorithm 70

requires no storage of IDs but gives poor bounds on the total 71

jump length and has a complexity of testing against allO(n3) hex- 72

ahedra. Depth-first search (DFS) on the graph reduces the tests to 73
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3∩33

3

Figure 9: Planar cut through hexahedra 3β. left: a 3D view of the active hexahe-
dra, bottom: a top view of their intersections with the slice plane. right: Oblique
cuts yield slanted line intersections that give the appearance of split quadrilat-
erals, here illustrated for the yellow-green pair. The current 3β is red and its
neighbors are colored in counter-clockwise order from green to yellow. Each
node • represents a box.

Figure 10: Left: A single slice with multiple components due to intersecting
edges. Right: A closed loop intersection on a face (does not intersect any edges).

only the O(n2) hexahedra which intersect the plane and reduces1

the number of jumps since it prioritizes visiting a neighbor of the2

current box– but DFS jumps can require extensive backtracking3

resulting in long jumps and requires storing visited box IDs to4

ensure they are not visited twice.5

We therefore use a variant of Breadth-First search (BFS) that6

visits nodes by Euclidean distance in the slice plane to an initially7

discovered node. The ordering by distance prevents backtracking8

but may cause incessant jumping as the front advances like a9

prairie fire to form (the arcs of) a circle and always picks the next10

with least distance. Our variant of the BFS therefore alternates11

between collecting a set, called a ‘fat front’, of boxes and then12

traversing the set while minimizing the jump length.13

We note that to eliminate jumps altogether, we would have to14

construct a Hamiltonian path, i.e. first collect the O(n2) nodes15

and then solve an NP complete graph problem.16

By assumption a1 and the Pre-Image Theorem, pre-images of17

slices through gγ(∆) are surfaces and are disconnected only by18

slicing through the boundary. Due to the curvature of gγ, near19

the boundary, the intersection gγ(∆) ∩ p can have multiple com-20

ponents (see Figure 10). The challenge is to ensure that all these21

components are visited.22

We find all components by testing the hexahedra incident on23

the edges of T and then testing the faces of T for closed loops. A24

Figure 11: Left: Fat front (FF) traversal pattern on the slice from Figure 10, left.
Each component is traversed independently of the others. The algorithm restarts
on each component. Right: FF traversal pattern on the slice from Figure 10, right.

closed loop intersection can only occur if a face surface gγ(t1, t2), 25

γ = 0, 1, 2, 3 has a normal nγ orthogonal to the slicing plane 26

[50], i.e. pointing in the z direction. If the BB-coefficients of 27

det(n, ∂t1 gγ, ∂t2 gγ) are of one sign there is no loop. If the crite- 28

rion fails to rule out an intersection, we find any intersection by 29

traversing and testing in lexicographic order all 3β whose pre- 30

image 2β is on the face of ∆. 31

We form a list of all hexahedra that lie on the boundary of T 32

and use them to seed the fat front algorithm. 33

5.2. The ‘fat front’ (FF) Euclidean distance BFS traversal of the 34

graph in the slice plane 35

A fat front is a set of box IDs collected during several con- 36

secutive BFS iterations. For each component, the BFS access is 37

ordered by radius. 38

Definition 4 (node, radius, angle, front). The node of a box ID 39

is the center of the non-empty intersection of the hexahedron with 40

the slicing plane. The radius of a node is the Euclidean distance 41

of the node to the starting node b0 of the component. The angle 42

of a node is the angle (with foot point b0) between the node and 43

a fixed point in the slicing plane outside the convex hull of gγ(∆). 44

A front is a collection of box IDs that have both visited and un- 45

visited neighbors. 46

We refer to the new algorithm as the fat front algorithm (FF). 47

FF differs from the standard BFS approach in that it accumulates 48

box IDs whose radii lie in a small interval that is sufficiently large 49

to be able to join the nodes with small jump length and then ad- 50

vance the front. 51

Denote the current fat front by F. A queue Q, sorted by ra- 52

dius, and two sets S − and S accessed as hash tables aid in build- 53

ing F. We initialize Q and S − with b0, the starting node of the 54

component, and both S and F to empty. We populate S and F by 55

popping box IDs off Q until S − is empty. For each popped box 56

ID all un-visited neighbors are added to Q, S , and F and marked 57

visited in S and S −. When all neighbors of a box ID in S − have 58

been visited, the box ID is removed from S −. S is considered 59

populated when S − is empty. Since Q ⊆ S∪ S −, Q is no larger 60

than the union of two consecutive fronts. Repeatedly computing 61

fat fronts in this manner partitions gγ(∆) ∩ p as illustrated by the 62

stripes of Figure 13 (as well as Figs. 5, 8, 11) . 63

Once S − is empty, we traverse the box IDs in F starting with 64

the box ID in F closest to the last box of the previous fat front. 65

We iterate through F in a generally clockwise (resp. ccw) order, 66

prioritizing neighbors of the current box to minimize jumps in 67

the path. To this end we associate with F a hash map M∠, with 68

expected O(1) lookup cost, that maps a box ID to its angle. A 69
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Figure 12: As the number of boxes increases, a smaller portion of the micro-structure (bottom vs. top) needs to be generated. (cf. green hexahedra in Figure 3.)

Figure 13: Partition of the slice of Figure 12 into fronts. Slanted line intersections
stem from the plane slicing adjacent boxes obliquely, see the yellow-green quad
in Figure 9, right.

priority queue Q∠ orders the box IDs by angle for O(1) selection1

of the box ID with minimal angle. Inserting a box ID and its2

corresponding angle into F inserts it into both data structures.3

From the list of all box IDs in F that are neighbors of the cur-4

rent box, we return the box ID with minimum angle and remove5

it from M∠. We avoid the high cost of directly removing it from6

Q∠ by waiting until a current box ID has no neighbor in F, at7

which point we must pop box IDs off Q∠ until we find the next8

in M∠(to be returned and removed from M∠).9

Visiting a box ID without a remaining neighbor in F causes a10

jump. The algorithm looks ahead whether the currently selected11

box ID bi would create a box ID b jwithout neighbors and if so,12

returns b j instead and reinserts bi into F. In practice, this reduces13

the total jump length.14

Finally, we set S − to S and clear S to build the next front. When15

we build the next front, we change Q∠ from a min priority queue16

to a max priority queue or vice versa to snake back and forth and17

so avoid large jumps at the ends, see Figure 14. An example of18

total jump length tracing is shown in Figure 18.19

In the case where the gγ(∆) ∩ p has more than one connected20

component, the algorithm runs on each component (see Figure 821

and Figure 11).22

Figure 14: Traversal across fronts alternates between counter-clockwise, shown
by the green to light yellow progression, and clockwise, illustrated by the orange
to yellow color progression.

6. Complexity Analysis 23

We analyze the complexity of the FF algorithm for slice- 24

traversal of a single map-plane pair and treat the actual slicing 25

of the micro-structure in the mapped box as a black box. Let n 26

be the number of boxes along one axis of ∆, i.e. any algorithm 27

has to output O(n2) of a total of O(n3) boxes. 28

Proposition 1. The FF algorithm’s worst-case run time com- 29

plexity for an O(n2) output size is O(n2 log n). The FF (index) 30

storage complexity is at most O(n). 31

Proof Due to assumption a2 and the monotone increase in 32

distance no box in the pre-image of the slice is visited more 33

than once. Denote the z-coordinate of gγ by z(gγ). By as- 34

sumption a1, the Pre-image Theorem certifies that the pre-image 35

{u : z(gγ)(u) = z0} is bi-variate without jumps, and with holes 36

only due to slicing the boundaries of ∆ (see Figure 10 left for the 37

case of multiple or isolated components). There are kn2 hexahe- 38

dra 3β straddling the slice where the constant k depends on the 39

tightness of the estimate µx of (4), i.e. the overlap of the hexahe- 40

dra. 41

By ordering the BFS traversal to always choose the node of 42

minimal Euclidean distance in the range, the fat front is as close 43

as possible to (arcs of) a circular annulus. By assumption a3, 44

its pre-image therefore has O(n) elements. O(n) fronts cover the 45

slice. 46

8



The traversal cost of a single front F is bounded by O(n log n):1

- insertions into and removal from the priority queue Q is2

O(n log n) since Q is of size at most O(n) and insertion and3

removal per box ID cost O(log n) each;4

- fill and empty the hash tables of the sets S − and S is O(n);5

- construction of the hash map M∠ is O(n);6

- building the priority queue Q∠ is O(n log n);7

- building the list of in-front neighbor box IDs of the current8

box ID is constant time since there are a constant number of9

neighbors and hash map lookup is O(1) expected time;10

- popping all box IDs off the priority queue Q∠ is O(n log n)11

since each box ID is popped exactly once in O(log n).12

The total cost of iterating through O(n) fronts per slice is13

therefore O(n2 log n). end of proof14

15

Let O(m(n)) be the cost of generating micro-structure in a sin-16

gle box for streamed printing, where m depends on the type of17

micro-structure used. Then the complexity for generating micro-18

structure near the slice plane is O(m(n)n2). As n increases,19

the extent of the boxes decreases in all three dimensions, and20

O(n2m(n)) can decrease as n increases due to smaller regions of21

micro-structure being generated, see Figure 12, and the optimal22

n depends on the detailed cost of m(n).23
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Figure 15: Run time comparison between the four algorithms discussed in Sec-
tion 5.1. Note that the number of boxes enumerated is O(n2).

7. Implementation and Example24

There do not exist prior implementations of slice-traversal al-25

gorithms for very large mapped volumetric models. We therefore26

compare the FF algorithm to the standard algorithms for graph27

traversal adjusted to the specific problem: brute-force, depth first28

search (DFS), and breadth first search (BFS).29

For the DFS implementation, rather than visiting an arbitrary30

neighbor of the current box, we sort the un-visited neighbor31

nodes by angle, see Figure 9, and choose the one with the max-32

imal angle so that the DFS tends to follow the boundary of33

the un-visited graph, spiraling inwards. Compared to random34

choice DFS, this reduces overall backtracking but does not elim-35

inate backtracking for isolated unvisited boxes. Therefore visited36

boxes need to be stored leading to excessive storage complexity.37

The BFS algorithm processes a box as soon as it is discovered38

and is placed into a list of visited boxes (a ’thin front’). Once all39
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Figure 16: Storage comparison: The DFS algorithm uses storage quadratic in n
whereas FF and BFS are linear.
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Figure 17: Jump length comparison: The jump length for the BFS algorithm
increases dramatically with n due to an increase in the number of jumps.

of its neighboring boxes have been visited, the box is removed 40

from the list. This reduces storage to O(n). But BFS-consecutive 41

boxes are often far from one another causing high jump length. 42

We measure the performance of the four different algorithms: 43

FF, DFS, BFS, and brute force on a typical map-plane intersec- 44

tion and we apply four metrics: run time, storage cost, total dis- 45

tance between consecutive intersections, and time per box. Fig- 46

ures 3, 5, and 4 illustrate the FF algorithm on meshes with many 47

maps, and Figure 8 shows the FF algorithm on a total-degree 4 48

map. 49

For our tests, we incremented n by 50 until either the algorithm 50

took longer than 300 seconds or until n = 1900. For n = 1900 51

the complete partition has more than 109 boxes which should 52

cover the range of interest. Due to the time cutoff, several of the 53

plots (Figures 16, 17) have lines that do not extend all the way to 54

n = 1900. All experiments were run an Intel i7-6700K processor 55

running at 4.0 GHz with 16GB of RAM. 56

Run time is compared in Figure 15. The complexity of the 57

brute force algorithm isO(n3). While initially competitive thanks 58

to the highly efficient Intersection Test, brute force becomes im- 59

practical for large n. The complexity of DFS and BFS is O(n2) 60

and the complexity of the FF algorithm is O(n2 log n). In prac- 61

tice, the DFS is the slowest of the remaining algorithms over this 62

9



Figure 18: The minimum distance between consecutive non-adjacent intersec-
tions is shown in red. The jump length is the sum of all red segments. .
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Figure 19: Average time per box as a function of n, computed as the total time to
run divided by the total number of boxes in the intersection. The times for DFS,
BFS and FF are below 10−4 seconds.

range, but due to the extra log n term, the FF algorithm overtakes1

it for larger n. BFS is fastest.2

Storage costs are compared in Figure 16. As expected, due to3

storage for backtracking, the DFS uses excessive storage. Brute4

Force requires no storage and is therefore space optimal (but not5

practical due to run time). BFS and FF require O(n) storage for6

the front with an additional constant factor for FF due to main-7

taining the fat front.8

The jump lengths are compared in Figure 17. The jump length9

of a slice is illustrated by the red line segments in Figure 18. As10

expected, the BFS algorithm performs significantly worse than11

all others. FF performs best of the four.12

Time per box is compared in Figure 19. Time per box is the13

total run time divided by the total number of boxes in the slice.14

DFS, FF, and BFS all take less than 10−4 seconds per box, with15

DFS and BFS nearly constant regardless of n. Time per box for16

the FF algorithm grows as O(log n), but since log2(1900) < 11,17

this is not prohibitive for the range of interest. For DFS, BFS,18

and FF, the time per box is well under the expected time for the19

printer to process the underlying micro-structure.20

The best choice of algorithm depends on whether one metric is21

critical for a specific use case. In cases where memory manage-22

ment is of utmost importance, the only viable option is the brute-23

force method since it is the only algorithm with storage costs that24

do not grow with the size of the input. However, this algorithm 25

has prohibitive run time for large inputs and longer jump lengths 26

than either DFS and FF. The DFS algorithm does not perform 27

best under any metric; and DFS has prohibitively high storage 28

cost for large inputs. The BFS enumeration is fastest, but its 29

jump length leads to excessive printer head motion. FF has much 30

lower jump length. 31

For the majority of use-cases the FF algorithm is preferred: 32

FF has the smallest jump length, runs nearly as fast as the BFS 33

algorithm, and does not have excessive storage costs. 34

35

8. Conclusions 36

The two contributions of this paper are to efficiently select do- 37

main boxes of mapped micro-structure near a plane of interest 38

and to organize the traversal of all boxes in a monotone fash- 39

ion without large jumps in box location. (Reducing the jump 40

length to zero requires computing a Hamiltonian path, which is 41

only possible for special planar graphs.) By choice of the brick 42

layer’s partition, the implementation applies to both simplex and 43

cube domains ∆. 44

The fat front (FF) algorithm excels for large slicing problems 45

with O(n3) boxes and index storage limited to O(n). Only local 46

neighbors need ever be tested to generate all boxes whose micro- 47

structure images can intersect the plane. 48
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[4] B. Bickel, M. Bächer, M. A. Otaduy, H. R. Lee, H. Pfister, M. Gross, 69

W. Matusik, Design and fabrication of materials with desired deformation 70

behavior, ACM Trans. Graph. 29 (4). doi:10.1145/1778765.1778800. 71

URL https://doi.org/10.1145/1778765.1778800 72

[5] C. Schumacher, B. Bickel, J. Rys, S. Marschner, C. Daraio, M. Gross, Mi- 73

crostructures to control elasticity in 3d printing, ACM Trans. Graph. 34 (4). 74

doi:10.1145/2766926. 75

URL https://doi.org/10.1145/2766926 76

[6] J. Panetta, Q. Zhou, L. Malomo, N. Pietroni, P. Cignoni, D. Zorin, Elas- 77

tic textures for additive fabrication, ACM Trans. Graph. 34 (4). doi: 78

10.1145/2766937. 79

URL https://doi.org/10.1145/2766937 80

[7] S. K. Saha, D. Wang, V. H. Nguyen, Y. Chang, J. S. Oak- 81

dale, S.-C. Chen, Scalable submicrometer additive manufac- 82

turing, Science 366 (6461) (2019) 105–109. arXiv:https: 83

//science.sciencemag.org/content/366/6461/105.full.pdf, 84

doi:10.1126/science.aax8760. 85

URL https://science.sciencemag.org/content/366/6461/105 86

10

http://www.sciencedirect.com/science/article/pii/S2214860418300861
http://www.sciencedirect.com/science/article/pii/S2214860418300861
http://www.sciencedirect.com/science/article/pii/S2214860418300861
http://www.sciencedirect.com/science/article/pii/S2214860418300861
http://www.sciencedirect.com/science/article/pii/S2214860418300861
http://dx.doi.org/https://doi.org/10.1016/j.addma.2018.03.018
http://www.sciencedirect.com/science/article/pii/S2214860418300861
http://www.sciencedirect.com/science/article/pii/S2214860418300861
http://www.sciencedirect.com/science/article/pii/S2214860418300861
https://doi.org/10.1038/s41467-018-03071-9
https://doi.org/10.1038/s41467-018-03071-9
https://doi.org/10.1038/s41467-018-03071-9
http://dx.doi.org/10.1038/s41467-018-03071-9
https://doi.org/10.1038/s41467-018-03071-9
http://www.sciencedirect.com/science/article/pii/S026412751830011X
http://www.sciencedirect.com/science/article/pii/S026412751830011X
http://www.sciencedirect.com/science/article/pii/S026412751830011X
http://dx.doi.org/https://doi.org/10.1016/j.matdes.2018.01.011
http://www.sciencedirect.com/science/article/pii/S026412751830011X
http://www.sciencedirect.com/science/article/pii/S026412751830011X
http://www.sciencedirect.com/science/article/pii/S026412751830011X
https://doi.org/10.1145/1778765.1778800
https://doi.org/10.1145/1778765.1778800
https://doi.org/10.1145/1778765.1778800
http://dx.doi.org/10.1145/1778765.1778800
https://doi.org/10.1145/1778765.1778800
https://doi.org/10.1145/2766926
https://doi.org/10.1145/2766926
https://doi.org/10.1145/2766926
http://dx.doi.org/10.1145/2766926
https://doi.org/10.1145/2766926
https://doi.org/10.1145/2766937
https://doi.org/10.1145/2766937
https://doi.org/10.1145/2766937
http://dx.doi.org/10.1145/2766937
http://dx.doi.org/10.1145/2766937
http://dx.doi.org/10.1145/2766937
https://doi.org/10.1145/2766937
https://science.sciencemag.org/content/366/6461/105
https://science.sciencemag.org/content/366/6461/105
https://science.sciencemag.org/content/366/6461/105
http://arxiv.org/abs/https://science.sciencemag.org/content/366/6461/105.full.pdf
http://arxiv.org/abs/https://science.sciencemag.org/content/366/6461/105.full.pdf
http://arxiv.org/abs/https://science.sciencemag.org/content/366/6461/105.full.pdf
http://dx.doi.org/10.1126/science.aax8760
https://science.sciencemag.org/content/366/6461/105
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