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(a) mesh (b) adjacent n = 3 (c) locally embossed

Figure 1: Design starting with (a) two hexagonal configurations (two n = 6 ‘DS-nets’ connected by one ring of quads). There are 2× n
vertices of valence 3 from which tensor-product spline refinement creates (b) overlapping n = 3 DS-net pairs after one refinement. (c) C1

smooth design features on the transition and contracting rings. The plain shading emphasizes overall smoothness between bi-quadratic
patches, the bronze transition ring, a sequence of contracting rings (orange and blue) and a final curved and smoothly-joined tiny cap and
the local embossing at different scales illustrates refinability.

Abstract
Subdivision surfaces based on bi-quadratic splines have a control net, the DS-net, whose irregularities are n-sided facets. To
date their limit shape is poor due to a small footprint of the refinement rules and the difficulty of controlling shape at the center
irregularity. By contrast, a control net where vertices are surrounded by n quadrilateral faces, a CC-net, admits higher-quality
subdivision and finite polynomial constructions. It would therefore be convenient to leverage these constructions to fill holes in
a C1 bi-quadratic spline complex.
In principle the switch in layout from a control net with central n-sided facet to one with a central irregular point is easy: just
apply one step of Catmull-Clark refinement. The challenge, however, is to define the transition between the bi-quadratic bulk
and the n-sided cap construction to be of sufficiently good shape to not destroy the advantage of higher-quality algorithms. This
challenge is addressed here by explicit formulas for conversion from a DS-net to a CC-net.

1. Motivation

Polyhedral nets where an n-sided face is surrounded by n sectors of
quadrilaterals, offer few – if any – surface construction options of
good quality. The classic algorithm associated with n-sided facets
surrounded by quads, Doo-Sabin subdivision [DS78], suffers from
flat spots. Augmented Subdivision [KP15b] goes some way to-
wards countering the flatness of bi-quadratic subdivision surfaces.
However, Augmented Subdivision, too, fails at closer inspection
of its highlight lines as illustrated in Fig. 2 c: while kinks in the
highlight lines are natural for bi-2 C1 splines, repeating kinks ad
infinitum is not acceptable. One could apply Catmull-Clark subdi-
vision [CC78] to the whole net, thereby increasing the degree of
the surface everywhere. But this, too, fails the test of good shape,

due to oscillating highlight lines [BC94], see Fig. 2 d: good shape
means that the highlight lines flow as uniformly as possible. The
bi-quartic (bi-4) construction [KP21] Fig. 2 e yields a uniform flow
but lacks easy refinability for hierarchical geometric manipulation
or engineering analysis. The features crossing the sectors in Fig. 1 c
would be challenging if not impossible to graft onto a G1 surface
constructed according to the bi-4 construction in [KP21]. For that
reason [KP21] presented an alternative: a few subdivision surface
rings closed by a small cap, all following an initially-constructed
guide surface. Due to the guide surface, the alternative is not eas-
ily implemented. By contrast, the construction of this paper is easy
to implement based on explicit formulas and generates surfaces of
quality adequate for bi-quadratic splines.
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(a) Hexagonal face
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↑ ↑

(b) Doo-Sabin

©
↑ ↑

(c) Augmented

©
⇑

(d) Catmull-Clark

©

(e) [KP21]

Figure 2: Polyhedral net merging four planes with a central hexagonal face. Current surface constructions either fail to produce good shape
(b,c,d) or lack refinability (e). Note that all the #-circled kink is part of the surrounding C1 bi-2 surface, but the repetition of the kinks,
marked by ↑, is due to the subdivision algorithm. ⇑ points to the pinching artifact of [CC78].

(a) Hexagonal face (b) surface rings

©
⇑

(c) [CC78]-hybrid

©

(d) [MM18]-hybrid

©

(e) [KP19]-hybrid

Figure 3: Refinable, yet finite, ‘hybrid’ surface constructions of the same input as for Fig. 2 (b) Hybrid structure: first a transition surface
ring (bronze), then a few subdivision rings and finally a tiny cap. Rings from (c) Catmull Clark subdivision (degree bi-3) (d) Curvature-
bounded subdivision [MM18] (degree bi-3). (e) Guided subdivision (degree bi-4). Option (e) requires fewer rings since this subdivision can
be accelerated without loss of good highlight line distribution. (The kink in the circle # is due to the surrounding C1 bi-2 surface).

The contributions of this paper are

• to provide refinable multi-sided caps with good highlight line
distribution
• by constructing a fair transition from the regular bi-2 splines to

constructions usually reserved for filling multi-sided regions in a
bi-3 C2 spline surface;
• to provide the option of polynomial surfaces with finitely many

pieces by completing the surface by a tiny bi-cubic cap after
placing a few subdivision rings – based on explicit formulas
rather than a guide surface.
• Notably the transitions between the surface rings are parametri-

cally C1 (or C2) so that refinability is straightforward in the bulk
of the surface.

The few subdivision rings, see Fig. 3 b, can be chosen as simple
as standard Catmull-Clark subdivision, see Fig. 3 c, as curvature-
bounded subdivision, see Fig. 3 d, or as complex as guided sub-
division, where a sequence of C1 bi-4 rings follow a guide sur-
face, see Fig. 3 e. Their highlight line distributions [BC94] indi-
cate improved shape of the multi-sided surface cap starting with the
bronze ring in return for increased complexity and polynomial de-
gree. Given that the surrounding bi-quadratic (bi-2) spline already
introduces shape deficiencies, see© in Fig. 3 , [MM18] provides a
good trade-off for using simple rules and suitable quality. Of course

all subdivision algorithms can also be applied to the limit, doing
away with the tiny cap.

The key is therefore the transition from the bi-2 splines to higher-
degree cap constructions (or, with the notation explained in Sec-
tion 2, from DS-nets to CC-nets). Combinatorially this is trivial, but
as Fig. 13 e clearly illustrates, naively applying one local Catmull-
Clark refinement step yields unacceptable shape.

Overview After reviewing related literature in Section 1.1, Sec-
tion 2 defines the critical bi-2 to bi-3 transition. The detailed moti-
vation and derivation in Section 2.2 is summarized in a set of ex-
plicit formulas (3), (4) for implementation. Section 2.4 constructs
the smooth bi-3 transition surface ring that connects to the bi-2 data
on the outside and a multi-sided cap on the inside. Section 3 justi-
fies the algorithmic choices via examples.

1.1. Related work

Grid-like meshes can be interpreted as control nets of bi-cubic (bi-
3) splines, or C1 biquadratic (bi-2) splines of lower quality but still
sufficient for many applications. To fill multi-sided holes, the spline
refinement rules have been generalized to Catmull-Clark subdi-
vision [CC78] respectively Doo-Sabin subdivision [DS78]. Both
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suffer from artifacts: Catmull-Clark surfaces from pinched high-
light lines and hyperbolic limits even for convex control polyhe-
dra [KPR04]. By adjusting subdivision weights, [CADS09,MM18]
improve the behaviour at the central limit extraordinary point,
[LFS16] directly prescribe parts of the eigenstructure while [KP07,
TSHH17] prescribe the limit by (parts of) a guide surface. All these
approaches remove artifacts, at the cost of a more complex algo-
rithm than Catmull-Clark or Doo-Sabin subdivision. [KP19] argued
that bi-4 subdivision rings yields better shape than bi-3 rings but
that increment in quality may not be critical when the surrounding
surface is a C1 bi-2 spline. Fig. 4 illustrates that Doo-Sabin sub-

(a) n = 6 (b) Doo-Sabin (c) Augmented

(d) n = 5 (e) Doo-Sabin (f) Augmented

Figure 4: Convex input nets with n-sided central facets surrounded
by two layers of quads, the DS-net. All inner vertices are regular,
i.e. have valence 4. (a,d) DS-nets; (e,f) highlight lines [BC94].

division is not useful for most design activities since it generates
visible artifacts, e.g. the undue flatness in Fig. 4 b,e. Augmented
Subdivision [KP15b] Fig. 4 c,f clearly improves the outcome for
convex configurations.

Single-piece, internally C∞ multi-sided surface caps can be ob-
tained by generalizing transfinite interpolation [VSR12, SVR14,
SV18, HK20b, HK20a] or Gregory patches [HK18]. These con-
structions are controlled by ribbons that define poistion and deriva-
tive along boundaries. G-splines [HM90, Pet02] consist of a fi-
nite number of polynomial pieces that can yield smooth surfaces
by change of variables [LS08, KP16]. As proven in [GP15], and
demonstrated in [KNP16, NKP16], G-splines are directly suitable
for engineering analysis, but are not well-suited for hierarchical
modeling.

To simplify refinability and local geometric editing, hybrid con-
structions combine a sequence of Ck-joined surface annuli with a
tiny n-sided G-spline cap [PK20]. For example, [KP18] yields al-
most everywhere curvature continuous multi-sided surfaces of de-
gree bi-6. This paper uses the hybrid approach to apply multi-sided
caps designed for holes in bi-3 C2 spline surfaces, but now to holes
in a C1 bi-2 surface. While curvature-bounded guided subdivision
[KP19] yields superior shape and fewer surface rings of degree bi-
4, we illustrate the approach with the subdivision in [MM18] that
generates bi-3 rings of better shape than Catmull-Clark subdivi-
sion. The sequence of contracting surface rings is completed by a
piecewise polynomial bi-3 geometrically continuous spline cap.

2. The transition from bi-2 to bi-3

This main section briefly reviews standard tools for converting
splines and Hermite data to a more local Bernstein-Bézier repre-
sentation, and then formally define DS-nets and CC-nets shown in
Fig. 6 b,e for a pentagonal configuration n = 5. The goal is to de-
velop formulas to express a CC-net in terms of a DS-net. Since a
DS-net has 4n points and a CC-net 6n+ 1 points this mapping is
underconstrained. Functionals fail to usefully pin down the many
extra degrees of freedom of the CC-net. Instead we derive explicit
formulas that approximate parts of a surface construction, Fig. 2 e.
The difference in outcomes, shown in Section 3, motivates this
more complex approach over apparently simpler options.

Specifically, we first express a CC-net in terms of a DS-net and
a central limit point Q; and then Q in terms of the DS-net (using
the central point of the surface construction [KP21]). This yields a
good transition from a DS-net to a CC-net. A reader familiar with
the BB-form and not interested in the derivation can skip directly
to Equations (3), (4) that summarize the conversion formulas.

Implementation ultimately amounts to a (sparse) matrix multi-
plication with the input data.

2.1. Conversion from B-spline to BB-form and tensor-borders

Our surfaces are assembled from tensor-product patches of bi-
degree d (short bi-d) in Bernstein-Bézier form (BB-form), see e.g.
[Far88]:

f(u,v) :=
d

∑
k=0

d

∑
`=0

fk`B
d
k (u)B

d
` (v), 0≤ u,v≤ 1.

Here Bd
i (t) :=

(d
i
)
(1− t)d−it i are the Bernstein polynomials of de-

gree d and fi j are the BB-coefficients. Connecting fi j to fi+1, j and
fi, j+1 wherever possible yields the BB-net. Any (d +1)× (d +1)
sub-grid can be interpreted as the control net of a uniform bi-d B-
spline. In Fig. 5 the B-spline control points are marked ◦. B-to-BB
conversion expresses the spline in bi-d BB-form illustrated by the
green BB-nets in Fig. 5 . For example, applying bi-2 B-to-BB con-
version to the DS-net in Fig. 6 a defines a green ring of bi-2 patches.

t

(a) bi-2 B-to-BB conversion

t

(b) bi-3 B-to-BB conversion

Figure 5: B-to-BB conversion and tensor-borders t as Hermite
input data. Circles ◦ mark B-spline control points, solid disks •
mark BB-coefficients of the full patch, respectively tensor-border.

Conversion of a partial sub-grid yields a partial BB-net, that de-
fines position and first (and, when d = 3 possibly second) deriva-
tives across an edge. This representation is called a tensor-border
and denoted t. Partial conversion of the DS-net, the subset of the
DS-net whose nodes marked as ◦ in Fig. 6 a,b, yields a first-order
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tensor-border ring t, marked green in Fig. 6 b. Partial conversion
of the CC-net (nodes marked as • in Fig. 6 d,e) yields a first-order
tensor-border ring t, gray underlaid in Fig. 6 d (and a second inner
BB-net ring).

(a) DS-net, bi-2 ring

→

1 2

3
4

13

2
4

di di+1

(b) DS-net, bi-2 t (c) bi-3 t̃

(d) CC-net

→

1 2

4 5

14
25

3

6 36

ci ci+1

c0

(e) CC-net labels (f) bi-3 tCC (gray)

Figure 6: Two ways to generate a degree bi-3 tensor border: top:
t̃ from a DS-net with sector di bottom: tCC from a CC-net with
sector ci and n-valent node c0 (n = 5).

2.2. Two ways to compute a central surface point Q

By symbolic computation, the central point QKP of the n-sided bi-
4 construction [KP21], depicted in Fig. 7 a, can be expressed as
weighted sum of the DS-net d j

r :

QKP := κn

n−1

∑
i=0

di
4 +µn

n−1

∑
i=0

(di
2 +di

3)+νn

n−1

∑
i=0

di
1 , (1)

where νn := 1
n−κn−2µn, see Fig. 7 b. The labels of d are displayed

in Fig. 6 b. For simplicity and not affecting the final quality, the
weights κn and µn rounded to 5-digits accuracy are

n= 3 4 5 6 7 8

κn= 0.29678 0.25 0.21805 0.19282 0.17243 0.15567
µn= 0.01887 0 −0.00953 −0.01382 −0.01559 −0.01614

For n = 4, formula (1) yields, as expected, the quad’s centroid, i.e.
a corner point of the C1 bi-2 tensor-product spline.

QKP

(a) bi-4 cap

ν µ

µ
κ

νµ

µ
κ

(b) distribution of κ, µ, ν

Figure 7: Expressing the center point QKP as a weighted sum of a
DS-net (with weights κ, µ, ν).

The central limit point (extraordinary point) QCC of Catmull-
Clark subdivision [HKD93] for n> 4 and an improvement for n= 3
[KP15a] can be expressed in terms of the innermost control nodes
of the CC-net:

QCC :=

{
n

n+5 c0 +
4

n(n+5) ∑
n−1
i=0 ci

6 +
1

n(n+5) ∑
n−1
i=0 ci

5, n > 4,
11
32 c0 +

1
6 ∑

n−1
i=0 ci

6 +
5

96 ∑
n−1
i=0 ci

5, n = 3.
(2)

The labels of c are displayed in Fig. 6 e.

ci
1 ci

2 ci
3

ci
4 ci

5 ci
6

c0

Figure 8: Tensor-border t̃⇒ CC-net.

2.3. Mapping the DS-net to a CC-net

For each sector (e.g. brown in Fig. 8 ), reversing the par-
tial B-to-BB conversion maps combinations of c0 and 8 BB-
coefficients of the tensor-border t̃ (the 8 brown disks •
strictly inside the sector) to 8 B-spline CC-net points ci

k
(marked by brown circles ◦). Where CC-net points overlap,
e.g. ◦ and ◦, the average (◦ + ◦)/2 is retained. This yields

ci
1 :=c0 +

10
3

di
1−2(di

2 +di
3)+

2
3

di
4

+
2
3
(di−1

2 +di+1
3 )− 2

3
(di−1

4 +di+1
4 ) ,

ci
2 :=− 1

2
c0 +

5
8

di
1 +

35
24

di
2−

11
4

di
3−

5
8

di
4

+
1
12

di−1
2 +

5
12

di−1
4 − 1

3
di+1

3 +
1
3

di+1
4 ,

ci
4 :=− 1

2
c0 +

5
8

di
1 +

35
24

di
3−

11
4

di
2−

5
8

di
4

+
1
12

di+1
3 +

5
12

di+1
4 − 1

3
di−1

2 +
1
3

di−1
4 ,

ci
5 :=

1
4

c0 +
5

48
di

1 +
5

16
(di

2 +di
3)+

25
48

di
4

− 1
24

(di−1
2 +di+1

3 )− 5
24

(di−1
4 +di+1

4 ) ,

ci
3 :=c0−

1
6
(di

1 +di+1
1 )+

7
6
(di

2 +di+1
3 )

+
1
6
(di

3 +di+1
2 )− 7

6
(di

4 +di+1
4 ) ,

ci
6 :=− 1

2
c0−

1
48

(di
1 +di+1

1 )+
7

48
(di

2 +di+1
3 )

− 5
48

(di
3 +di+1

2 )+
35
48

(di
4 +di+1

4 ) .

(3)

Substituting ci
5 and ci

6 into (2) and setting QCC := QKP yields

c0 :=


16n(n+5)QKP+∑

n−1
i=0

(
di

1−7(di
2+di

3)−95di
4

)
4n(4n−7) , n > 4;

4608QKP+∑
n−1
i=0

(
7di

1−97(di
2+di

3)−1145di
4

)
612 , n = 3.

(4)
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That is, we expressed the CC-net in terms of the DS-net see
Fig. 6 b,e.

2.4. The transition ring

We now construct a smooth bi-3 transition surface ring that con-
nects to the bi-2 data on the outside and a multi-sided cap on the
inside. Due to the different requirements of [CC78] and [MM18]
we need to discuss two options.

See Fig. 9 . B-to-BB conversion of a CC-net (a) yields a sector of
a bi-3 ring in BB-form, colored orange in (b). Catmull-Clark refine-
ment of the same CC-net yields the CC-net of the next step. Fol-
lowing the ⇓ in Fig. 9 , refining the CC-net by the rules of [MM18]
(d) and subsequent B-to-BB conversion yields two bi-3 rings in (e)
and a subset of the refined net (d) forms the CC-net for the next step
(f). The two CC-nets (c) and (f) differ in the control points marked
by �, nearest to the extraordinary point.

⇒CC

(a) (b)

CC

(c)

⇒

⇓

(d) (e)

CC

(f)
Figure 9: Refinement creating top: a single width bi-3 Catmull-
Clark ring or bottom: a double width bi-3 curvature-bounded sub-
division ring [MM18].

We first apply one Catmull-Clark step to the CC-net c com-
puted in the previous sections and retain the CC-net as Fig. 10 a
whose sector is shown in Fig. 9 c. (For n = 3, best shape is obtained
by using, only in the first step, the Catmull-Clark weights [PR08]
α = 3/8, β = 1/2). This yields the n×3 patch structure and layout
of Catmull-Clark subdivision. To obtain the structure and layout re-
quired by [MM18], namely n× 12patches, the refinement Fig. 9 a
to Fig. 9 c is applied a second time followed by (d) to (f).

Fig. 10 shows once more the BB-nets of the transition ring. The
outer bi-2 patches are indicated as dark green stripes to the lower
left and the location of the multi-sided surface cap is indicated to
the upper right in light-red. The two-sided Hermite extension of
Fig. 10 yields a transition ring that is connected C1 to both the
outer input bi-2 data and inner multi-sided surface cap.

3. Central cap, Examples and Discussion

To avoid infinite recursion and because no higher refinement level
is expected, the rings generated by the subdivision algorithms are
filled with a tiny central cap. All examples use this practical finite
completion.

(a) c (b) B-to-BB (c) merged

Figure 10: BB-net of the transition ring. (a) CC-net c(d) and its
refinement CC-net (partly concealed by the black edges of c(d), en-
large) by one Catmull-Clark step. (b) One sector of B-to-BB con-
version of the CC-net, cf. Fig. 9 b. (c) Extending with first-order
Hermite data from the surrounding bi-2 spline (light-green) and
from the cap (orange).

3.1. The tiny cap of degree bi-3

To preserve the surface quality and keep the degree bi-3, we mimic
the approach of [KP15a] and connect a G1 cap consisting of n
bi-3 macro-patches formally only C0 to the last subdivision ring,
but with a normal deviation of typically < 0.1o. Such tolerances
are accepted in industrial class A surface construction as long as
the highlight line distribution is uniform [Aut15]. Conversely, all
known truly smooth bi-3 caps yield clearly worse highlight line
distributions. (An extended version of this paper will include a sec-
ond Appendix describing a new, formally smoothly-joined bi-3 cap
with good highlight lines).

3.2. Examples

We first test the approach on the trivial configuration, n = 4. The
choice κ4 := 1

4 , µ4 := 0 in formula (1) selects the centroid of the
central face as Q when deriving c(d). Fig. 11 demonstrates that
this choice works well. When n 6= 4, choosing Q as the centroid
of central face yields poor shape and (2) must be used instead: for
n = 3, Fig. 12 , choosing Q to be the centroid results in too-pointed
a surface (as is evident from the pinched highlight lines in Fig. 12 c)
– whereas for n = 5, choosing Q to be the centroid results in flat-
ness (spread out highlight lines in Fig. 13 c). This is akin to the
shape deficiencies of Doo-Sabin subdivision, which considers only
the central face, compared to Augmented Subdivision, which looks
beyond that face.

Applying one Catmull-Clark step to the DS-net is another obvi-
ous choice to generate a CC-net. Fig. 13 e confirms that this naive
approach creates unacceptable surface shape, visible even without
highlight lines. The underlying reason can be understood via the
curve case Fig. 13 f: starting with a near-circular loop of degree
2, left, the top segment is treated like the n-sided face of a DS-
net: midpoint knot insertion for cubic splines plays the role of one
Catmull-Clark step and the points marked ◦ form the CC-net, mid-
dle. Two C2-connected cubics (blue, right) mimic the subdivision
rings of [MM18], whereas the cyan cubics (obtained by C1 exten-
sion of the green quadratic and blue cubic curves) mimic the tran-
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(a) n = 4 DS-net (b) layout (c) highlight lines

Figure 11: Convex DS-net to test the trivial case n = 4. (b) The
transition ring is bronze. The central orange surface cap consists
of four bi-3 patches.

(a) n = 3 (b) layout (c) centroid (d) default Q

Figure 12: (a) Convex DS-net, n = 3. The surface rings consists of
n bi-3 patches per sector. The first refinement Fig. 9 a→ c uses the
non- standard Catmull-Clark weightings α = 3/8, β = 1/2.

(a) n = 5 (b) layout (c) centroid (d) default Q

(e) Catmull-Clark step

(f) naive approach illustrated for curves

Figure 13: Convex DS-net, n = 5. (b) The transition rings consist
of a single layer (three bi-3 patches per sector). (c),(d) motivate the
default choice of Q. (f) is the curve analogue to (e) predicting the
failure of the naive construction of a transition in (e).

sition ring. Compared to the original quadratic (dashed green) the
flatness of the naive construction is evident.

Fig. 14 for n = 7 and Fig. 14 for n = 8 compare rings generated
by [MM18], (b,d) with the more sophisticated approach of guided
subdivision (c,f). Guided subdivision allows doubling the contrac-
tion speed so that fewer rings (c) vs (b) are needed to reach the tiny
cap. Guided subdivision also joins transition and cap better than
does [MM18]. However, the main body is bi-4 rather than bi-3.

4. Conclusion

A new surface transition ring allows filling multi-sided holes in C1

bi-2 splines with well-known subdivision algorithms. We looked at
Catmull-Clark, a curvature-bounded and guided subdivision. De-
pending on the choice of algorithm, the multi-sided surface cap is
of moderate to high quality as measured in terms of the highlight
line distribution, and implementation is of moderate to high com-
plexity. We also proposed to use only a few subdivision rings and
complete the multi-sided surface with a tiny bi-cubic cap so that,
for example, a few steps of the curvature-bounded algorithm yield
a finite bi-cubic multi-sided surface. This is analogous to [KP21],
but replaces the guide surface construction and application by the
short, explicit formulas (3) and (4) that express a CC-(control-)net
in terms of a DS-net.

Figure 15: Challenging in-
put net that can motivate
more complex formulas

Notably, the formulas were
obtained by applying a surface
construction symbolically
rather than numerically. Ul-
timately, the construction
amounts to multiplication of
the DS-net with a pre-computed
matrix. More generally, to
construct surfaces from a poly-
hedral net, the CC-net can be
derived from an arbitrary bi-3
tensor-borders t̃, not just to
those defined by a DS-net.

The goal was to keep the formulas simple. A more complex for-
mula for ci

5 and ci
6 can be used to improve the shape of difficult

configurations like Fig. 15 where one part of the otherwise planar
net has been lifted up. However for most common cases, the exam-
ples showed that the construction avoids major shape deficiencies
that simpler and at first glance natural constructions are prone to.
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