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Abstract. Collecting, stretching and tearing soft tissue is common in
surgery. These repeated deformations have a plastic component that sur-
geons take into consideration and that surgical simulation should model.
Organs and tissues can often be modeled as curved cylinders or planes,
offset orthogonally to form thick shells. A pair of primary directions, e.g.,
axial and radial for cylinders, then provides a quadrilateral mesh whose
offset naturally yields a hexahedral mesh.
To better capture tissue plasticity for such hexahedral meshes, this work
compares to and extends existing volumetric finite element models of
plasticity. Specifically, we extend the open source simulation framework
SOFA in the context of surgical simulation. Based on factored defor-
mation gradients, the extension focuses on the challenge of separating
symmetric and asymmetric, elastic and plastic deformation components
– while preserving volume and avoiding re-meshing.
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Fig. 1: Laparoscopic surgery simulation: stretching fatty tissue. Note the vestigial
plastic deformation at ↓

1 Motivation

Tearing internal soft tissue is, besides cutting and cauterizing, an important
surgical skill – to mobilize vessels and organs held in place by connective and



fatty tissue. Realistic tearing requires a plastic deformation of the tissue – that
is the tissue does not spring back to its initial position when released.

When surgeons interact with virtual tissues in a real-time training environ-
ment, perfect shape memory in the form of perfect elasticity is distracting and
some plastic deformation is expected as thick tissues or organ walls stretch.
Plastic deformation should also be monitored to penalize over-stretching.
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Fig. 2: SOFA tet-element plasticity: (top) twist, (bottom) stretch. (a) initial de-
formation (b) (top) lack of plasticity, (bottom) lack of symmetry.

To improve real-time simulation of soft tissue undergoing plastic deformation
for training, we build on an existing simulation platform, the Simulation Open
Framework Architecture (SOFA). SOFA [1] offers plastic deformations albeit
currently only for linear tetrahedral elements. It however efficient and natural
to generate meshes for surgical simulation as an offset from a quadrilateral base
surface. Fatty tissue can often be presented as an offset of a covering surface
sheet Fig. 3b. Thick-walled organs of the gastrointestinal tract have a natural
tube structure (and so does the covering tissue, recall Fig. 1). Other organs
can be embedded into a hexahedral free-from deformation grid as illustrated in
Fig. 3a. Offsetting a quadrilateral mesh yields a hex-mesh, e.g., a partition of a
tissue into boxes that is predictable and immediate. When splitting the natu-
ral hexahedra into tetrahedra to apply SOFA’s plasticity code, we experienced
unnatural stiffness Fig. 2, top; and asymmetry when choosing an asymmetrical
tetrahedralization Fig. 2, bottom. We noted also that algorithmically generated
tetrahedral partitions can change strongly for small changes the enclosing surface
and so lack the symmetry and feature alignment of hex elements.

Currently no hex -FEM codes exist that model plasticity in an interactive
environment for surgery simulation. This paper reports on an extension of SOFA
to allow for plastic deformations of hex-elements. The extension represents a
careful trade-off between higher accuracy and simplicity of computation via a
‘blended-vertex approach’. The contributions are as follows.

– Extending the linear co-rotational elasto-plastic FEM to hex meshes.
– Extending the third-order accurate blended-vertex deformation [2] to hex

meshes. (The increased degrees of freedom enables coarse hex meshes to re-
place high-resolution tet meshes when modelling large plastic deformations).



(a) plastic bending and stretching

(b) tearing

Fig. 3: Interactive surgical models (a) Piecewise hexahedral free-form deforma-
tion cage enclosing the liver. (b) Tearing a peritoneal sheet.

– Devising a simple plastic decomposition scheme that handles both rotational
and stretching plasticity.

– Implementing and comparing the blended vertex approach and the cell-
centered piecewise constant approach to plastic rotational deformation. 4
rotational deformation both vertex-centered (The blended vertex approach
is more flexible and accurate, the cell-centered approach yields better ele-
ment quality.)

– Preserving volume over large deformations.

2 Background

The choice of tetrahedral vs hexahedral finite elements to model elasticity has
been debated for many years in the context of engineering analysis. [3,4] observe
that contact pressure distribution and contact shear stress distribution predicted
by linear tetrahedral mesh are noisy and mesh dependent resulting in patches
of locally elevated peak pressures whereas the pressure distribution predicted on
hexahedral (and quadratic tetrahedral) meshes was smooth and uniform. More
recently [5] argued that total degree quadratic finite elements on tetrahedra
provide comparable outcomes to tri-linear elements on hexahedra. The authors
later make the case for adding non-polynomial polyhedral elements [6].

In practice, for real-time soft tissue simulation, both tri-linear elements on
hex-partitions and linear (total degree) tetrahedral elements are commonly used.
Unsurprisingly, compared with linear tetrahedral elements, tri-linear hex ele-
ments are more flexible, perform better over viscous regions and have higher
accuracy [7,8]. SOFA offers both hex and tet elements. Tessellating organs like
the liver into tetrahedra is well automated (e.g., [9] ) whereas quick and reliable
coarse hex-meshing remains a challenge that has spawned an active research com-
munity, see e.g., [10,11,12,13]. Luckily, simulated organs and tissues can often
be outlined as curved cylinders or planes, that are offset orthogonally to form
thick shells: A pair of primary directions, e.g., axial and radial for cylinders,
provides a quadrilateral mesh whose offset naturally yields a regular hexahedral



mesh. The flexibility of hex-elements compared to linear tet elements comes at
a cost: preservation of volume is tricky, but necessary in surgery simulation so
that plastically deformed tissue neither artificially swells nor disappears.

The material point method (MPM, [14,15,16]) need not be concerned with
distortion of mesh elements, a major concern for the FEM approach. MPM excels
at modelling plasticity of granular materials like sand or snow. However such
materials are not typically relevant to surgical simulation. SPH-type approaches
do not take advantage of the available regular quad-offset structure. The well-
known linear elastic co-rotational FEM [17] factors out rotational components
(the displacement is treated as Rx̂ − x in the notation developed in the next
Section, where R describes the material rotation). Co-rotational FEM therefore
models primarily stretching in a major direction.

3 Methodology

Plastic deformation occurs when a material is subjected to tensile, compressive,
bending, or torsion stresses that exceed the material’s yield strength. With x the
start position, possibly plastically deformed in a previous iteration, and x̂ the
deformed position in world coordinates, displacement is infintesimally character-
ized by the Gradient Ĵ := [∂x̂i

∂sj
], where s are the domain (reference) coordinates.

The relative gradient, called deformation gradient,

F :=
∂x̂

∂x
=
∂x̂

∂s

∂s

∂x
=
∂x̂

∂s
(
∂x

∂s
)−1 = Ĵ(J)−1 (1)

of a deformed hex element with vertices vi can be measured at the center point
o :=

∑
i v

i/23 and called Fo – or at one of the vertices i and named Fi. [2]
proposes to increase accuracy by blending for hex k and vertex i the gradients

as F
k

i := (Fki + Fko)/2.

Plasticity decomposition. Recent approaches [18,19,20] recommend multi-
plicative decomposition of the deformation gradient into elastic and plastic parts:
F = FeFp both for better numerical stability, to support compressibility and be-
cause the classic additive (strain) decomposition ε = εe + εp is only accurate for
infinitesimal strains but fails for large deformations (or to easily model incom-
pressibility). Starting with the singular value decomposition F = UDVT where
D is the diagonal and U,V are orthogonal (rotations or reflections), the to-
tal deformation is factored into a (polar, orthogonal) rotation tensor R and a
symmetric positive-definite tensor called the (right) stretch tensor S:

F = (UVT )(VDVT ) = RS. (2)

Following [19] we determine the elastic component. Then we extract the plastic
components from both the rotation and the stretch tensor to obtain the factoring

F = ReRpSeSp (3)

into elastic rotation, plastic rotation, elastic stretch and plastic stretch as follows.



Plastic stretching. Following [20] the linearized strain ε = V(D − I)VT is
derived from S and converted into the first Piola–Kirchhoff stress σ by the
classic stress-strain relation. Then the plastic stretching deformation is

Sp = V(
D

(det D)1/3
)γVT γ := min{ν∆t‖σ‖2 − τ

‖σ‖2
, 1} (4)

for a plastic flow rate ν, plastic yield threshold τ and time step ∆t.

Plastic rotation. Separating the plastic rotation from the rotation tensor is a
challenging problem [21], because the material rotation stems from two sources:
shape changing deformation, e.g., shear deformation, and rigid body rotations.
When the material changing shape, it is typically not possible to uniquely sep-
arate out the rigid body rotation. However, in our surgical simulation context
there is no spinning anatomy and we can neglect angular velocity or inertia-
related factors. We can therefore assume that plastic rotation depends solely on
rotational distortion. We measure rotational distortion as the magnitude of the
angle based on geodesics on the unit sphere defined as [22]

Φ(R1,R2) := ‖ log(R1R
T
2 )‖ ∈ [0, π]

and apply this measure to the rotational component obtained from polar de-

composition at the center Fo = RoUo, respectively blended, F
k

i = R
k

iU
k

i . For
vertex i and the center o of hex k this yields the decomposition of the blended

vertex rotation R
k

i of (2) so that, dropping the superscript k, and denoting the
identity matrix as I3,

R
e

i R
p

i := R
(1−η)
i R

η

i = Ri, (5)

η := νR∆t(φki − τR)/(φki + Φ(I3,Ro)), φki := Φ(R
k

i ,R
k
o).

for a rotation yield-threshold τR ∈ [0, π], rotational plastic flow rate νR ∈ [0, 1].

The above vertex plastic rotation is based on each vertex’s local rotation. This
yields flexibility and accuracy but potentially allows strong distortion. Alterna-
tively we propose cell-centered decomposition of rotation to determine a centered
rigid rotation Rp

o that largely preserves the hexahadral element’s shape.

Rp
oRe

o = Rη̃
oR1−η̃

o , (6)

η̃ := νR∆t(φ̃k − τR)/(φ̃k + Φ(I3,Ro)), φ̃k = max
i∈hexk

φki .

Material hardening. To implement the material hardening, we update the
plastic yield threshold by τ ← τ + κγ‖σ‖ and the rotation yield threshold by
τR ← τR + κηφki . The parameter κ controls the amount of work hardening (or
softening) per time step.



x̂ y x

Fp = RpSp

Rp,Sp (5)
Π (8)

i

i′

k

k′
jj

ko o

Fig. 4: Representation of a quad-mesh (analogous to a hex-mesh) in (left) elasti-
cally deformed world space (where the surgery takes place), (middle) rest space
(isolated elements with strongly deformed domains) and (right) material space
(relaxation of the deformations to a consistent mesh). The dashed path is not
used for iteration.

Plastic update. At each time step, the plastic stretch Spi first updates the rest
position of each vertex i of an isolated rest space element k (see Fig. 4,middle):

yki ← yki + Spiui, ui := Rix̂i − xi, (7)

where uα is the co-rotational vertex displacement [17]. For vertex plastic rota-
tion, we update the rotation map (see Fig. 4)

Πk
i ← Πk

iR
p

i , (8)

and for the alternative cell-center plastic rotation Πk ← Πk Rp
o.

Even though constructions (4) and (5) imply det(Spi ) = det(Rp
i ) = 1, the

volume of each element is not locally preserved, because the plastic offset is
applied separately per vertex. Computing the exact volume from the Jacobian
J, the ratio β of the deformed volume divided by the original volume can be
accurately computed. For element k we update yki by scaling back to the initial
volume:

yki ← yki + (yki − ok)(1− β)∆t (9)

where ∆t distributes the the adjustment over the iterations so that short time
steps animate to slower volume restitution. To combine the vertices yki of the
isolated elements and form a consistently joined ‘material’, we update xj ←∑
k∈Nj

Πk
i y

k
i /|Nj |, where yki are the |Nj | vertices corresponding to the material

space vertex xj with global index j in the surrounding cells Nj , see Fig. 4.

4 Results and Discussion

We have incorporated our plasticity decomposition approach by extending lin-
ear hexahedral FEM in SOFA 19.12. The examples illustrate some parameter
choices. All tests, see also the video, were conducted on a PC with Intel Core



(a) initial stretch

ν = .6
τ = .05

ν = .3
τ = .1

ν = .1
τ = .1

(b) final deformation

Fig. 5: Stretching bars with top to bot-
tom: high, medium, low stretch plastic-
ity material. Faces between slice 5 and 6
are clamped. (a) initial stretch, (b) side
and cross-section views of final deformed
rest pose.

i7-9700K CPU and 8G RAM running
Windows 10. Our code executes at
25-33 hex/ms, For the most expen-
sive computational time steps, imme-
diately after release, our code is ca
20% slower than SOFA’s elastic-only
corotational code.

Fig. 5 compares the stretching of a
9×10-hex bar under different plastic-
ity flow rates ν, plastic yield thresh-
olds τ . The bar is clamped at the
middle (shown as black dots) and the
stretching force is applied at the cen-
tral face on the end of the bar. Results
show the distribution of the plastic de-
formations where cross section sym-
metry is preserved. (The views vary
due to perspective projection).

Fig. 6 juxtaposes the blended ver-
tex plastic rotation with the cell-
center plastic rotation by twisting
the bar with different rotational plasticity flow rates νR, and rotational plas-

(a) initial twist

νR = .25
τR = .02

νR = .15
τR = .02

νR = .10
τR = .05

(b) blended vertex method (c) cell-center method

Fig. 6: Twist and plasticity. top to bottom: high, medium, low rotational plasticity
material. (a) initial twist, (b,c) final plastic deformation (side view, left ; front
cross-sectional view, right).

tic yield thresholds τR. The twisting force is applied tangentially at all the four
edge centers of the central face of the bar cross-section. Tests show that both



methods can capture plastic rotation related to the flow rate νR. However, the de-
formation differs: the vertex approach is better at preserving the cross-sectional
shape but distorts each local element more than the cell-centered approach. The
cell-centered approach preserves the local box shape but the cross-sectional view
is jagged.

For all configurations of Fig. 5 and Fig. 6, the volume of the final deformed
bars agrees with the input volume within < 1%. The material hardening param-
eter is κ = 0.2 in all test cases. This choice proved effective in preventing ill-
shaped material elements due to large plastic deformations: before an element be-
comes highly distorted its plastic yield threshold is reached and causes fracture.

(a) Our Method (b) C3D8R

Fig. 7: FEM beam simulations us-
ing (a) our 8-node hex corotational
elasto-plasticity (Young’s 5000, Poisson
.45), (b) Abaqus 8-node hex element
(C3D8R) with hyperelasto-plasticity
(Moon-Rivlin, C10=1765, C01=43,
D1=1E-05). Initial Stretch, top; final
plastic deformation, bottom, agree for
(a) and (b).

Twist torques due to rotation of
lap surgery instrument heads are ex-
tremely low [23]. As a practical solu-
tion in the surgical simulation setting,
our implementation switches off plas-
ticity when an element is about to be-
come inverted – the remaining elastic
FEM solver handles inverted elements
robustly [24]. Switching to a purely
elastic simulation when hexahedral el-
ements are about to invert favors ro-
bustness over physics during flawed,
unrealistic high-torque interactions.

We use plasticity for surgical
training simulation for a range of
anatomical features and laparoscopic
surgical procedures. Fig. 3a illustrates
the plastic deformation of a free-form
deformation cage, a piecewise trilinear
function on a coarse hexahedral mesh
that transform an embedded much
finer mesh. Fig. 3b illustates tearing
peritoneum. See also the accompany-
ing video.

A comparison of FEM beam simulations between our method and the Abaqus
C3D8R hyperelasto-plasticity model is shown in Fig. 7. At ca 7ms per hex
Abaqus analysis does not meet real-time constraints. While linear Abaqus C3D8R
model stretches locally and visibly less realistic in the ‘eyeball norm’ of real-time
simulation, Fig. 7 shows remarkable agreement on the location of highest defor-
mation and within 5% in the stretch during temporal evolution between the
sophisticated hyper-elastic model and our co-rotational extension. As tissue is
better modeled as hyper-elastic material, we have no formal analysis to explain
the agreement but note that the applications typically have a high Poisson ratio.



Fig. 8: Refining the stretch test. left : initial mesh; middle: maximal stretch; right :
final plastic deformation.

Fig. 8 illustrates self-refinement. The three beam models reproduce the same
deformation, localized commensurate with the higher resolution. Execution time
for refinement scales linearly with the number of hex-elements since no explicit
matrix is built or inverted.

Limitations While generating hex meshes by offsetting natural quad-meshes
is highly efficient, the process does not easily lend itself to re-meshing when hex
elements become ill-shaped. Our implementation relies on the material hardening
to prevent distortion and switches to pure elasticity when elements invert.

To avoid polar rotation ambiguity, we restrict the maximal element rotation
to less than π. To increase the total object’s rotational angle, the initial mesh
has to be designed with sufficiently many pieces (what is usually not a problem
in the context of a given surgical procedure).
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