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Abstract

A polar configuration is a node surrounded by m triangles. Polar configurations are common to cap off cylinders and
spheres. When the triangles, interpreted as quadrilaterals with one edge collapsed, are surrounded by a quad-strip
then the extended polar configuration qualifies as a part of locally quad-dominant (lqd) mesh. Recent constructions,
referred to as semi-structured splines, can use lqd meshes as control nets: multi-sided configurations that merge
parameter directions are covered by G-spline; and T-junctions that transition from coarse and fine are covered by
GT-splines.

This paper complements existing semi-structured splines by providing the missing component for polar configu-
rations. A spectrum of constructions of differing degree are introduced, tested and compared. Bi-2 C1 splines are
extended to polar configurations covered by C1 surfaces consisting of (macro-)patches of degree as low as bi-2. Bi-3
C2 splines are extended to polar configurations covered by surfaces that are C2 except for a C1 pole and consist of
(macro-)patches of degree as low as bi-3.

Keywords: polar configuration, generalized spline surface, locally quad-dominant, semi-structured

1. Introduction

Polar meshes, where a cylindrical structure is closed off, occur naturally in the modeling of air plane nose cones,
finger tips and similar protrusions. Modeling such tips as the common corner of a large number of surrounding
quadrilaterals yields a jagged star-pattern that most surface constructions fail to convert into a well-shaped smooth
surface: the problem is a lack of alignment of the jagged path with the smooth circular cylinder direction. Polar
meshes are therefore better modelled by explicitly acknowledging the singularity of the tip. Coalescing the top edges
of a cylindrical mesh into one point, the pole, yields a polar configuration: m quadrilaterals, one of whose edges is
collapsed into the pole, while the opposing edge is aligned with the circular direction as in Fig. 1a.

circular

radial

(a) polar-net m = 5 (b) star-net n = 5 (c) n-gon-net, n = 5 (d) τ0-net (e) τ1-net

Figure 1: Locally quad-dominant (lqd) mesh patterns. Our focus is on (a) and combinations with the other patterns. (The pentagon in (e) is called
a T1-gon, the triangle in (d) is called a T0-gon; a T-gon with correct valencies and surrounded by quadrilaterals is called τ -net.)
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(a) input mesh (b) bi-2 polar (c) bi-3 polar

Figure 2: Mesh with τ0-configurations completed by a polar configuration of valence 6. (a) If we interpret the polar cone’s triangles as degenerate
quads, each triangular T0-gon facet is surrounded by quads forming a τ0-configuration. (b) highlight line distribution when interpreting the regular
input as a bi-2 spline net, and applying the polar construction of Section 4 and Karčiauskas and Peters (2019b). (c) highlight line distribution when
interpreting the regular input as a C2 bi-3 spline net and applying the polar construction of Section 5 and Karčiauskas and Peters (2019a).

Two classes of surface constructions can use polar configurations as control nets: polar subdivision surfaces and
polar splines (see Section 1.1). Polar subdivision can achieve good shape but produces an infinite sequence of nested
rings. This work therefore focuses on polar splines. Polar splines extend tensor-product splines and complement recent
constructions that we jointly refer to as semi-structured splines. Such semi-structured splines can use as control nets
a locally quad-dominant (lqd) mesh, i.e. a mesh where all non-4-sided facets are surrounded by quadrilaterals. Multi-
sided star-configurations or polyhedral cells (see Fig. 1b,c) are covered by smooth G-splines that merge parameter
directions, and τ -configurations (Fig. 1d,e) bridge between coarse and fine meshes and are covered by GT-splines.
Polar splines use as control net any polar configuration. Polar configurations fit the lqd definition when the triangles
are interpreted as degenerate quadrilaterals with one edge collapsed.

The new polar spline of degree bi-3, matches the degree of the regular surface regions, and is C2 except at
central point where it is C1. It has as good a highlight line distribution as C2 constructions of twice the degree and
so demonstrates that formal C2 smoothness is not necessary for good shape. The top of Fig. 2a shows a typical
polar configuration of valence n = 6 consisting of six triangles with a common vertex. An analogous smooth polar
construction for capping bi-2 regular regions uses patches of degree bi-2.

The new polar constructions

• cap polar configurations with good highlight line distribution;
• the pole’s direct neighbors can be n 6= 4-valent nodes or nodes of T-gons (tight configurations);
• are of low polynomial degree (bi-2, bi-3);
• and so complement

- regular (bi-2 C1, bi-3 C2) tensor-product splines;
- GT-constructions;
- multi-sided G-spline constructions;

• are refinable and suitable as finite elements for engineering analysis.

Overview After reviewing the literature of constructions for polar configurations, in Section 1.1, Section 2 introduces
the notation and setup and summarizes recent semi-structured splines. The constructions use a reparameterization
defined in Section 3. Section 4 and Section 5 then present the bi-2, respectively bi-3 capping polar splines.

1.1. Review of polar constructions

Applying the popular subdivision Catmull and Clark (1978) to extend C2 bi-3 splines to a polar mesh yields
poor highlight line distributions as illustrated in Fig. 3c. The same holds for Doo-Sabin subdivision extending C1

bi-2 splines, see Fig. 10a. Both surface constructions suffer from mis-alignment with the natural circular direction.
Point-augmented bi-2 C1 subdivision surfaces Karčiauskas and Peters (2015a) improves the shape of Doo-Sabin
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(a) input (b) base of Karčiauskas and Peters (2019a) + red polar cap

(c) Catmull-Clark: input = (a) twice subdivided

Figure 3: Comparison to Catmull-Clark subdivision. (a) T -gon mesh is the top of Fig. 2. (b) Covering the T0-gons with Karčiauskas and Peters
(2019a). (The hourglass highlight line pattern outside the parallel pattern of the polar configuration is due to this T0-spline.) and the pole with the
new bi-3 construction of Section 5 (c) Covering the T0-gons with Catmull and Clark (1978) subdivision.

subdivision; and Bicubic Polar subdivision (B3PS) Karčiauskas and Peters (2007) improves the shape over Catmull-
Clark. Both B3PS and Myles and Peters (2009) consist of contracting bi-3 rings that respect the natural circular
direction and yield good highlight lines. The first is C2 except at the limit point, where it is C1, the second is
everywhere C2. Both Wang and Cheng (2013) and Myles and Peters (2009) illustrate a transition to polar layout via
5-valent vertices.

Karčiauskas and Peters (2009); Myles and Peters (2011); Shi et al. (2013); Wang and Cheng (2016); Toshniwal
et al. (2017) derive a curvature continuous construction for polar configurations extending bi-3 splines by finitely
many patches using the same approach. Toshniwal et al. (2017) differs somewhat by introducing a separate control
structure at each pole to define the jet, an approach that was earlier used in Karčiauskas et al. (2006). Additionally
Toshniwal et al. (2017) elaborate on the fact that the regular strips of the neighborhood of the polar cap can consist of
tensor-product splines of differing degree. All polar and G-spline constructions can be used for engineering analysis
Groisser and Peters (2015). Toshniwal et al. (2017) illustrate this point, emphasizing partition of 1. Wang and Cheng
(2016) show how to interpolate the control net. The formally curvature continuous bi-3 extending polar constructions
listed above are more complicated and require higher polynomial degree than the constructions presented in this paper.

Shi et al. (2010) take a different approach. The splines in a neighborhood are reparameterized in polar coordinates
and then blended in the complex domain. This yields expo-rational surfaces that needs to be approximated by NURBS.
Also transfinite constructions as in Várady et al. (2012) could be used to cover polar neighborhoods.

The polar construction of Karčiauskas and Peters (2009) is C2 with good highlight line distribution. Each sector
is a single patch, of degree 6 in the circular direction and degree 5 in the radial. Degree 6 is minimal for C2 continuity
at the pole where one edge of each patch collapses. However, formal C2 continuity is not necessary for good highlight
line distribution. The new construction’s highlight line distribution is very close to that of the degree 6,5 C2 construc-
tion; and it uses 2n bi-3 patches and a simpler algorithm than the 9n bi-3 patches also proposed in Karčiauskas and
Peters (2009).

The new polar constructions complement semi-structured splines generalizing bi-3 splines Karčiauskas and Peters
(2019a) and bi-2 splines Karčiauskas and Peters (2019b). Both are summarized in Section 2.
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2. Definitions and Setup

All surfaces will be a collection of tensor-product patches in Bernstein-Bézier form (BB-form; see e.g. Farin
(1988)):

f(u, v) :=

d1∑
i=0

d2∑
j=0

fijB
d1
i (u)Bd2

j (v) , (u, v) ∈ [0..1]2,

where Bd
k(t) :=

(
d
k

)
(1− t)d−ktk are the Bernstein polynomials of degree d and fij ∈ R3 are the BB-coefficients (we

will use bold face throughout for elements of R3). Connecting fij to fi+1,j and fi,j+1 wherever possible yields the
BB-net. For i = 0, . . . , d1, we index so that fi,d2

are coalesced into one point, the pole, and refer to fi,j as the jth
circular layer and to fk,i as the kth radial layer. Two tensor-product patches fs and fs+1 sharing the pole join Ck

then the curves formed by the jth circular layers join Ck for all j.
For any 3 × 3 grid in the mesh, the vertices can be interpreted as the control net of a bi-2 uniform B-spline.

Expressing this spline in bi-2 BB-form is called B-to-BB conversion, see Fig. 4a. A partial conversion from a partial
mesh yields a sub-net of the BB-net that defines position and first derivatives across an edge, see Fig. 4b. Analogously,
a 4 × 4 grid in the mesh can be interpreted as the control net of a bi-3 uniform B-spline and partial conversion can
define a BB-subnet that defines position, first and second derivatives across an edge (see Fig. 4c,d).

(a) bi-2 patch p (b) bi-2 tensor-border (c) bi-3 patch p (d) bi-3 tensor-border

Figure 4: (a,b) Bi-2 B-to-BB conversion. Circles ◦ mark B-spline control points, solid disks • mark BB-coefficients. The rules are: •center =
◦center, •edge = the average of ◦center and a neighbor ◦, and •corner = the average of the four surrounding ◦. (c,d) Bi-3 B-to-BB conversion.

2.1. Some semi-structured splines

(a) τ0-cap (b) surface (c) unifying net (d) GT(3)-spline

Figure 5: GT-spline constructions. (a) 4 pieces of a GT(2)-surface whose control net is the τ0-net and (b) the surface combined with a polar cap.
(c) The refined net unifying τ0- and τ1-input. (d) The 16 pieces of a GT(3)-surface derived from the unifying net.

A star-configuration with an extraordinary point is where more or less than four quads meet. Constructions, often
abbreviated as G-splines, date back to the last millennium, e.g. Gregory and Hahn (1987), and modern constructions
focus on generating good highlight line distributions, e.g. Loop and Schaefer (2008). A T-junction is where two facets
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on one side meet one facet, the T-gon, on the other. A T0-gon is a triangle as in Fig. 1d and a T1-gon is formally a
pentagon, with valences as in Fig. 1e. The lqd-submeshes enclosing them by quadrilaterals are called τ0-nets and τ1-
nets. Most semi-structured splines are based on the concept of geometric continuity, i.e. smoothness after change of
variables, see e.g. DeRose (1990). Patches f and f̂ that share a G-edge parameterized by (u, 0 = v) are G1 connected
if they have matching derivatives after change of variables ρ(u, v) := (u+ b(u)v, a(u)v):

∂v f̂(u, 0)− a(u)∂vf(u, 0)− b(u)∂uf(u, 0) = 0 . (1)

The semi-structured splines in Karčiauskas and Peters (2019b), abbreviated GT(2) hereafter, extend first-order
Hermite data defined by the τ -net. The data are obtained by interpreting the τ -net nodes as C1 bi-2 B-spline control
points and partially converting the Bernstein-Bézier (BB) form. This insures that the τ -cap smoothly joins the sur-
rounding surface. In Fig. 5a the nodes of τ0-net are displayed as ◦, the τ0-cap consists of four C1 connected pieces of
degree (2, 4) (2 in horizontal, 4 in vertical direction; an analogous τ1-cap is build from 8 pieces of degree (2, 4)).

In Karčiauskas and Peters (2019a), semi-structured splines abbreviated GT(3) hereafter, are constructed treating
the τ -nets as part of bi-3 C2 spline mesh. Since bi-3 C2 splines have a larger support then bi-2 splines, the τ -nets
provide Hermite information only after a special refinement into a unifying net, displayed in Fig. 5c. Conversion of
the unifying net yields second-order Hermite data in BB-form. In Fig. 5d the nodes of unifying net are displayed
as ◦ and the spline consists of 16 pieces that are of degree 3 and C2 in the horizontal direction. Unlike GT(2), the
GT(3) construction offers various levels of continuity with the surrounding surfaces. G2 continuity requires degree
(3, 9), G1 continuity requires degree (3, 5) and C0 continuity requires degree (3, 3), yet all achieve roughly the same
highlight line distribution.

3. Polar reparameterizations ρ

C1 continuity at the central point (pole) of polar cap requires reparameterizations ρ of the plane. We consider a
regular planar m-gon (gray in Fig. 6a,b) with vertices

vi := [ cisi ] , i = 0, . . . ,m− 1; ci := cos
2π i

m
, si := sin

2π i

m
, and center o ∈ R2.

The ith piece ρi : R2 → R2 of ρ covers the ith triangle of the m-gon and is of degree (d, 1) where, depending on the
context, d = 2 or d = 3. One layer of ρi is collapsed, i.e. ρij1 := o for j = 0, . . . , d, while its opposite interpolates
vertices: ρi+1

00 := vi+1 =: ρid0 (see Fig. 6a,b).

ρi00

ρi10

ρi20
ρi+1
10

ρi+1
20

o

(a) ρ of degree (2,1)

ρi00

ρi10

ρi20
ρi30

ρi+1
10ρi+1

20

ρi+1
30

o

(b) ρ of degree (3,1)

vi

vi+1

vi+2

C

(c) linear map

Figure 6: Polar reparameterizations: (a) degree 2, (b) degree 3 with ρijk, o, vi ∈ R2. (c) linear map with C,vi ∈ R3.

For ρ of degree (2,1), it remains to define the BB-coefficients

ρi10 :=
vi + vi+1

c + 1
+

c− 1

c + 1
o ∈ R2, where c := c1. (2)

By construction, adjacent pieces of ρ are C1 connected.
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For ρ of degree (3,1),

ρi10 :=
2vi + vi+1

c + 2
+

c− 1

c + 2
o ∈ R2, ρi20 :=

vi + 2vi+1

c + 2
+

c− 1

c + 2
o ∈ R2, (3)

completes the definition. Then it is easily checked that adjacent pieces of ρ are C2 connected.

Polar parameterized plane. To ensure existence of a unique normal at the pole C, we define a linear map `̀̀ : R2 → R3

piecemeal with each piece defined by coefficients o, vi, vi+1 (see Fig. 6c) constrained so that

vi+2 := −vi + 2cvi+1 + 2(1− c)C. (4)

Composing `̀̀ ◦ ρ, the central point C is the image of origin o, the points vi are the images of the vertices vi of the
m-gon, and the other BB-coefficients of `̀̀ ◦ ρ are defined by (2), respectively (3) with v replaced by v, o by C and R2

by R3. Variants of the expressions (2),(3) and (4) will appear in the polar constructions.

4. Polar capping of bi-quadratics

Given the often poor highlight line distribution of regular bi-2 C1 tensor-product B-splines, the expectations for
surfaces generalizing bi-2 splines to polar configurations can not be high. Nevertheless it is good to derive the bi-2
construction as it clarifies the principle ideas with simpler formulas than the bi-3 case. After the default construction of
degree (2,3), this section presents a variant purely of degree bi-2, i.e. of minimal polynomial degree for C1 continuity.

P
pi−1

pi
pi+1

(a) polar net⇒ BB-form

bi−1

bi+1

bi
00

bi
10bi

20

C

(b) focus on the BB-net (c) bi-2 macropatch

Figure 7: Bi-degree (2, 3) construction and its transformation to a bi-2 macropatch.

First we construct a polar cap with a single patch per sector. Each patch is of degree (2, 3), degree 2 in the circular
and degree 3 in the radial direction, see Fig. 7a,b. Fig. 7a shows a polar net with the vertices pi, i = 0, . . . ,m− 1 and
a central node (the pole) P of valence m. The triangles pipi+1P are treated as the quads with one edge collapsed to
P.

The BB-form of the polar cap is displayed in Fig. 7b. The outermost circular layer of BB-coefficients bj0 are
displayed as •, bj1 as •, bj2 as • and the innermost layer collapses to the pole C:

bi
j3 := C :=

3

4
P +

1

4m

m−1∑
i=0

pi,

Interpreting pi−1, pi, P, P as four bi-2 B-spline control points, and applying the conversion of Section 2 yields the
BB-coefficients of the quadratic boundary:

bi
00 :=

1

4
(pi−1 + pi) +

1

2
P, bi

10 :=
1

2
pi +

1

2
P, bi

20 :=
1

4
(pi + pi+1) +

1

2
P.

6



Setting bi
j1 := 1

3P+ 2
3b

i
j0, j = 0, 1, 2, connects the polar cap smoothly to any surrounding bi-2 B-spline surface. The

formula for bi
02 insures that the points bi

02, C and bi
22 define a polar-parameterized plane and the parameterization

then defines bi
12:

bi
02 := C +

1

3m

m−1∑
s=0

cs
1

2
(pi−1+s + pi+s), bi−1

22 := bi
02, bi

12 :=
bi
02 + bi

22

c + 1
+

c− 1

c + 1
C. (5)

(a) net, m = 8 (b) layout (c) bi-23 (d) bi-2

Figure 8: Capping of extending bi-2 splines when the boundary is oscillating. Highlight lines on the surface generated from an extended convex
polar net.

4.1. A two-piece bi-2 macropatch
To keep the overall degree minimal for C1 continuity, each patch of degree (2,3) can be replaced by two C1-joined

patches of degree bi-2. Denoting the BB-coefficients of macropatch with the superscript �, (cf. Fig. 7b, Fig. 7c for the
color code), the 2-piece bi-2 macropatch inherits first-order Hermite data both at the center and the outer boundary:

•� := •, •� :=
1

4
•+

3

4
•, C� := C, •� :=

1

4
C +

3

4
•, (6)

hence is smoothly connected to surrounding surface; and •� := 1
2•

� + 1
2•

� guarantees that the bi-2 macropatch polar
cap is internally C1.

(a) cf. Fig. 2 (b) polar vicinity

Figure 9: Bi-2 generalizing capping of meshes with T0-gons completed with a polar configuration whose boundary is close to planar.

4.2. Visual comparison of the bi-2 generalizing variants
This section takes a critical look at the low-degree options for C1 polar caps. As pointed out earlier bi-2 C1

tensor-product splines often have poor shape so that the expectations can not be high. Note that adding a regular layer
around the polar configuration as in Fig. 8a yields a surrounding strip of regular bi-2 patches (green in Fig. 8b) for
testing the quality of the transition to the polar cap. Fig. 8 and Fig. 9 show how oscillations in the input quad mesh
affect low-degree polar caps. The highlight line distribution around the polar cap in Fig. 9 is considerably better than
in Fig. 8. We traced the oscillations back to non-planarity of the circular parameter lines surrounding the polar cap
and intentionally dislocated the surrounding quad layer in Fig. 8a to expose the differences in outcomes. Oscillations
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(a) Doo-Sabin subdivision

(b) finitely capped Augmented Subdivision

(c) new bi-2 polar + 6-sided bi-3 caps

(d) new bi-3 polar on once-refined mesh of (c)

Figure 10: Comparison of bi-2 generalizing constructions. (a) input mesh, Doo-Sabin (DS) patch layout: bi-2 base, bi-2 two DS steps, DS
subdivision surface. DS yield a flat top. (b) Augmented bi-2 Subdivision applied to the input mesh in (a), completed by degree bi-3 construction
of Karčiauskas and Peters (2015b) improves on DS, but is more complicated than (c) where the polar construction is paired with the degree bi-3
construction. (d) The polar configuration is refined according to Section 5.1 and capped by the bi-3C2 generalizing polar construction of Section 5.

of the circular parameter lines near the pole can likely be avoided by a skilled designer but may occur in automated
remeshing algorithms.

Fig. 10 compares subdivision and finite constructions. After two Doo-Sabin steps applied to the left input mesh, the
middle-left submesh defines the yellow patches in Fig. 10a; continuing the Doo-Sabin refinement to visual completion
yields the red caps. The undue flatness of the overall surface is the result of the first two steps. In Fig. 10b the first
two steps are replaced by Augmented Subdivision Karčiauskas and Peters (2015b) and no flatness is observed when
the surface is completed (red caps) by Augmented Subdivision. In Fig. 10c the polar node of the input mesh is chosen
to be the central node of Augmented Subdivision, i.e.

µnf̄1 + (1− µn)f̄2 where µ3 := 3/5 and µn := 2(n− 2)/n for n >= 4,

f̄1 is the average of the pentagon vertices in (a), left, and f̄2 is the average of these vertices’ direct neighbors not on the
pentagon. Now no refinement is needed. The C2 bi-3 construction shown in Fig. 10d is explained in the next section.
It yields the most uniform and rounded highlight line distribution.
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P p̄i−1

p̄i

p̄i+1

pi−1

pi
pi+1

(a) polar net⇒ BB-form

bi−1

bi

bi+1 C

00
1020

30
1121

1323

(b) focus on the BB-net (c) bi-3 macropatch

Figure 11: Bi-degree (3, 4) construction and its transformation into a bi-3 macropatch.

5. Polar capping of bi-cubics

Analogous to Section 4, first a polar cap with a single patch per sector is constructed, this time of degree (3, 4).
Fig. 11a shows a polar mesh with vertices p̄i, pi, i = 0, . . . ,m − 1 and a central node, the pole P of valence m.
Interpreting the triangles pipi+1P as quads with one edge collapsed to P enables a conversion to a partial BB-net
with coefficients b̂r

i,j , i = 0, . . . , 3, j = 0, . . . , 2 (green in Fig. 11a). Degree raising to 4 in the radial direction yields
three layers of BB-coefficients br

ij of the cap outside the red central point and tangent layer, see Fig. 11b. The first-
order expansion of the degree (3,4) cap at the pole is defined by setting C as the limit point of bi-3 polar subdivision
B3PS

C :=
2

3
P +

1

3m

m−1∑
i=0

pi, (7)

1
6

1
3

1
2

1
3

2
3

↘ ↙

(a) stencil for split

Figure 12: Transformation of a degree 4
curve into two C2-connected cubics with
the stencils above for � and below for ◦.

and defining the tangent plane as the linear image of a regular m-gon

bi
03 := C +

2

m

m−1∑
s=0

cs
C + 3b̂i+s

02

4
, bi−1

33 := bi
03. (8)

The points bi
03, bi

33 and C define a polar parameterized plane and hence

bi
13 :=

2bi
03 + bi

33

c + 2
+

c− 1

c + 2
C, bi

23 :=
2bi

33 + bi
03

c + 2
+

c− 1

c + 2
C. (9)

The resulting cap is C2-connected to the surrounding surface, internally C2

and C1 at the pole.

Bi-3 macropatches. Applying the stencils of Fig. 12 symetrically and setting
the common coefficient • as a the average of its neighbors creates C2 layer
curves to replace the degree 4 layer curves of the degree (3,4) cap. The
result is a 2m piece bi-3 polar cap that essentially preserves the highlight
line distribution of the degree (3,4) cap, joins C2 with the surrounding surface and is internally C2 except at the pole
where it is C1.

5.1. Refinement in the vicinity of polar configurations

Refinement can be used to add detail as illustrated in Fig. 16, or to separate tight configurations where multiple ir-
regular nodes or facets are in close proximity. The challenge is to refine without harming the highlight line distribution
near the pole.
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(a) (b) (c)

Figure 13: Preprocessing in tight configurations. (a) Tight polar input. (b) Refinement in circulant direction followed by B3PS refinement. (c) The
• were defined by the surrounding input mesh.

(a) layout (b) naive1 (c) naive2 (d) naive3 (e) default

Figure 14: Comparison of bi-3 generalizing constructions for conical input. Rejected options and default with highlight lines.

Single refinement in tight configurations. When the direct neighbor of the polar node is part of a T-gon (see Fig. 18a,e)
or if it has valence n 6= 4 (see Fig. 19a) then the earlier cap construction is not well-defined. We proceed as follows.

- Interpret the ring of neighbors of the polar node as the control polygon of a cubic uniform spline in B-spline
form and double the number control points by uniform knot insertion. In Fig. 13b, ◦ indicate original and •
indicate (auxiliary) refined nodes.

- Derive new • in Fig. 13b by applying the B3PS-refinement rules to • and the initial polar node.

- Replace the auxiliary nodes • by the nodes • (see Fig. 13c) generated as a refinement to accommodate G-splines
or GT-splines as in Karčiauskas and Peters (2019a).

Here the second ring of neighbors of the polar node (dashed in Fig. 1a) influences • and hence the shape of the polar
cap and the entirety of • affect the refined nets used for construction of surfaces abutting the polar cap. Fortunately
this interplay is well balanced and results in a good highlight line distribution.

Fig. 14 compares the construction to alternative, at a first glance natural, pre-processing refinements that result
in visible artifacts compared to the above default option. For example, treating the polar triangles as quads with
a collapsed edge, the nodes •GT (3) and •GT (3) resulting from GT(3) τ -gon refinement can be taken in lieu of the
• and • nodes of Fig. 13b; and the polar node defined as (option: naive1) the initial polar node P0 or as (option:
naive2) the weighted average (7P0 + A)/8, where A is the average of the •GT (3) and the ratio 7:1 gives the best
visual result. A third option is to combine •GT (3) and • of the default algorithm. Complementing C2 bi-3 surfaces,
interrogation with highlight lines reveals that the default is best; ‘naive3’ is almost as good but has less desirable, more
’pinched’ highlight lines. ‘naive1’ corresponds to a more pointed cap. One explanation for the pinching artifacts is
that interpreting the polar triangles as degenerate quads pulls the mesh too much towards the pole. The default slows
this movement.

Refinement for analysis. The above refinement serves well to add regular nodes and preserve good shape, but does
not express the original surface in terms of more degrees of freedom as is required for engineering analysis theory.
An analysis-friendly, reproducing refinement is derived in two steps.
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(a) input polar control net bi-3 cap new control net

1
8

11
16

3
16

1
4

3
4

(b) refinement stencil

Figure 15: Refinement of the bi-3 cap.

First, the polar net (whose nodes are circles in Fig. 15a) is transformed by

- doubling the number of • control points by radial uniform cubic subdivision. This yields the layers of green-
underlaid BB-coefficients of the bi-3 cap in Fig. 15a and ensures C2 connection to the surrounding surface.

- The three enlarged large central coefficients define, by the recurrence (4), the remaining central control nodes
marked •. The central nodes are converted to BB-form via (3). This defines red-underlaid BB-coefficients at
the center of the bi-3 cap, Fig. 15a.

- The BB-coefficients between the green circular layers b and the red circular layers b̃ are set so that radial layers
are C2:

b3 := b2 +
1

4
(b̃2 − b1), b̃0 := b3, b̃1 := b2 +

1

2
(b̃2 − b1). (10)

Second, the new net is refined radially, then circularly. The bullets of the top row of Fig. 15b represent a typical radial
layer, with the rightmost • the pole.

- The coefficients marked • in the bottom row are obtained from top • by knot insertion. The formulas for the
coefficients additionally marked by a hollow box and a diamond are given by the stencils above and below the
top line segment.

- The rightmost • (bottom line) representing the pole remains stationary; its neighbor, marked as • is the average
of the pole and its neighbor (top line segment).

- Apply knot insertion to the circular C2 layers.

Recall that only three nodes (enlarged, red in Fig. 15) can be set independently.

5.2. Visual comparison

As in Section 4, we extend a net used for construction of the polar cap by an additional layer of nodes in Fig. 17a
to generate a surrounding strip of regular bi-3 patches (green in Fig. 17e) and so assess the transition to the polar cap.

The difference between everywhere C2 bi-65 surfaces (reviewed in the Appendix) and C2 bi-3 surfaces that are
only C1 at the pole is best visible in the curvature distribution, see Fig. 17. The C2 bi-3 splines represent a remarkable
improvement over the analogous surfaces in Fig. 8.
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Figure 16: Using refinement to add detail to the bi-3 polar cap of Fig. 2c.

(a) net, m = 8 (b) bi-34 (c) bi-65 (d) bi-3

(e) layout (g) bi-65 Gauss (h) bi-3 Gauss

Figure 17: Comparing bi-3 generalizing constructions for an extended convex polar net with oscillating base line. Highlight lines and Gauss
curvature attest to high quality of the purely bi-3 cap.

All surfaces in Fig. 18 are bi-3. This means that the GT-splines for overlapping τ1-configurations formally join
only C0. Yet this lack of formal smoothness is not visible – also in considerably harder configurations.

Fig. 19 illustrates the treatment of irregular configurations in close proximity: nodes with n 6= 4 neighbors,
τ -configurations and polar configurations combine to form one semi-structured spline modeling the whole surface.

6. Conclusion

Polar caps can close off a large variety of tube-like surfaces without introducing shape artifacts. Their control
net consists of a cone of m triangles and the surface consists of a small multiple of m polynomial pieces. Tight
configurations, where vertices of the control net belong to other semi-regular structures, admit polar caps after a local
refinement. The quality of the caps is consistent or better than that of the underlying regular spline: lower for bi-2
C1 splines and higher for bi-3 C2 splines. G1 polar caps of degree as low as (3, 4) and (3, 3) deliver high-quality
highlight line distributions, that are on par with a high-end degree 6,5G2 construction (see Appendix) but with simpler
algorithms.

Acknowledgements. This work was supported in part by DARPA HR00111720031 and NIH R01 EB018625.
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(a) polar valence 5 (b) refined mesh (c) surface (d) polar vicinity of Fig. 18c

(e) perturbation of Fig. 18a (f) polar vicinity after perturbation

Figure 18: Meshes with tightly packed T1-gons and completed with polar configuration (a,e). (b) Refinement to form a unified net. This succeeds
also for adjacent T1-gons. The polar configuration is refined to an overall consistent refined mesh. (c,e) Layout of resulting bi-3 surface; the regular
bi-3 patches form a bottom green strip, a polar cap is displayed as a top red disk. (d,f) The highlight line distribution of the polar cap.

(a) mesh (b) refinement (c) layout (d) highlights (e) vicinity of top cap

Figure 19: Tight ‘bottle opener’ mesh. The top pole node is a direct neighbor of nodes of valence 5. Bi-3 polar caps, n-sided surface pieces (blue
and gray) and T-junctions all generalize bi-3 splines in the regular parts of the semi-structured control net.
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Appendix: A polarG2 cap of degree (6,5)

To ensure that the low-degree constructions of Section 5 have highlight line distributions comparable to curvature
continuous constructions, we devised an algorithm that differs from the G2 construction of Karčiauskas and Peters
(2009) only in an improvement of the central quadratic expansion q and preserves its highlight lines and curvature
images. Since the improvement simplifies the original, it is presented here for readers who want to implement and
compare themselves a G2 construction to the algorithms of this paper.
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(c) sector patch bi

Figure 20: Degree (6, 5) construction. Notations for polar net as in Fig. 11a.

The central point qi
0 := C of the quadratic expansion is set to the limit point of bi-3 polar subdivision B3PS (7).
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Then for i = 0, . . . ,m− 1, (see Fig. 20a,b)

qi
1 :=C + w

m−1∑
s=0

cspi+s + w̄

m−1∑
s=0

csp̄i+s, qi−1
2 := qi

1;

qi
3 :=(1− w′0 − w̄′0)P +

w′0
m

m−1∑
s=0

ps +
w̄′0
m

m−1∑
s=0

p̄s + w′1

m−1∑
s=0

cspi+s

+ w′2

m−1∑
s=0

c2spi+s + w̄′1

m−1∑
s=0

csp̄i+s + w̄′2

m−1∑
s=0

c2sp̄i+s, qi−1
5 := qi

3; (11)

qi
4 :=(1− w′′0 − w̄′′0)P +

w′′0
m

m−1∑
s=0

ps +
w̄′′0
m

m−1∑
s=0

p̄s

+ w′′1

m−1∑
s=0

cs
pi+s + pi+s+1

2
+ w′′2

m−1∑
s=0

c2s
pi+s + pi+s+1

2

+ w̄′′1

m−1∑
s=0

cs
p̄i+s + p̄i+s+1

2
+ w̄′′2

m−1∑
s=0

c2s
p̄i+s + p̄i+s+1

2
.

The following proposition can be checked by substitution.

Proposition 1. If

w′1 := 2w, w̄′1 := 2w̄,

w′′0 := cw′0 +
1− c

3
, w̄′′0 := cw̄′0, w′′1 := 2w, w̄′′1 := 2w̄, w′′2 :=

w′2
c
, w̄′′2 :=

w̄′2
c
,

then qi and qi+1 are C2 connected.

Corollary 1. The pieces qi are part of a single C2 quadratic expansion.

It remains to choose w, w̄, w′0, w̄′0, w′2, w̄′2 to optimize shape and simplify the implementation. Good shape is
achieved for

w̄ := 0, w′0 :=
10

9
, w̄′0 :=

1

18
, w̄′2 :=

w′2
34
, (12)

and, for even m ≤ 20,

m = 6 8 10 12 14 16 18 20

w := 0.139 0.112 0.093 0.079 0.069 0.06 0.054 0.049
w′2 := 0.315 0.315 0.29 0.262 0.235 0.213 0.193 0.176

For oddm = 7, . . . , 19, the parameters are interpolated: w(2s+1) := w(2s)+w(2s+2)
2 ,w′2(2s+1) :=

w′
2(2s)+w′

2(2s+2)
2 .

And for m > 20,

w(m) :=
0.00079m+ 0.96939

m
, w′2(m) :=

0.01158m+ 3.3274

m
.

Finally, knot insertion in circular direction doubles the valences of m = 3, 4, 5 and so reduces these cases to m =
6, 8, 10. This completes the construction of the quadratic expansion q.

The BB-coefficients bi
sr of bi-65 patch (see Fig. 20c) are then defined as follows. Conversion to a partial BB-net as

in Section 5 and degree-raising to (6, 5) yields the green layers bi
rs, r = 0, . . . , 6, s = 0, 1, 2. At the pole bi

r5 := C,
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layer 4 is defined by degree-raising to 6 the cubic defined by formulas (9), bi
04 := 3

5q
i
0 + 2

5q
i
1 and bi

64 := 3
5q

i
0 + 2

5q
i
2.

We set
bi
03 :=

1

10

(
3qi

0 + 6qi
1 + qi

3

)
,

bi
13 :=

1

10(2 + c)

(
(3 + 6c)qi

0 + (11 + 4c)qi
1 + 3qi

2 + 2qi
3 + qi

4

)
,

bi
23 :=

1

50(2 + c)2
(
(15 + 78c + 42c2)qi

0 + (92 + 80c + 8c2)qi
1 + (54 + 36c)qi

2

+ (16 + 2c)qi
3 + (20 + 4c)qi

4 + 3qi
5

)
,

bi
33 :=

1

100(2 + c)2
(
3(7 + 52c + 31c2)qi

0 + 3(49 + 40c + c2)(qi
1 + qi

2)

+ 18(qi
3 + qi

5) + (49 + 4c + c2)qi
4

)
,

and the remaining BB-coefficients bi
43, bi

53, bi
63 are defined by symmetry.

Fig. 21 compares the C2 degree (6,5) cap to the bi-3 cap of Section 5 for convex and wavy meshes. The highlight
line distributions are near indistinguishable ((b) vs (c)) unless one looks directly from the top where the bi-3 shape is
not quite as uniform; the second row, (i) vs (j) confirms a slightly more pointed bi-3 cap whereas the (6,5) construction
spreads out more due to its quadratic expansion.

(a) m = 12 (b) bi-3 (c) bi-65 (d) bi-3 (e) bi-65

(f) m = 16 (g) bi-3 (h) bi-65 (i) bi-3 (j) bi-65 (k) bi-65→ bi-3

Figure 21: Comparison of bi-3 and bi-65 constructions: top convex net, m = 12; bottom wavy net, m = 16.

Using the (6,5) patch as a guide, we can construct a bi-3 polar cap alternative to Section 5 as m 3-piece C2 bi-3
macro-patches. Observing that the layers bi

rj , j = 0, 1, 2, 4 are of actual degree 3 we can transform layer 3 to degree
3 by defining B-spline control points di := −4bi

03 + 10bi
13 − 5bi

23. By matching the second-order Hermite data
at either end, each radial layer of degree 5 is approximated by three uniquely determined C2-connected segments.
Fig. 21k illustrates that a good highlight line distribution can be achieved by the guided approach despite the low
degree.
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