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Abstract

Refinement of a space of splines should yield additional degrees of freedom for modeling and engineering analysis, both along
boundaries and in the interior. Yet such additional flexibility fails to materialize for multi-sided G2 surface constructions when the
polynomial degree is too low.

This paper establishes a tight lower bound on the polynomial degree of flexibility-increasing refinable multi-sided G2 surface
constructions within a C2 spline complex – by ruling out bi-5 constructions and by exhibiting a multi-sided bi-6 construction that
yields good highlight line and curvature distributions. The bi-6 construction consists of one 2×2 macro-patch for each of the n sectors
that join to form the multi-sided surface
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1. Introduction

Where more than two parameter lines cross and therefore
n , 4 surface patches (sectors) meet at an extraordinary point,
the surface parameters have to adapt to avoid a singularity. Any
such change of variables connects derivatives along and across
the n sector-separating curves that emanate from the extraordi-
nary point. When the polynomial degree is too low compared
to the smoothness between the sectors, patches fuse in the sense
that, what should be a piecewise polynomial with many degrees
of freedom, becomes a single polynomial.

This failure to produce new linearly independent local basis
functions not only prevents the geometry from becoming more
flexible, but also impairs the convergence of functions on the
surface. For example, when solving differential equations, [1]
showed that C2-connected bi-cubics have a sub-optimal approx-
imation order in the presence of extraordinary points and, more
generally, that h-refinement in the presence of non-trivial repa-
rameterizations fuses piecewise polynomials of degree p when
the continuity is Cp−1. Earlier [2] showed that for bi-3 (bicubic)
spline patches the interdependence of partial derivatives forces
a minimum separation of the extraordinary points when polyno-
mial pieces are joined G1. Both [1] and [3] recommend construc-
tions of degree bi-4 to avoid artificial stiffness or ‘locking’ under
G1-refinability.

This paper focuses on refinement of multi-sided G2 surface
caps consisting of a finite number of pieces and without singular
parameterization. Concretely, this paper

• proves that there is no flexibility-increasing refinable bi-5
construction completing a C2 spline complex by a G2 cap
with C2 sectors;

• exhibits a bi-6 construction with 2×2 pieces per sector such
that the surfaces have good highlight line and curvature dis-
tributions; and
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• shows that the bi-6 construction is refinable with increas-
ing flexibility along all boundaries and in the interior of all
sectors.

The flexibility-increasing construction can represent both the
physical domain and finer functions on this domain for engi-
neering analysis.
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Figure 1: Layout of pieces and their BB-nets of (a) a hypothetical bi-5 construc-
tion with internally C2 macro-patches. Such constructions fail to be flexibility-
increasing G2-refinable, regardless of the number of pieces; (b) the 2 × 2 bi-6
macro-patch constructions of Section 4. The BB-coefficients marked ◦ represent
the cubic expansion, cs in sector s. The extraordinary point is marked o, corner
points cs and midpoints ms of a sector s.

1.1. Related literature
On regular, non-multi-sided or multi-patch mesh configura-

tions, the practice of using the same bi-variate tensor-product
(hence refinable) splines, both for modeling the geometry of the
domain and for computing functions on this domain, goes back
at least to [4] and has been regularly advocated and advanced in
the literature [5, 6, 7, 8]. This consistent use of splines is also
the central tenet of iso-geometric analysis [9]. For C1 elements,
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the inclusion of irregular configurations into matching geometry
and analysis spline spaces was pioneered in [10, 11, 12, 13] and
applied to planar multi-patch domains in [14]. [15] considers C2

elements on the union of two bi-linear domains. The present pa-
per derives a G2 construction not restricted to bilinear but suitable
for inclusion into any bi-cubic C2 spline complex. The resulting
surfaces are typically of good shape. By the result in [16] such a
space provides C2 elements for engineering analysis.

The G2 constructions in [17] (of degree bi-7) and [18] (of de-
gree bi-6) can also generate good shape but are not G2 refinable.
Constructions like [19] do not gain flexibility since their shape is
fixed by composition with a fixed (quadratic or cubic) map. The
C2-refinable construction of [20] is of degree bi-9 and has shape
restrictions that make it unsuitable for high-end design.

Overview. Section 2 defines the surface representation and the
notions of smoothness and flexibility-increasing refinement. Sec-
tion 3 establishes the lower bound by showing that multi-sided
bi-5 G2 constructions can not be flexibility-increasing. Section 4
presents a bi-6 G2 construction for multi-sided caps, suitable for
inclusion into a C2 spline complex, that Section 5 shows to be
G2 and flexibility-increasing refinable. Alternatives and design
choices are discussed in Section 6.

2. Definitions and Setup

(a) B-spline-like control points (b) ring and tensor-border

Figure 2: (from [13]) (a) Input net of B-spline-like control points • of indepen-
dent G2 functions. (b) The full input net defines a ring of C2-connected bicubic
patches. The subnet of points marked • in (a) define a C2-extension shown as the
finer inner mesh on white background (representing the BB-net of coefficients in
Bernstein-Bézier form). The subnet defines the multi-sided surface cap.

(a) bi-3 patch p (b) tensor-border

Figure 3: Bi-3 B-to-BB conversion. Circles ◦mark B-spline control points, solid
disks • mark BB-coefficients.

The multi-sided surfaces will be a collection of tensor-product
patches of bi-degree d (short bi-d) in Bernstein-Bézier form (BB-
form), see e.g. [21]:

f(u, v) :=
d∑

k=0

d∑
`=0

fk`Bd
k (u)Bd

` (v), (u, v) ∈ [0..1]2.

Here Bd
i (t) :=

(
d
i

)
(1 − t)d−iti are the Bernstein polynomials of

degree d and fi j are the BB-coefficients. We abbreviate f :=∑d
k=0 fkBd

k as
f ∼ [f0, . . . , fd]

and define the layer curves f j ∼ [f0 j, . . . , fd j]. Connecting fi j
to fi+1, j and fi, j+1 wherever possible yields the BB-net. A useful
operation on polynomials in BB-form is to split them into two
pieces, say a left half and a right half, by the well-known de
Casteljau algorithm [21].

The vertices of any 4×4 sub-grid in the mesh, such as the grey
net in Fig. 3 a, can be interpreted as the control net of a uniform
bi-3 B-spline [22]. The B-to-BB conversion expresses the spline
in bi-3 BB-form illustrated by the green BB-net in Fig. 3 a. A
partial conversion from a partial mesh yields a sub-net of the
BB-net. A sub-net defining position, first and second derivatives
across an edge Fig. 3 b is called a tensor-border.

Definition 1 (G2 constraints). Two surface pieces f̃, f : (u, v) ∈
R2 → Rd that share a boundary curve e join G2 along e if there
exists a suitably oriented and non-singular reparameterization
ρ : R2 → R2 so that the partial derivatives ∂k f̃ and ∂k(f ◦ ρ),
k = 0, 1, 2, agree along e.

Throughout, we will choose e to correspond to surface patch
parameters (u, 0 = v). Then the relevant Taylor expansion (up to
degree 2) of the reparameterization ρ with respect to v is

ρ(u, v) :=
(
u + b(u)v +

1
2

e(u)v2, a(u)v +
1
2

d(u)v2). (1)

The chain rule of differentiation yields the well-known G1 and
G2 constraints on constructions in terms of univariate scalar maps
a, b, d, e : u ∈ R → R and the vector-valued functions f(u, 0),
f̃(u, 0):

∂vf̃ = a ∂vf + b ∂uf, (2)

∂2
vvf̃ = a2 ∂2

vvf + 2a b ∂u∂vf + b2 ∂2
uuf + d ∂vf + e ∂uf. (3)

If a(u) := 1, b(u) := 0, d(u) := 0 and e(u) := 0 then ρ(u, v)
reduces to identity map and the G2 constraints are called (para-
metric) C2 constraints.

Considering n surface sectors surrounding a central point, the
sectors are constructed diagonally symmetric if the formulas that
define f ji can be obtained from those defining fi j by exchanging
i and j. The construction is unbiased if, when f̃ and f are ex-
changed in (2) or (3), the constraints remain the same. No bias
implies

a(u) := −1 and e(u) := b(u)
(
b′(u) −

d(u)
2

)
. (4)

Since, for any reasonable construction, input symmetry should
be preserved and the output should be invariant under re-labeling,
diagonal construction symmetry and no bias are reasonable re-
quirements for any general construction.

G-spline spaces and refinement. If we specify a reparameteriza-
tion ρe for every edge e then a space Gρ of tensor-product BB-
patches joined with the same reparameterizations forms a linear
vector space in the unconstrained BB-coefficients. That is, any
linear combination of elements in Gρ is again in Gρ.

The space Gρ is refinable to a space Ġρ̇ in the following sense,
see Fig. 4 . For each polynomial piece f ∈ Gρ defined on � :=
[0..1]2, the space Ġρ̇ has four polynomial pieces fr, r = 1, 2, 3, 4
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(wlog. of the same degree as f) defined on the four quarters of
� and joined by the following reparameterizations ρ̇: the Taylor
expansion ρ̇ up to degree 2 across the new four inner edges ρ̇ is
the identity, i.e. the pieces join C2; along any original edge ep ρ
is retained in pieces:

ρ̇ep,0 (u, v) = ρep (
u
2
,

v
2

), ρ̇ep,1 (u, v) = ρep (
1
2
+

u
2
,

v
2

).

Then there is a choice of fr, namely applying de Casteljau’s al-
gorithm to f at u = v = 1/2, so that any element f ∈ Gρ can
be represented in Ġρ̇. That is, Ġρ̇ refines Gρ. However, many
other choices of macro-patches fr are allowable so that Ġρ̇ can
be expected to provide more flexibility than Gρ, i.e. has more
degrees of freedom, e.g. BB-coefficients not constrained by en-
forcing smoothness.

Definition 2 (flexibility-increasing refinable). With the pre-
ceding definition of Ġρ̇ ) Gρ a construction is flexibility-
increasing refinable if, for each domain piece �, Ġρ̇ has more
degrees of freedom than Gρ, both along map boundaries and in
the interior.

e0

e1

eG1

C2

e0 e1

G1

e

(a) initial

e1,0

e1,1

e0,1 e0,0

e0,0 e0,1

e1,1

e1,0

(b) refined

Figure 4: G-spline refinement. To be flexibility-increasing, new degrees of free-
dom must appear both in the interior and along the red sector-separating curve
boundaries and the green boundaries that connect the cap to the remaining sur-
face.

In this paper, we focus on multi-sided caps whose sectors are
internally C2. That is the black transitions in Fig. 4 are C2. In
the context of refinement it is natural to focus on internally C2

sectors since all new internal transitions arising from refinement
must be parametrically C2 to reproduce the original polynomial
pieces by the finer construction. Moreover, constructions with
internally G2 sectors are not only more complicated, but, in our
experience, yield lower surface quality.

In the next section, we will see that refined functions can re-
main a single polynomial along the reparameterized G-edges, i.e.
the expected additional dofs fail to materialize under refinement.
In [1] such lack of new flexibility was called ‘locking’ in analogy
to a term in engineering shell computation.

3. Unbiased, diagonally-symmetric multi-sided G2 bi-5 con-
structions are not flexibility-increasing refinable

This section establishes that diagonally symmetric and unbi-
ased G2 constructions of multi-sided surfaces with C2 sectors
must have degree higher than bi-5 in order for their refinement
to be flexibility-increasing. The proof consists of multiple steps,
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Figure 5: Bi-5 construction. (a) Reparameterization of any N+1-piece C2 in-
put tensor-border t. (b) G1-join of neighbor sectors sharing the tensor border.
(c) from top. Row 1: initial piece tk , row 2: first split, row 3, 4: left parts of
subsequent splits.

condensed in lemmas and corollaries, that are each conceptually
simple, but were originally discovered by symbolic computation.

Connecting the sectors of a finite multi-sided construction G2

requires a careful choice of reparameterization along the input
boundary c,m in order to also meet the surrounding surface with
second-order smoothness. Fig. 5 a depicts a uniform split of the
tensor-border t of one sector (cf. Fig. 2 b) into N + 1 pieces tk,
k = 0, 1, . . . ,N. Each piece is reparametrized by ρk defined in
terms of local functions ak, bk, dk, ek in (1) to yield new tensor-
borders t̃k.

Proposition 1. For an unbiased G2 construction,

(i) across cs,ms, the functions a, b, d, e of ρ must be polynomi-
als;

(ii) across ms,o, a ≡ −1 and b must be a polynomial.

We recall that unbiased constructions require a(u) ≡ −1. The
remaining proof of Prop. 1 is in Appendix C.

Lemma 1 (degree bounds of ρ across c,m). If the tensor-
borders t are of degree bi-3 and the reparameterized tensor-
borders t̃k are of degree bi-5 then the polynomial degree of ak,
bk, dk, ek is respectively less or equal to 1, 2, 2, 3.

Proof Let deg(h) denote a degree of function h in u-direction.
Counting confirms that the stated choice of degrees yields
tensor-borders t̃s of degree 5 in the u-direction. To show that
the listed degrees are maximal, replace in (2) and (3) f by
tk and f̃ by t̃k. Then (2) implies that 5 = deg(∂v t̃k) =
max{deg(ak∂vtk), deg(bk∂utk)} = max{deg(ak) + 3, deg(bk) + 2}
and therefore deg(ak) ≤ 2 and deg(bk) ≤ 3. We next use the
fact that the 3 × (3 + 1) BB-coefficients of t are linearly in-
dependent and we can choose them so that all right hand side
terms of t̃k in (3) are zero except for deg(∂2

vvtk) = 3. Then
5 = deg(∂vv t̃k) = 2deg(ak) + deg(∂2

vvtk) = 2deg(ak) + 3 and
deg(ak) ≤ 1 must hold. Setting next all terms tk

i j = 0 for
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j = 0, 2, the only non-zero right hand side terms of (3) are
deg((ak)2∂2

vvtk) = 5, deg(2akbk∂u∂vtk) = 3 + deg(bk) ≤ 6 and
deg(dk∂vtk) ≤ deg(dk) + 3. Therefore deg(dk) ≤ 3. Indepen-
dent choice of the BB-coefficients tk

i1, i = 0, . . . , 3 shows that
the degree 6 terms cannot always cancel one another. Therefore,
for general input t, deg(dk) ≤ 2. Finally, considering all terms
not already bounded by degree 5, deg((bk)2∂2

uutk) ≤ 6 + 1 and
deg(ek∂utk) ≤ deg(ek) + 2 implies deg(ek) ≤ 5; but again, in-
dependent choice of the BB-coefficients tk

i j shows that neither
degree 6 nor degree 7 terms can always cancel one another, so
that deg(ek) ≤ 3 must hold. |||

Binary splitting the tensor-borders tk, t̃k

tk,0(u, v) := tk(
u
2
,

v
2

), tk,1(u, v) := tk(
1
2
+

u
2
,

v
2

),

t̃k,0(u, v) := t̃k(
u
2
,

v
2

), t̃k,1(u, v) := t̃k(
1
2
+

u
2
,

v
2

)

(Fig. 5 c illustrates the left part of such consecutive splits) implies
reparameterizations ρk,r, r = 0, 1 with

ak,0(u) := ak(
u
2

), ak,1(u) := ak(
1
2
+

u
2

),

bk,0(u) := bk(
u
2

), bk,1(u) := bk(
1
2
+

u
2

),

dk,0(u) :=
1
2

dk(
u
2

), dk,1(u) :=
1
2

dk(
1
2
+

u
2

),

ek,0(u) :=
1
2

ek(
u
2

), ek,1(u) :=
1
2

ek(
1
2
+

u
2

).

(5)

Lemma 2 (b, e across c,m). Flexibility-increasing refinement
of the G2 bi-5 tensor-border t̃k implies

bk
0 + 2bk

1 + bk
2 = 0 and ek

0 + 3ek
1 + 3ek

2 + ek
3 = 0.

Proof If the split pieces tk,0 and tk,1 are C2-connected and repa-
rameterized by (5) then t̃k,0 and t̃k,1 must also be C2-connected.
Setting equal the expansions of the second derivative in u

∂vuu t̃k,i = ∂uuak,i∂vtk,i + 2∂uak,i∂uvtk,i + ak,i∂vuutk,i

+ ∂uubk,i∂utk,i + 2∂ubk,i∂uutk,i + bk,i∂uuutk,i (6)

of the G1 constraints (∂vt̃k,0)(1) = (∂vt̃k,1)(0), we observe that
(due to C2 continuity in u of ak,i, bk,i, tk,i and ∂vtk,i) all terms
agree except possibly

bk,0(1)∂uuutk,0(1) = bk,1(0)∂uuutk,1(0). (7)

(7) holds if and only if the boundary curves tk,0(u, 0) and tk,1(u, 0)
are C3-connected – or bk,0(1) = bk,1(0) = bk

0 + 2bk
1 + bk

2 = 0.
The claim follows since the first option means that the boundary
remains a single cubic curve under refinement, i.e. the refinement
does not increase flexibility.

Analogously, removing terms that agree due to C2 continu-
ity and since bk,0(1) = bk,1(0) = 0, setting equal the expansions
of the second derivative in u of the G2-constraints (∂vv t̃k,0)(1) =
(∂vv t̃k,1)(0), reduces to ek,0(1)∂uuutk,0 = ek,1(0)∂uuutk,0 and
this forces tk,0(u, 0) and tk,1(u, 0) to be C3-connected, hence
a single polynomial and not flexibility-increasing, or else
ek,0(1) = ek,1(0) =ek

0 + 3ek
1 + 3ek

2 + ek
3 = 0. |||

Lemma 3 (a,b,d,e across c,m). Flexibility-increasing refinabil-
ity of the G2 bi-5 tensor-border t̃k implies that bk(u) ≡ 0 and
ek(u) ≡ 0 for all k = 0, 1, . . . ,N. Diagonal symmetry addition-
ally implies ak(u) ≡ 1 and dk(u) ≡ 0.

Proof Applying Lemma 2 to t̃k yields the constraint bk
2 := −bk

0 −

2bk
1, i.e. bk,0 ∼ [bk

0,
bk

0
2 +

bk
1

2 , 0] and ek
3 := −ek

0−3ek
1−3ek

2 and hence

ek,0 ∼ [ ek
0

2 ,
ek

0
4 +

ek
1

4 ,
ek

0
8 +

ek
1

4 +
ek

2
8 , 0]. We now iterate binary splits and

focus on the left pieces as illustrated in Fig. 5 c. Abbreviating

ḃ := bk,0, ė := ek,0, b̈ := ḃ0, ë := ė0,
...
e := ë0,

for the left pieces, the constraints of Lemma 2 imply b̈ ∼
[bk

0, b
k
0/4, 0]. Re-applying Lemma 2 to b̈ yields bk

0 := 0 and hence
bk

1 = 0 = bk
2, i.e. bk(u) ≡ 0. Applying Lemma 2 to ė and then

re-applying twice yields respectively

ë ∼ [ek
0/4, 3ek

0/16 + ek
1/16, 7ek

0/96 + ek
1/32, 0],

...
e ∼ [ek

0/8, 5ek
0/96, ek

0/64, 0], ek
0 := 0.

and hence ek
1 = ek

2 = ek
3 = 0 as claimed.

Now consider the part of t̃0 marked by the left � in Fig. 1 a.
Diagonal symmetry of t̃0 implies that a0 ≡ 1 and d0 ≡ 0.
By assumption on the internal smoothness of each sector, the
tensor-borders t̃k and t̃k+1 are C2-connected. Therefore the ze-
roth, first and second derivative in u (corresponding to the bound-
ary between cap and surrounding surface) of the G1 constraints
(∂v t̃k)(1) = (∂v t̃k+1)(0), (see (6)) and b ≡ 0 imply that ak and
ak+1 are C2-connected. The analogous argument for the G2 con-
straints implies that dk and dk+1 are C2-connected. Then the
claim follows from the degree bounds on ak and dk. |||

Corollary 1. Each t̃k equals tk in degree-raised form.

For the overall theorem we look additionally at the refinement
along sector-separating curves.

Theorem 1. Symmetric, unbiased, multi-sided bi-5 G2 construc-
tions with internally C2 sectors can not be refined flexibility-
increasing.

Proof For polynomial pieces pN , ~pN (sector-pieces of degree bi-
5) and tN ,~tN (tensor-border of degree bi-3) meating at ms, Corol-
lary 1 implies ~pN

i1 := 2pN
i0 − pN

i1, i = 3, 4, 5 (see the right �
in Fig. 1 a and the indices in Fig. 5 b). Since the sectors are
constructed without bias, the G1 constraints (2) have the form
∂v~pN = −∂vpN + bN(u)∂u~pN . Consider the choice of least-
degree: bN(u) := γN(1 − u)3 for γN ∈ R. The comparison of
degrees, deg(b0∂up) = 3 + deg(∂up) = deg(∂v~p + ∂vp) ≤ 5, im-
plies deg(∂up) ≤ 2. Hence the piece of sector-separating curve
between pN and ~pN is of actual degree at most 3. Any higher-
degree choice of bN(u) would yield even lower degree and further
curtail flexibility.

Refining the sector-pieces pN and ~pN yields four pieces pN,0,
pN,1, ~pN,0, ~pN,1. Calculating derivatives as in (6) yields the
analogous equality bN,0(1)∂uuupN,0(1) = bN,1(0)∂uuupN,1(0). If
∂uuupN,0(1) = ∂uuupN,1(0) then the pieces form a single cubic
polynomial, i.e. refinement does not increase flexibility. Oth-
erwise bN,0(1) = bN,1(0) = γN

8 = 0 must hold and this implies
that ~pN

i1 := 2pN
i0 − pN

i1 for all i = 0, . . . , 5. Since macro-patches
are internally C2, ~pN−1

i1 := 2pN−1
i0 − pN−1

i1 , i = 3, 4, 5, for the
next piece towards o, and flexibility-increasing refinement im-
plies γN−1 = 0. Proceeding along the sector-separating curve,
γ0 = 0 conflicts with the n-sided configuration, n , 4 at o. |||
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Figure 6: Bi-6 construction: layout and notation for G2 data. (a) 2-piece tensor-
border; (b,c,d) sectors along the sector-separating curve from o to m. (b) Generic
piece: the sector-separating curve is of reduced degree 5. Its BB-coefficients
are marked ◦. (c) The main construction; (d) Generic pieces k and k + 1 during
refinement. Note that in (a) the u-direction is horizontal, whereas in (b), (c)
u corresponds to the full ’down’ arrow (while the hollow arrows mark the v-
direction).

4. Geometric bi-6 construction

This section defines a multi-sided, symmetric, unbiased G2 bi-
6 surface cap sufficiently flexible for inclusion into any bi-cubic
C2 spline complex. Fig. 1 b showed the layout. Each of the n
sectors consists of 2 × 2 polynomial pieces of degree bi-6 that
join C2; the gray-underlaid strips of BB-coefficients guarantee
G2-continuity both with the input data along ms−1, c,ms and be-
tween the sectors along o,ms. The BB-coefficients marked as ◦
represent Hermite data up to order 3 at the extraordinary point,
namely the cubic expansion c of a map c̃ of total degree 3, repa-
rameterized. The quality of the surfaces is typically very good,
see Fig. 10 . Section 5 will prove flexibility-increasing G2-
refinability of this construction by explicitly exposing new free
coefficients along the boundary curves and in the interior.

4.1. Specific G2 constraints
Fig. 6 b shows a generic piece of the cap along a sector-

separating curve. For a quadratic b(u) :=
∑2

i=0 biB2
i (u) and

d(u) := 0 the unbiased setup yields a(u) := −1, e(u) := b(u)b′(u).
Note that we re-use a,b, d, e to name the functions of ρ along the
sector-separating curve, o,ms – not to be confused with the a,b,
d, e used along the tensor-border cs,ms. The constraint

∂v~p = −∂vp + b(u)∂up (8)

then implies that s is of degree 5 (see the BB-coefficients marked
as ◦ in Fig. 6 b). The G2 constraint (3) now reduces to

∂2
vv~p = ∂

2
vvp − 2b(u)∂u∂vp + b2(u)∂2

uup + b(u)b′(u)∂up . (9)

For an extraordinary point of valence n, we choose

b ∼ c[2, 2, 1]; b ∼ c[1, 0, 0]; c := cos
2π
n
, (10)

where b reparameterizes the piece s closer to o, and b the piece s
closer to m, see Fig. 6 c; Section 6 explains the rationale under-
lying the specific choice.

4.2. Pre-solving G2 constraints within the cap
C0 continuity between the sectors follows from ~pi0 := pi0,

~p
i0

:= p
i0

, for i = 0, 1, . . . , 6, and degree 5 of the sector-
separating curve is enforced as

6∑
i=0

(−1)i
(
6
i

)
pi0 = 0,

6∑
i=0

(−1)i
(
6
i

)
p

i0
= 0. (11)

Since the G1 constraints are of degree 6 and the G2 constraints
of degree 7, they form a system of 7 + 7 + 8 + 8 = 30 linear
equations. Joining C2 the pieces p and p, respectively ~p and ~p,
(with p, ~p closer to m) by setting

p
0 j

:= p6, j, ~p
0 j

:= ~p6, j, j = 0, 1, 2, j = 1, 2,

p5 j := p6 j +
p4 j − p

2 j

4
, p

1 j
:= p6 j −

p4 j − p
2 j

4
,

~p5 j := ~p6 j +

~p4 j − ~p2 j

4
, ~p

1 j
:= ~p6 j −

~p4 j − ~p2 j

4
;

(12)

and then solving the equations, leaving unconstrained the coeffi-
cients marked as • in Fig. 6 c, yields

p
i1

:=p
i0
+

p
i2
− ~p

i2

4
, ~p

i1
:= p

i0
−

p
i2
− ~p

i2

4
, i = 5, 6;

w1 := −
b0

100
, w2 := −w1, w3 :=

b0

30
,

p
41

:=p
40
+

1
4

(p
42
− ~p

42
) − w3(p

50
− p

60
)

+ w2(p
52
− ~p

52
) + w1(p

62
− ~p

62
),

~p
41

:=p
40
−

1
4

(p
42
− ~p

42
) − w3(p

50
− p

60
)

− w2(p
52
− ~p

52
) − w1(p

62
− ~p

62
).

(13)

At m assignment (13) is consistent with the input tensor-border
data after splitting it into two pieces tk, k = 0, 1 (see Fig. 6 a)
reparameterized by their respective ρk with

ak(u) := 1, bk(u) := 0, ek(u) := 0, k = 0, 1, δ :=
d1

3

4
−

c
12
,

dk(u) :=
3∑

i=0

dk
i B3

i (u), d0 ∼ [0, 0, 0, δ], d1 ∼ [δ, 2δ, 4δ, d1
3].

As default we set
d1,de f

3 :=
2c
3
. (14)

Since ps+1
i j = ~ps

ji, for i + j ≤ 2 the coefficients ps
i j in sectors

s > 0 can be uniquely expressed in terms of the six quadratic
expansion coefficients p0

i j. This is necessary but not sufficient for
the solutions across all n sector-separating curves to be consistent
at the central point o.
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4.3. Construction via a guide surface
To achieve good shape, the cap follows a piecewise C1 guide

surface g whose construction and tabulation for each valence n
is explained in detail in [23]. Other, at first glance natural alter-
natives intended to optimize shape fail due to the large number
of unconstrained coefficients among the 2 × 2 degree bi-6 pieces
per sector. The guide g is of total degree 6 (see Fig. 7 a). Its cen-
ter (pink-underlaid BB-coefficients) represents a degree 3 map c̃
in degree-raised form, see Fig. 7 b. The map is defined by 10
BB-coefficients of one sector, shown as • in Fig. 7 a.

(a) guide g

o
300

210
120

030

021

012
003

102

201
111

030

003

c̃s c̃s+1

(b) cubic map c̃

Figure 7: (a) The n = 5 sectors of the guide g, a C1 map of piecewise total degree
6. The pink-underlaid center is a total degree 3 map c̃. (c) The BB-coefficients of
c̃.

In each sector s we compose the guide g with the reparameter-
ization τ : R2 → R2 whose layout is that of Fig. 1 b. Then each
sector of τ is constructed to be

- G2-connected to adjacent sectors via the pre-solved con-
straints of Section 4.2;

- G2-connected using ρ with the tensor-border of the charac-
teristic ring of Catmull-Clark subdivision [24, Chapter 5];

- internally C2;
- both diagonally and rotationally symmetric, see Fig. 8 .

(a) n = 3

1 2

34

s

s

(b) n = 5 (c) n = 6 (d) n = 8

Figure 8: Reparameterizations τ.

The coefficients of τ unconstrained after enforcing • := 1
2• +

1
2• for the coefficients indicated in Fig. 8 b, minimize the func-

tional F3 f :=
∫ 1

0

∫ 1
0

∑
i+ j=3,i, j≥0

3!
i! j! (∂

i
s∂

j
t f (s, t))2 ds dt, applied to

the four pieces of one sector (and hence to all sectors by rota-
tional symmetry).

The following inheritance of smoothness by g ◦ τ at o (see the
BB-coefficients marked ◦ in Fig. 1 b) is checked by inspection.

Lemma 4 (cubic expansion c yields G2 join at o). Let cs
i j,

cs+1
i j , i + j ≤ 3 denote the BB-coefficients of the cubic expansions

cs and cs+1 at o obtained by converting the partial derivatives of
h := g ◦ τ up to order 3 to bi-6 BB-form:

∂3
v h ∂2

v h ∂vh h
∂u∂

3
v h ∂u∂

2
v h ∂u∂vh ∂uh

∂2
u∂

3
v h ∂2

u∂
2
v h ∂2

u∂vh ∂2
uh

∂3
u∂

3
v h ∂3

u∂
2
v h ∂3

u∂vh ∂3
uh

→


cs
03 cs

02 cs
01 cs

00
. cs

12 cs
11 cs

10
. . cs

21 cs
20

. . . cs
30

 , cs+1
0i = cs

i0, i = 0, . . . , 3.

(15)
Then the expansions cs and cs+1 depend only on BB-coefficients
of the cubic map c̃ at o and are consistent with the G1 and G2

constraints between sectors s and s + 1.

In each sector and quadrant k = 1, 2, 3, 4 of τ (see the labels in
Fig. 8 b) the guide g is composed with τ and the resulting h :=
g ◦ τ is converted into bi-6 patches f by collecting in each corner
the Hermite data (Fig. 9 a) expressed in BB-form (Fig. 9 b), with
averaged BB-coefficients at overlapping locations (Fig. 9 c).


∂3

v f ∂u∂
3
v f ∂2

u∂
3
v f ∂3

u∂
3
v f

∂2
v f ∂u∂

2
v f ∂2

u∂
2
v f ∂3

u∂
2
v f

∂v f ∂u∂v f ∂2
u∂v f ∂3

u∂v f
f ∂u f ∂2

u f ∂3
u f

→
(a) Hermite data (b) BB-form

(c) bi-6 patch

Figure 9: (a) Hermite data as partial derivatives converted to (b) BB-form. (c) A
patch of degree bi-6 obtained by merging Hermite data at the corners.

4.4. The G2 cap algorithm
Denote the sets of unconstrained BB-coefficients by S0 and

the set of BB-coefficients of the strip p, ~p, p, ~p along a sector-
separating curve by S, see Fig. 6 c:

S0 := {p32,p42,p62,p41,p22
,p

32
,p

21
},

S := {p32,p31, ~p31, ~p32; . . .

pi j, ~pi j, i = 4, 5, 6, j = 0, 1, 2; p
i j
, ~p

i j
, i = 1, 2, 3, j = 0, 1, 2.}.

Then the bi-6 surface is constructed as follows.

Bi-6 cap construction. Set the BB-coefficients in Fig. 1 b

(i) marked ◦ according to Lemma 4;
(ii) underlaid gray along the curve c,m as the reparametrized

input tensor-border t̃s;
(iii) all remaining BB-coefficients of the 2 × 2 patch in each

sector and quadrant as the bi-6 BB-coefficients of f (the
Hermite-sampling of g ◦ τ);

(iv) overwrite S by minimizing with respect to S0 the sum of
squared distances between the coefficients of f and S.

The last step ensures G2 continuity across sector-separating
curves. The overall construction can be tabulated and executed
as a matrix multiplication.

Fig. 10 displays bi-6 caps for several valencies, assessing the
quality, both of the transition from bi-3 surroundings to bi-6 cap
and of the cap itself, by highlight lines as well as curvature shad-
ings. The observed monotonicity and uniformity of both mea-
sures indicated very high surface quality.

5. Flexibility-increasing G2-refinability of the bi-6 cap

A uniform binary split via de Casteljau’s algorithm refines the
bi-6 patches. This section aims to exhibit (all) newly uncon-
strained BB-coefficients that allow G2 modifying this trivially

6



(a) n = 3 (b) n = 5 (c) n = 6 (d) n = 8

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) min (n) Gaussian (o) max (p) mean

Figure 10: (Top row) Input nets. (Row 2) Layout with bi-3 ring and bi-6 cap.
(Row 3) Distribution of highlight lines. (Bottom row) Curvature shading.

refined surface and so show that the refinement is flexibility-
increasing.

In the interior of each sector, flexibility-increasing refinability
reduces to uniform knot insertion for a tensor-product bi-6 C2

spline and needs no further discussion.
Along the boundaries m, c the functions d(u) and along m, o

the functions b(u) are correspondingly split: dre f ,0(u) := d(u/2),
dre f ,1(u) := d(1/2 + u/2) and bre f ,0(u) := b(u/2), bre f ,1(u) :=
b(1/2 + u/2). Then, where the refinements along m, c and
m, o overlap near m, the 3 × 3 groups of BB-coefficients agree.
Fig. 14 illustrates the flexibility-increasing G2-refinement along
m, c: uniform knot insertion refines the green control points of
the C2 bi-cubic spline complex and B-to-BB conversion followed
by reparameterization yields the green-underlaid BB-coefficients
of bi-6 sector. As B-spline refinements, both interior and outer
boundary refinement are then readily seen to be flexibility-
increasing.

This section therefore focuses on the (grey-underlaid) strips
of BB-coefficients in Fig. 11 that enforce G2-continuity along
sector-separating curves o,m. A number of technical lemmas,
some relegated to the Appendices, are needed to prove and fully
characterize the increase in free parameters. First, we consider
the generic configuration of Fig. 6 . New degrees of freedom in
the refined construction are now exhibited by pre-solving the G2

constraint equations under refinement in terms of these uncon-
strained coefficients. The key to identifying the unconstrained
coefficients is a localizing reformulation of the generic G2 con-
straints, i.e. the constraints without consideration of the special
interaction with other constraints at o and m.

5.1. Generic refinement along the sector-separating curves

Recall that the sector-separating curve is of degree 5. Its BB-
coefficients si, i = 0, . . . , 5, are marked as ◦ in Fig. 6 b. The

o

ms

ps

ps

ms−1

cs

s

s

(a) initial 2 × 2 bi-6 G2

o

ms

ms−1

cs

sk

(b) once-refined 4 × 4 bi-6 G2

Figure 11: Internal degrees of freedom marked as •.

reparameterization for the G1 and G2 constraints (8, 9) are

a(u) := −1, b(u) :=
2∑

i=0

biB2
i (u), d(u) := 0, e(u) := b(u)b′(u).

We abbreviate the right sides of (8), (9) as

ṙ(u) := − ∂vp + b(u)∂up ,

r̈(u) :=∂2
vvp − 2b(u)∂u∂vp + b2(u)∂2

uup + b(u)b′(u)∂up .

Evidently deg(ṙ) = 6 and ~pi1 := pi,0 + ṙi/6, i = 0, . . . , 6. Since
deg(r̈) = 7 complicates derivation of an explicit solution to the
constraints, we reformulate.

Lemma 5 (degree-reducing reformulation). Define the alter-
nating sums

b̂ :=
2∑

i=0

(−1)i
(
2
i

)
bi, p̂ :=

6∑
i=0

(−1)i
(
6
i

)
pi1, ŝ :=

5b̂
12

5∑
i=0

(−1)i
(
5
i

)
si.

Then deg(r̈(u) + 72b̂(p̂ + ŝ)u7) = 6.

For i = 0, . . . , 6, we denote the BB-coefficients of the reformu-
lation r̈(u) + 72b̂(p̂ + ŝ)u7 by r̈i. Then ~pi2 := −pi,0 + 2~pi1 +
r̈i/30. Close examination of the C2-join of the refined pieces re-
veals four conditions (1), (2), (3), (4) that when satisfied yields
smoothness of the layer curves aligned with the sector boundary.

Lemma 6 (implied smoothness across s). If
(1) the alternating sums of coefficients p̂k + ŝk = 0 = p̂k+1 + ŝk+1

and the layer curves with coefficients
(2) sk

i and sk+1
i , i = 0, . . . , 5, are C4-connected;

(3) pk
i1 and pk+1

i1 , i = 0, . . . , 6, are C3-connected;
(4) pk

i2 and pk+1
i2 , i = 0, . . . , 6, are C2-connected

then the layer curves
(3*) ~pk

i1 and ~pk+1
i1 , i = 0, . . . , 6, are C3-connected;

(4*) ~pk
i2 and ~pk+1

i2 , i = 0, . . . , 6, are C2-connected.

Remarkably, (1–4) are not only sufficient but necessary for
flexibility-increasing G2-refinability of unbiased constructions
and the C3 continuity in (3*) then comes for free.

↓− 1
4

3
4

3
4 −

1
4

↑1
4 − 1

4
1

Figure 12: BB-form of a C3 spline of degree 6 (triple knots).

7



`k−1 mk−1 rk−1 `k mk rk `k+1 mk+1 rk+1

0 1 2 3 4 5 6

pk−1
i1 pk

i1 pk+1
i1

Figure 13: A localized construction of a C3 spline of degree 6.

Constraints (2), (3) and (4) of Lemma 6 prescribe continuity
of the layer curves aligned with sector-separating curves. Com-
bining (1) with (2), (3) and (4), however, makes the computation
non-local. To localize the computation of (1–4) we observe that
the BB-form of (3) is, cf. Fig. 12 ,

pk
61 := −

1
4

(pk
31 + pk+1

31 ) +
3
4

(pk
41 + pk+1

21 ), pk+1
01 := pk

61 ;

pk
51 :=pk

61 +
1
4

(pk
41 − pk+1

21 ) , pk+1
11 := pk

61 −
1
4

(pk
41 − pk+1

21 ) .
(16)

Substituting (16) and the change of variables (see Fig. 13 )

pk
21 :=

29`k − 6mk + 13rk

36
, pk

31 :=
13`k − 6mk + 13rk

20
,

pk
41 :=

13`k − 6mk + 29rk

36
,

(17)

localizes constraint (1) of Lemma 6 as

− rk−1 + 2mk − `k+1 + ŝk = 0 . (18)

That is,
- `k and rk are unconstrained control points; they prove that the
refinement is flexibility-increasing along generic parts of each
sector-separating curve ;
- mk are calculated from (18); and
- the BB-coefficients pk

i1 are defined by (16) and (17).

5.2. Smoothness at new splits along the sector-separating curves

We now split the kth segment along o,m into a part closer to
o and, indicated by an underline, a part closer to m. Due to C2

smoothness, after refinement,

bk+1 ∼ [bk
2, 2bk

2 − bk
1, 4bk

2 − 4bk
1 + bk

0];

and at the at the midpoint between o and m where pieces join C2

in the original construction

b ∼ [b2 := c, 2b2 − b1, 2b2 − b0]. (19)

The following solution takes special consideration of the mid-
point ts.

Lemma 7 (C2 along the sector-separating curve). If the
sector-separating curves with coefficients si and si, i = 0, . . . , 5,
are C2-connected, and the layer curves with coefficients pi j and
p

i j
, i = 0, . . . , 6 are C2-connected for j = 1, 2, and if (omitting

the superscript re f throughout in (20), e.g. bi := bre f
i )

ν0 :=
35c − b0 + 2b1

48c
, ν1 :=

59c − b0 + 2b1

80c
,

ν2 :=
−b2

0 + 7b0b1 − 10b2
1 − 64c2 + 7cb0 − 11cb1

864c
,

s5 := −
s2 + s3

4
+ ν0s3 + (

3
2
− ν0)s2,

p61 := −
p31 + p

31

4
+ ν1p41 + (

3
2
− ν1)p

21
−

c
48

s1

+
5c + 2b1 − b0

72
s2 + ν2s3 + (

c + b0 − 2b1

36
− ν2)s2

−
7c − 2b1 + b2

72
s3 +

c
48

s4 ,

(20)

then the layer curves ~pi j and ~p
i j

, i = 0, . . . , 6 are C2-connected
for j = 1, 2.

Refinement of the cubic expansion c at the extraordinary point
o. To refine at o, the solution provided via reformulation (see
Lemma 5) is re-arranged to make the BB-coefficients pre f

i j , 0 ≤

i, j ≤ 2 and pre f
30 and ~pre f

22 are unconstrained (see top markers in
Fig. 6 c). Then (15) of Lemma 4 can be applied as for the ge-
ometric construction in Section 4. The refinement decomposes
into refining the cubic map c̃ and splitting the part of the repa-
rameterization τ1 (nearest the origin) of Section 4. The details
are given in Appendix A.

Refinement of the sector-separating curves. The refinement is
easy after converting the BB-coefficients to independent B-spline
coefficients: of a C4 spline of degree 5 for the sector-separating
curve, and of a C3 spline of degree 6 for the layers of the G2

strip straddling the sector-separating curve. The details of the
conversion are given in Appendix B.

5.3. Linear independence

Consider one coordinate, say x, set to 1 the value xα of one
unconstrained control point with index α and to zero all other
unconstrained control points, and then apply the bi-6 cap con-
struction. This yields a collection of polynomial pieces in BB-
form that we denote gα.

Recall from the construction that the unconstrained control
points fall into four distinct groups, see Fig. 14 .

(a) Control points of the surrounding bicubic spline;
(b) Internal C2-spline coefficients (•)
(c) Ten control points of the cubic map c̃ at o;
(d) By Lemma 6 (4) the BB-coefficients p02, p22, p32, p62, p62

can be independently chosen and the localizing reformula-
tion identifies `, r and d (see (25) of Appendix B) as control
points that can be set freely and define the BB-coefficients
marked as ◦ in Fig. 14 . Group (d) consists of the subset of
these points that are not used in defining the BB-coefficients
marked in Fig. 14 as green-underlaid or ◦.

Proposition 2. The functions gα are linearly independent.

Proof Assume that a linear combination
∑
α xαgα, of the gα in

the four groups, is the zero function, i.e. all BB-coefficients of
the resulting cap are zero. We show that then all xα must be zero.
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Figure 14: The control point groups of the refined bi-6 G2 surface.

(a) None of the BB-coefficients of the tensor-border tk are set
by groups (b),(c),(d). Since the BB-coefficients are ob-
tained by B-to-BB-conversion followed by reparameteriza-
tion, and the B-splines are linearly independent, xα = 0 for
α in group (a).

(b) By definition, the each gα in group (b) has exactly one
non-zero BB-coefficient marked as •. Since all these BB-
coefficients are zero, xα in (b) must be zero.

(c) The derivatives up to degree 3, evaluated at the o-corner of
the bi-6 patch, vanish if an only if the 10 control points • of
c vanish, i.e. xα = 0 for α from group (c).

(d) Since the α within group (d) were chosen so that their gα
are linearly independent, all xα = 0.

|||

6. Discussion

The choice of the functions b(u), b(u) when reparameterizing
along the sector-separating curves (Section 4) is motivated by the
desire to have a single formula apply to all irregular valencies.
For n > 4, b1 is formally unrestricted, but for n = 3 a unique
quadratic expansion at center requires b1 := 2c = −1 and this
choice does not harm the surface quality for n > 4.

An alternative permissible reparameterization is

ρk := (u +
1
2

ek(u)v2, v +
1
2

dk(u)v2), k = 0, 1,

d0 ∼ [0, 0,
c
4

], e0 ∼ [0, 0,
c

12
,

7c
72

], e1
3 := 0

where d0 and d1 join C2; and e0 and e1 join C2. Here we need as
input a reparameterized C3-connected tensor-border of degree 4
to yield a C2 surface of degree 6 as opposed to our current set-
ting of C2-connected input data of degree (bi-)3. An increased
number of free parameters allows G2 capping of a sequence of
C2 guided rings as in [25]. Standard (iso-geometric) engineer-
ing analysis can then be applied on the regular C2-joined rapidly
contracting C2 spline rings, see e.g. [23], and a tiny G2 bi-6 cap
that need not be refined. On the downside, the more complex ρ
complicates G2 refinement of the input tensor-border that must be

degree-raised to 4 and subsequently C3-refined, and the increased
number of free parameters increases the potential for poor shape.

The general formulas of Section 5 could have also been used
in Section 4. However we prefer the approach in Section 4 as it
emphasizes the geometric flavor of the construction.

Flexibility-increasing refinability is intended for engineering
analysis. Using the extra degrees of freedom naively, either in-
dividually or in small groups for geometric manipulation is not
effective. This parallels the assessment for G1 refinement in [26].
For example, in Fig. 15 a the cubic expansion c is moved up left
and used to fix unconstrained BB-coefficients as in Section 4.
The resulting surface right, although G2, is not well-shaped:
the dimples, see Fig. 15 , surely, are not wanted by a designer.
In Fig. 15 b, perturbing degrees of freedom across the sector-
separating curve left yields extended perturbations. Only per-
turbations interior to a C2 sector as in (c) produces a predictable
outcome.

(a) c shifted up: C0, G2 (b) perturbation and smoothing (c) in sector

Figure 15: Individual or groups of degrees of freedom used naively are not
suitable for modeling geometric detail – unless they stay within one sector.

A special, different class of irregular points appear in polar
layouts. Here the least-degree, general-purpose, polar C2 con-
structions [27, 28] are bi-6 and are refinable, since, at the pole,
the refinement is based on refining a quadratic expansion analo-
gous to cubic expansion used here.

7. Conclusion

Establishing tight lower degree bounds is hard since one needs
to rule out all possible approaches of lesser degree. This pa-
per proved that, for multi-sided configurations within a C2 spline
complex, refinement of G2 surface constructions with C2 sectors
of degree bi-5 can not generate the expected additional degrees
of freedom along the boundaries.

Conversely the paper exhibits a refinable, multi-sided G2 con-
struction of degree bi-6 (a minimal upper bound) with typically
excellent highlight lines. Moreover, all possible degrees of free-
dom under refinement are characterized. The characterization
is technically complex and requires intelligent reformulations to
localize the computations. The characterization of the full space
proves that the refined construction is flexibility-increasing.

While not useful as direct geometric shape handles the refined
constructions can serve for engineering analysis after the geom-
etry is established with the original algorithm. It remains to be
seen whether a subspace of the constructions can both serve for
engineering applications and provide good geometric shape han-
dles.
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Appendix A: Refinement of c̃ and τ1

Fig. 16 illustrates the refinement of the cubic map c̃ in BB-
form. First de Casteljau’s algorithm is applied in the direction of
the thick layers Fig. 16 a, then in the vertical direction Fig. 16 b
to obtain Fig. 16 c. The refinement and conversion to BB-form

of degree bi-6 form can be tabulated. With the indices of c̃ in
Fig. 7 b refinement becomes a single matrix multiplication:

c̃re f := Ac̃ :=
1
8


8 0 0 0 0 0 0 0 0 0
4 4 0 0 0 0 0 0 0 0
2 4 2 0 0 0 0 0 0 0
1 3 3 1 0 0 0 0 0 0
4 0 0 0 4 0 0 0 0 0
2 2 0 0 2 2 0 0 0 0
1 2 1 0 1 2 1 0 0 0
2 0 0 0 4 0 0 2 0 0
1 1 0 0 2 2 0 1 1 0
1 0 0 0 3 0 0 3 0 1




c300
c210
c120
c030
c201
c111
c021
c102
c012
c003

 .

o o o

(a) (b) (c)

Figure 16: Refinement of the cubic expansion c at the central point o by applying
de Casteljau’s algorithm.

The BB-coefficients of the cubic expansion c (red underlaid
in Fig. 7 a) are obtained by sampling the cubic expansion of the
guide g (see ◦ points in Fig. 1 b) with τ1. Degree-raised to 6, c
has the same same domain as g (see Fig. 7 b).

o

v̇

v̈

(a) sampling g with τ

o
v̇

v̈

(b) domain of c

00

10

20

30

0102
03

11

21
12

(c) indices of τ

Figure 17: (a) Sampling the guide g with τ. The domain of the guide is a sector of
a regular unit n-gon spanned by o := (0, 0), v̇,v̈ (see Fig. 7 a). The BB-coefficients
of τ1 that used in determining c in (15) are marked ◦. (b,c) The relevant part of τ
when sampling o: • := τ00, • := τ01, • := τ02.

We reformulate and scale τ1 so that (see Fig. 17 )

• :=
2
3
• +

1
3

v̇, • :=
1
3
• +

2
3

v̇. (21)

The result , denoted τ, has explicit BB-coefficients τ00
τ01
τ02
τ10
τ20

 :=
1
3

 0 0 1
1 0 2
2 0 1
0 1 2
0 2 1

 ( v̇
v̈
o

)
,

 τ03
τ30
τ11
τ12
τ21

 :=


µ0 0 1−µ0
0 µ0 1−µ0
µ1 µ1 1−2µ1
µ2 µ3 1−µ2−µ3
µ3 µ2 1−µ2−µ3

 ( v̇
v̈
o

)
(22)

where, for n = 3, 5, 6, . . . , 10, µ0 := 1 + κn/105,

κn := 185, 1033, 352, −145, −469, −687, −840,

µ1 :=
1
3
, µ2 :=

2
3
−

61c
135
+

4cµ0

9
, µ3 :=

29
270
+

2µ0

9
. (23)

The BB-coefficients used in the composition in the refinement
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are defined as τre f
i j := 2τ̃i, j, 0 ≤ i + j ≤ 3, where τ̃ := τ( u

2 ,
v
2 ).

This preserves (21) and τre f
i j is obtained from (22) with

µ
re f
0 :=

3 + µ0

4
, µ

re f
1 :=

1 + 3µ1

6
,

µ
re f
2 :=

4 + 6µ1 + 3µ2

12
, µ

re f
3 :=

1 + 6µ1 + 3µ3

12

and τ̃ := Aτ where the ten indices of τ according to Fig. 17 b are

00, 01, 02, 03, 10, 11, 12, 20, 21, 30. (24)

Analogously, after scaling c( u
2 ,

v
2 ) towards the origin o, one ob-

tains cre f , see Fig. 16 . The explicit formulas allow verification
of the following decomposition.

Proposition 3 (decomposition of composed refinement). For
the cubic expansions

(c ◦ τ)re f := (c ◦ τ)(
u
2
,

v
2

) = cre f ◦ τre f .

Mapping indices as in (24), ten BB-coefficients po of the (re-
fined) output patch p are obtained from the (refined) expansion c
via po := Bc, where B :=

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
−1
5

2
5

4
5 0 0 0 0 0 0 0

3(1−µ0) 3µ0−
18
5

6
5

2
5 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0
5
3−6µ1 3µ1−

2
3 0 0 3µ1−

2
3

2
3 0 0 0 0

48µ1
5 −3(µ2+µ3)− 1

3
12
5 −

72µ1
5 +3µ2

24µ1
5 −

16
15 0 8

15−
24µ1

5 +3µ3
24µ1

5 −
4
5

4
15 0 0 0

−1
5 0 0 0 2

5 0 0 4
5 0 0

48µ1
5 −3(µ2+µ3)− 1

3
8

15−
24µ1

5 +3µ3 0 0 12
5 −

72µ1
5 +3µ2

24µ1
5 −

4
5 0 24µ1

5 −
16
15

4
15 0

3(1−µ0) 0 0 0 3µ0−
18
5 0 0 6

5 0 2
5


.

Appendix B. Conversion to B-spline form along the sector-
separating curves

Since we focus on one sector at a time, we omit the sector in-
dex s. We first consider the sector-separating curves, C4 splines
of degree 5 and then the layer curves ‘parallel’ to the sector-
separating curves that are (localized) C3 splines of degree 6.

Refinement of the sector-separating curve. With the notation of
Fig. 18 , i.e. b0 := o the BB-coefficients bi, i = 0, . . . , 3 are
defined by c. (25) expresses the control points di, i = 0, . . . , 3 in
terms of bi, i = 0, . . . , 3 and d4 by inverting the conversion from
B- to BB-form given by

bs
0

bs
1

bs
2

bs
3

bs
4

bs
5


:= Md :=

1
120



1 26 66 26 1 0
0 16 66 36 2 0
0 8 60 48 4 0
0 4 48 60 8 0
0 2 36 66 16 0
0 1 26 66 26 1





ds

ds+1

ds+2

ds+3

ds+4

ds+5


. (25)

Fig. 18 shows the B-spline coefficients (top) and the BB-
coefficients of a piece (bottom) of a C4 degree 5 spline. The
B-spline coefficients dk for k ≥ 4 are then unconstrained. At
m, the BB-coefficients bi, i = 3, . . . , 5 are defined by the repa-
rameterized input data t. (25) expresses the control points di,
i = 3, . . . , 5 in terms of d1, d2 and bi, i = 3, . . . , 5; dk for k ≥ 2
are then unconstrained. Away from o and m, mimicking the no-
tation of (20), the BB-coefficients s2, s3, s2, s3 are independent

ds ds+1 ds+2 ds+3 ds+4 ds+5

bs
i

0 1 2 3 4 5

Figure 18: B-spline coefficients of degree 5 C4 spline and its BB-coefficients.

and define C2-joined pieces just as at o but for two formally not
interacting groups di and di, i = 0, . . . , 5. (As before, the part
closer to o caries no super or subscript and the part closer to m
is identified by an underline.) We express the control points di,
i = 2, . . . , 5 in terms of d1 and bi, i = 2, . . . , 5; and the con-
trol points di, i = 0, . . . , 3 in terms of d4 and bi, i = 0, . . . , 3.
The new independent BB-coefficients for a flexibility-increasing
refinement therefore are

b2,b3,d1, . . . , b2,b3,d
4, . . .

Refinement of the layer curves. The localized splines of degree
6 are similarly refined. With p0

i , i = 0, 1, 2 defined by c and p1
i ,

i = 0, . . . , 6 the BB-coefficients of the next curve piece, we set
p0

i , i = 0, 1, 2 in p̂0 :=
∑6

i=0(−1)i
(

6
i

)
p0

i1 according to (17) and
`0 := 1

29 (36p0
2 + 6m0 − r0). Proceeding as when deriving (18)

yields the local form

p0
01 − 6p0

11 +
123
29

p0
21 +

64
29
m0 −

64
29
r0 − `1 + ŝ0

loc = 0 (26)

to calculate m0. The interaction with the input data is analogous
to the sector-separating curves: apart from the ends we consider
four consecutive pieces p0, p1, p2, p3 for the C2 junction between
p1 and p2. Proceeding as when deriving (18) but now leveraging
also (20) yields a system of two linear equations of which we
only display the relevant terms in `k, mk, rk ∈ R, k = 0, 1, 2, 3:

− r0 + (
65
48
−

65
36
ν1)`1 + (

11
8
+

5
6
ν1)m1 + (

145
48
−

145
36

ν1)r1

+ (
145
36

ν1 −
193
48

)`2 + (
5
8
−

5
6
ν1)m2 + (

65
36
ν1 −

65
48

)r2

+ . . . = 0 ,

(
65
48
−

65
36
ν1)`1 + (−

5
8
+

5
6
ν1)m1 + (

97
48
−

145
36

ν1)r1

+ (
145
36

ν1 −
145
48

)`2 + (
21
8
−

5
6
ν1)m2 + (

65
36
ν1 −

65
48

)r2

− `3 + . . . = 0.

These two equations are solved for m1 and m2 to complete the
refinement formulas in terms of the free parameters ` and r.

Appendix C. Proof of Proposition 1

The lemmas leading up to the proof repeatedly use the follow-
ing simple argument, abbreviated (R): If f is a polynomial and g
is a rational, then h = f + g is rational.

Lemma 8 (along cs,ms). If the BB-coefficients ti j of the tensor-
border t can be independently chosen and if both t and t̃ := t ◦ ρ
are polynomial, then the scalar functions a, b, d, e defining ρ in
(1) are polynomials.
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Proof For deg(t) = m, the G1 constraints (2) can be written as

∂vt̃(u, 0) =
m∑
i

a(u)Bm
i (u)mti1︸                ︷︷                ︸

E1(u)

−

m∑
i

a(u)Bm
i (u)mti0︸                ︷︷                ︸

E2(u)

+

m∑
i

b(u)(Bm
i (u))′mti0︸                    ︷︷                    ︸

E3(u)

If we set all ti j to zero except one ti1 for fixed i then the G1

constraints (2) simplify to ∂vt̃(u, 0) = a(u)Bm
i (u)mti1 implying

that a(u)Bm
i (u) is a polynomial. If a(u) := a(u)

a(u) is rational then the
denominator a(u) must be a factor of Bm

i (u) for all i. Since the
gcd of the Bernstein polynomials is 1, this implies that a(u) is a
polynomial.

Since now ∂vt̃(u, 0)− E1(u)+ E2(u) is a polynomial, by (R) so
is E3(u), and by setting all ti j to zero except for one ti0 for fixed
i, we see that b(u)(Bm

i (u))′ must be polynomial for each i. Since
the gcd of the (Bm

i (u))′ =
(

m
i

)
(1 − u)m−1−iui−1(i − mu) is 1, b(u)

must be a polynomial. Then, (R) applied to the G2 constraints
yields that d ∂vt + e ∂ut is a polynomial and we can apply the
same reasoning as for a(u) and b(u) to see that d(u) and e(u) are
polynomial. |||

Now consider the sector-separating curves.

Lemma 9 (along ms, o). If both p and ~p := p ◦ ρ are polyno-
mial, and a(u) in ρ(u, v) := (u + b(u)v, a(u)v) is polynomial then
b(u),too, is polynomial.

Proof Applying (R) to the G1 constraint ∂v~p := a ∂vp + b ∂up
when a(u) is polynomial implies that b(u)∂up(u, 0) is polynomial.
Presenting p(u, 0) in BB-form of least degree (sector-separating
curves may be of lower degree than the patches that join) and
setting the corresponding independent coefficient of ∂up(u, 0) to
zero except for one, we conclude as in Lemma 8 that the denom-
inator of b(u) must be 1. |||

(a) BB-net (b) highlight lines

Figure 19: Example illustrating the need for the assumptions of Lemma 9: a
polynomial G1 two-patch bi-2 surface with rational a(u) and b(u).

The following example illustrates that it is necessary to de-
mand that a(u) be polynomial in order to prove Lemma 9. For
a(u) := −2

2−u , b(u) := 2(1−u)
2−u and p and ~p of degree bi-2, a solution

of G1-constraints (2) is

~p01 := − p01 + p10 + p00, ~pi0 := pi0, i = 0, 1, 2;

~p11 := − p11 −
1
4

p01 +
7
4

p10 +
1
2

p20, ~p21 := 3p20 − 2p21;

p11 :=
1
4

p01 + p21 +
1
4

p10 −
1
2

p20.

Fig. 19 displays a concrete polynomial two-patch surface satis-
fying these G1-constraints with rational functions a(u) and b(u).

Proof of Proposition 1. B-to-BB conversion transforms the
4 × 3 independently choosable control points of the surrounding
bi-3 B-spline to 4 × 3 independently choosable BB-coefficients
of the tensor-border t, see Fig. 3 b. Therefore Lemma 8 proves
(i); and since no bias implies a(u) ≡ −1, Lemma 9 proves (ii).
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