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Abstract

Geometrically smooth spline surfaces, generalized to include n-sided facets or configurations of n , 4 quads, can exhibit a curious
lack of additional degrees of freedom for modelling or engineering analysis when refined.

This paper establishes a minimal polynomial degree for smooth constructions of multi-sided surfaces that guarantees more
flexibility in all directions under refinement. Degree bi-4 is both necessary and sufficient for flexibility-increasing G1-refinability
within a bi-quadratic C1 spline complex. Sufficiency is proven by two alternative flexibly G1-refinable constructions exhibiting
good highlight line distributions.

1. Introduction

For a regular quadrilateral mesh, interpreting the nodes as
coefficients of uniform tensor-product biquadratic (bi-2) splines
offer a simple and low-cost way to obtain a smooth surface. Re-
fining the structure by knot insertion provides new local mod-
elling parameters. Classical generalized subdivision surfaces
[1, 2] transfer this advantage to sub-meshes with where n , 4
quads join or that include n-sided facets. However, subdivision
surfaces consist formally of an infinite sequence of contracting
surface rings, incompatible with many main-stream computer-
aided design (CAD) systems, and accurately computing integral
properties near the limit point is costly.
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Figure 1: Conversion to a DS-net • via
the stencil of regular bi-2 spline refine-
ment in the neighborhood of an n-valent
vertex.

Alternatively an n-sided
surface cap can be assem-
bled from a finite number
of polynomial pieces,
called patches, that are
joined with geometric
smoothness, i.e. with
derivatives matching after
reparameterization. This
patch-based representation
is compatible with CAD
systems and allows for
immediate engineering analysis [3]. However, minimal degree
G1 constructions that complement bi-2 C1 splines with bi-3
multi-sided caps, such as [4] abbreviated GKP hereafter, are
not refinable in the anticipated way: along certain curves, the
refinement does not provide new degrees of freedom, giving
the space and shape an unexpected stiffness. This raises the
question as to the minimal polynomial degree required for
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refinement that increases flexibility, i.e. when is a space flexibly
refinable?

This paper starts by proving that the degree of flexibly G1-
refinable smooth caps must be at least bi-4. The proof focuses
on meshes with n-sided facets, whose 1-neighborhood is abbre-
viated as DS-nets due to their prominence in Doo-Sabin sub-
division [1]. Meshes where n , 4 quads join in a bi-2 spline
complex can be simply converted to DS-nets by applying the
well-known formula and stencil for regular bi-2 spline knot in-
sertion, see Fig. 1. Since it only transforms Hermite data for
filling a hole rather than filling it, this knot insertion does not in-
troduce the shape artifacts commonly observed when applying
generalized Doo-Sabin subdivision to n-sided configurations.

(a) input (b) DS-net (c) default bi-4, highlight lines

(d) bi-4 alt (e) n 2 × 2 bi-4, highlight lines

Figure 2: Overview of the constructions discussed in this paper for (a) n =
5, a two-beam quad net example. (b) DS-net as once refined net. (c) Bi-4
refinable multi-sided surface surrounded by bi-2 surface ring defined by the
outer regular input net. (d) Alternative hybrid of contracting rings and a tiny
cap. (e) BB-net of tiny cap consisting of n bi-4 2 × 2 macro-patches, C1-
connected to surrounding bi-4 ring and its highlight lines.

Conversely, to establish what polynomial degree suffices to
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construct flexibly G1-refinable multi-sided surfaces with high-
light line distributions [5] as good or better than those of the
bi-2 tensor-product splines, this paper develops two alternative
bi-4 constructions. The first consists of n patches joined with
geometric continuity, see Fig. 2c. The second is a hybrid con-
sisting of 3 or 4 guided C1-joined rings capped by a tiny bi-
4 cap that is itself flexibly G1-refinable (although this is typi-
cally not needed, see Fig. 2d,e,f). While more complex, the hy-
brid construction offers C1 transitions almost everywhere; that
is desirable for downstream use such as texturing or engineer-
ing analysis. Moreover geometric modification is simpler and
more intuitive than for the first option. That is, the hybrid con-
veniently supports both adaptive geometry and analysis.

In summary, the contributions of this paper are

• a proof that refinement of reasonable bi-3 G1 construc-
tions, of multi-sided surface caps in a bi-2 C1 spline com-
plex, can not increase flexibility along all G-edges;

• a flexibly G1-refinable bi-4 construction using n pieces per
cap and yielding surfaces with good highlight line distri-
butions; and

• an alternative flexibly G1-refinable hybrid construction of
C1-joined guided rings closed by a tiny cap.

Both constructions are proven to be flexibly G1-refinable by ex-
hibiting all new degrees of freedom under refinement.

1.1. Related literature
This paper may be viewed as a prequel and complemen-

tary to the recent publication [6] that established that flexibly
G2-refinable multi-sided surfaces for inclusion into C2 bi-cubic
splines require degree no less than bi-6; and presented a bi-
6 construction. Compared to the present G1 scenario, the G2

flexibility bounds, proofs and the corresponding construction
of multi-sided surfaces are technically considerably more com-
plicated and so, potentially, obscure some of the underlying
principles. The complementary results for flexibly G1-refinable
multi-sided surfaces in this paper not only newly establishes
the facts for lower smoothness, but clarifies the arguments and
simplifies constructions.

Akin to the new alternative bi-4 subdivision-tiny-cap hybrid
of this paper, the construction of [7] provides refinable multi-
sided surfaces to cover multi-sided holes in a bi-2 spline com-
plex leveraging several steps of subdivision. However its cen-
tral cap is not refinable and the overall multi-sided surface has
worse shape than the new hybrid. Similarly, the surfaces ob-
tained by smooth multi-sided blending of biquadratic splines
in [4] fail to be refinable. The surface caps of [8] are of least
degree, but are not refinable and can have poor shape. Filling
multi-sided holes in a bi-2 patch complex with S-patches [9]
results in high rational degree. The Bi-2 T-splines in [10, 11]
do not address multi-sided configurations.

Standard bi-2 subdivision for inclusion into a C1 spline com-
plex, Doo-Sabin subdivision [1] and Augmented Subdivision
[12], not only have the handicap of an infinite sequence of poly-
nomial pieces, but also fail to produce high-end shape (see e.g.
[7]; ([12] fails to a much lesser degree ).

Overview. Section 2 defines the basic construction tools and
defines when constructions are flexibly refinable. Section 3
proves that multi-sided bi-3 G1 constructions is not flexibly G1-
refinable. Section 4 presents a bi-4 G1 construction for multi-
sided surface regions, suitable for inclusion into a bi-2 C1 spline
complex and Section 5 shows the construction exhibits new de-
grees of freedom along boundaries and hence is flexibly G1-
refinable. Section 6 presents an alternative flexibly G1-refinable
hybrid construction based on C1-joined guided rings.

2. Setup and Definitions

(a) (b)

Figure 3: Bi-2 B-to-BB conversion. Solid disks •mark BB-coefficients, circles
◦ mark B-spline control points.

(a) DS-net (b) quad-mesh (c) tensor-border

Figure 4: (a) Bi-2 ring from a DS-net. (b) Bi-2 ring from a quad-mesh. Due
to knot insertion, to convert to a DS-net, the number of patches quadruples. (c)
Tensor-border of degree 2 from a DS-net.

The multi-sided surfaces will be a collection of tensor-
product patches of bi-degree d (short bi-d) in Bernstein-Bézier
form (BB-form), see e.g. [13]:

f(u, v) :=
d∑

k=0

d∑
`=0

fk`Bd
k (u)Bd

` (v), (u, v) ∈ [0..1]2.

Here Bd
i (t) :=

(
d
i

)
(1 − t)d−iti are the Bernstein polynomials of

degree d and fi j are the BB-coefficients. We abbreviate f :=∑d
k=0 fkBd

k as
f ∼ [f0, . . . , fd]

and define the layer curves f j ∼ [f0 j, . . . , fd j]. Connecting fi j to
fi+1, j and fi, j+1 wherever possible yields the BB-net. A useful
operation on polynomials in BB-form is to split them into two
pieces, say a left half and a right half, by the well-known de
Casteljau algorithm [13].

The vertices of any 3×3 sub-grid in the mesh, such as the grey
net in Fig. 3a, can be interpreted as the control net of a uniform
bi-2 B-spline [14]. The B-to-BB conversion expresses the spline
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in bi-2 BB-form illustrated by the green BB-net in Fig. 3a. A
partial conversion from a partial mesh yields a sub-net of the
BB-net. A sub-net that defines position, and derivatives across
an edge is called a tensor-border. Fig. 3b shows a first-order
tensor-border. Fig. 4a illustrates how B-to-BB conversion cre-
ates a surrounding bi-2 surface ring and Fig. 4b shows the same
for a quad-mesh with an n-valent vertex. Fig. 4c shows how the
partial conversion extends the patch ring of Fig. 4a to a tensor-
border.

(
∂2

v H ∂u∂
2
v H ∂2

u∂
2
v H

∂vH ∂u∂vH ∂2
u∂vH

H ∂uH ∂2
uH

)
→

Figure 5: Hermite data as partial derivatives converted to BB-form.

(a) bi-5 (b) bi-4 (c) bi-4 L-shape and C2 correction

Figure 6: Hermite operators Hk , k = 5, 4: (a,b) full patch; (c) L-shaped bi-4
tensor-border and its C2 correction modifying the circled BB-coefficients.

1
4

−1
41↓

(a) equal degree C2-join

6 −3 /2017↓

−2 16 ↑ /5
(b) deg4-deg3 C2-join

Figure 7: C2-join at the common (big •) endpoint. (a) Stencil for the BB-
coefficient marked ↓, the unmarked ◦ is defined by symmetry. (b) C2-join of
the curves of left - degree 4 and right - degree 3.

Jets of derivatives, often sampled from more complex
patches and tensor-borders, can be expressed as BB-sub-nets,
see Fig. 5. The sub-nets can be assembled into new low degree
patches of various degrees Fig. 6a,b (averaging jet-information
where it overlaps as in (b)) or parts of tensor-borders, the L-
shapes of Fig. 6c. For good shape, it pays to adjust bi-4 L-
shapes to join C2 where they meet along sectors; this is done
applying to the circled BB-coefficients the stencil in Fig. 7a.

We will use the functional

Fk f :=
∫ 1

0

∫ 1

0

∑
i+ j=k,i, j≥0

k!
i! j!

(∂i
s∂

j
t f (s, t))2 ds dt (1)

to set extra degrees of freedom.

Characteristic parameterizations. The subdominant eigen-
value of subdivision determines the contraction of the subdi-
vision rings towards the limit. The subdominant eigenvalue of
bi-3 adjustable speed subdivision [15] with ’speed’ parameter
σ ∈ (0..1) and σ̃ := 1 − σ is

λσ :=
σ̃

2
((1+c)σ2+2σ̃+σ

√
(1 + c)((1 + c)σ2 + 4σ̃)), c := cos

2π
n
.

For σ := 1
2 adjustable speed subdivision coincides with

Catmull-Clark subdivision.

�

(a) σ := 1
2 (CC)

σ : σ̃
(b) σ := 3

4 (c) σ := 7
8

(d) σ := 1
2 (CC) (e) σ := 3

4 (f) σ := 7
8

Figure 8: Maps χσ (top row) and χ̃σ (bottom row) for different speeds σ.

Fig. 8,top displays characteristic maps χσ for one sector and
n = 5. In the analysis of Catmull-Clark subdivision the maps
χσ contain the key analytic information. In guided subdivision,
however, the corresponding characteristic tensor-borders χ̃σ of
degree 3 and order 2 (see Fig. 8,bottom) are in the forefront.
The gray underlaid BB-coefficients of χσ are the result of split-
ting χ̃σ in the ratio σ : σ̃ (see Fig. 8b). We normalize so the
corner BB-coefficients (marked as � in Fig. 8a) are at distance 1
from the center ◦. While different σ result in different χσ their
tensor-borders χ̃σ, although slightly different, look alike. This
allows a gentle switch to higher speeds, while λσ-scalability of
characteristic maps and tensor-borders enables an efficient im-
plementation of the sampled guided rings.

Definition 1 (G1 constraints). Two surface pieces f̃ and f
sharing a boundary curve e join G1 if there exists a suitably
oriented and non-singular reparameterization ρ : R2 → R2 so
that the partial derivatives ∂k f̃ and ∂k(f ◦ ρ), k = 0, 1, agree
along e.

Throughout, we will choose e to correspond to surface patch
parameters (u, 0 = v). Then the relevant Taylor expansion (up
to degree 1) of the reparameterization R2 → R2 with respect to
v is

ρ(u, v) := (u + b(u)v, a(u)v). (2)

By the chain rule of differentiation, this yields the well-
known G1 constraints in terms of univariate scalar functions
a(u), b(u) and the vector-valued functions f(u, 0), f̃(u, 0)

∂v f̃ = a(u) ∂vf + b(u) ∂uf. (3)

Considering n surface sectors surrounding a central point, the
sectors are constructed diagonally symmetric if the formulas
that define f ji can be obtained from those defining fi j by ex-
changing i and j. The construction has no bias if the constraints
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(3) remain the same when f̃ and f are exchanged. No bias im-
plies a(u) := −1. Diagonal symmetry and no bias are necessary
to preserve input symmetry and generate the same output under
re-labeling (re-naming) of mesh vertices.

The purpose of refining a space is typically to gain the addi-
tional degrees of freedom for geometric modelling or for engi-
neering analysis.

eG1

C1

e G1

(a) initial

e1 e0

e0 e1

(b) refined

Figure 9: G-spline refinement. To be flexibly refinable, new degrees of free-
dom must appear both in the interior and along the red sector-separating curve
boundaries and the green boundaries that connect the cap to the remaining sur-
face.

G-spline spaces and refinement. If we specify a reparameter-
ization ρe for every edge e then a space Gρ of tensor-product
BB-patches joined with the same reparameterizations forms a
linear vector space. That is, any linear combination of elements
in Gρ is again in Gρ.

The space Gρ is refinable to a space Ġρ̇ in the following
sense, see Fig. 9. For each polynomial piece f ∈ Gρ defined
on 2 := [0..1]2, the space Ġρ̇ has four polynomial pieces fr,
r = 1, 2, 3, 4 (wlog. of the same degree as f) defined on the four
quarters of 2 and joined by the following reparameterizations
ρ̇: the Taylor expansion ρ̇ up to degree 1 across the new four
inner edges ρ̇ is the identity, i.e. the pieces join C1; along any
original edge e the ρ is retained in pieces:

ρe0 (u, v) = ρe(
u
2
,

v
2

), ρe1 (u, v) = ρe(
1
2
+

u
2
,

v
2

).

Then there is a choice of fr, namely applying de Casteljau’s
algorithm to f at u = v = 1/2, so that any element f ∈ Gρ can
be represented in Ġρ̇. That is, Ġρ̇ refines Gρ. Since many other
choices of macro-patches fr are allowable, the Ġρ̇ can be ex-
pected to provide more flexibility than Gρ, i.e. has more degrees
of freedom, e.g. BB-coefficients not constrained by enforcing
smoothness.

In the next section, we will see that refined functions can
remain a single polynomial along the reparameterized G-edges.
This failure of the expected additional degrees of freedom to
materialize under refinement is shown to preclude the use of bi-
cubic multi-sided surfaces for applications requiring increasing
freedom and motivates the following definition.

Definition 2 (flexibly refinable). With the preceding definition
of Ġρ̇ $ Gρ a construction is flexibly refinable if, for each do-

main piece 2, Ġρ̇ has more degrees of freedom than Gρ, both
along map boundaries and in the interior.

In [16] the term ‘locking’ was used to describe a similar lack
of increase in flexibility. Due to the established use of the term
locking for a different concept in engineering shell analysis we
prefer flexibility-increasing, or short, flexible refinement.

Definition 2 represents a compromise between the intuitive
characterization for practical piecewise polynomial construc-
tions and a more abstract characterization of a universal na-
ture. In the regular case of tensor-product B-splines practical
and abstract are elegantly combined via knot insertion – but
in the multi-sided setup, parameterization changes across G-
curves and knots can only be inserted in separate ‘sectors’.

The counting of degrees of freedom as unconstrained B- or
BB-coefficients (or both) is a classical approach of geomet-
ric design [17, 18, 19] to establish the dimension of a piece-
wise polynomial spline space. Since the dimension does not
depend on the choice of basis degrees of freedom can be re-
distributed. We will see that, fortuitously, for G1-continuity
many unconstrained BB-coefficients naturally reside on the
sector-separating curve.

In this paper, we focus on multi-sided caps whose sectors are
internally C1. That is the black transitions in Fig. 9 are C1. In
the context of refinement it is natural to focus on internally C1

sectors since all new internal transitions arising from refinement
must be parametrically C1 to reproduce the original polynomial
pieces by the finer construction. Moreover, constructions with
internally G1 sectors are not only more complicated, but, in our
experience, yield lower surface quality.

3. Bi-3 G1 constructions are not flexibly refinable

This section proves that G1 constructions for multi-sided
caps surrounded by C1 bi-2 spline surfaces must have degree
at least bi-4 if they are to be flexibly G1-refinable and satisfy
the canonical requirement of spline surface construction: no
bias and diagonally symmetric internally C1 sectors. The proof
consists of multiple lemmas.

First we note that only polynomial reparameterizations need
to be considered.

Proposition 1. For an unbiased G1 construction,

(i) the functions a, b of the reparameterization ρ across cs,ms

must be polynomials;
(ii) across ms,o, a ≡ −1 and b must be a polynomial.

The proof of Proposition 1 is in the Appendix.
Connecting the sectors of a finite multi-sided G1 construction

typically requires reparameterization along the input boundary
cs, ms in order to smoothly join with the surrounding surface.
Fig. 10b depicts a uniform split of tensor-border t of one sector
into pieces tk, k = 0, 1, . . . ,N. Each piece is reparameterized by
a local map ρk : [0..1]→ ρk(u, v) := (u+bk(u)v, ak(u)v) defined
in terms of local ak, bk (see (2)) to yield new tensor-borders t̃k.

In the following we denote as deg h the degree of function h
in u-direction.
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mscs

ms−1

o

(a) bi-3 G1 macro-patch

↓
↓ ↓ ↓ρ0 ρ1 ρN−1 ρN

00
30

01
31

00
30

01 31

00
20

01
21

00
20

01 21t

t̃
(b) bi-3 N + 1-piece tensor-border

0 1

0 1

0 1

(c) leftmost part of binary split

v v
u u

00
01 01

30

40

31 31

41 41

p̀ ṕ

ms

o

(d) adjacent sectors

Figure 10: Hypothetical bi-3 G1-refinable multi-piece (macro-patch) construc-
tion. (a) Layout of internally C1 macro-patch. (b) Reparameterization of the
N+1-piece C1 input tensor-border t yields t̃. (c) From top: row 1 – initial piece
tk; row 2 – first split; rows 3,4 – left parts of consecutive splits. (d) G1-join of
neighbor sectors sharing the tensor-border.

Lemma 1. (degree bounds of ρ across cs,ms). If the tensor-
borders t are of degree bi-2 and the reparameterized tensor-
borders are of degree bi-3 then deg ak ≤ 1 and deg bk ≤ 2.

Proof Counting confirms that the stated choice of degrees
yields tensor-borders t̃s of degree 3 in u-direction. To show that
the listed degrees are maximal, replace in (3) f by tk and f̃ by t̃k

to see 3 = deg t̃k = max{deg ak + deg tk, deg bk + deg tk − 1} =
max{deg ak +2, deg bk +1}. Then deg ak ≤ 1 and deg bk ≤ 2. |||

Next, we show that either bk
0 + 2bk

1 + bk
2 = 0 or the boundary

remains a single quadratic curve under refinement.

Lemma 2. The bi-3 tensor-border t̃k is binary flexibly G1-
refinable only if bk

0 + 2bk
1 + bk

2 = 0.

Proof Binary splitting of the tensor-borders tk, t̃k (see Fig. 10c)
into tk,i, t̃k,i, i ∈ {0, 1} and preserving geometric smoothness
implies reparameterizations ρk,r, r = 0, 1 with

ak,0(u) :=ak(
u
2

), ak,1(u) := ak(
1
2
+

u
2

),

bk,0(u) :=bk(
u
2

), bk,1(u) := bk(
1
2
+

u
2

).
(4)

Since consecutive pieces tk,0 and tk,1 are assumed to be C1-
connected, see Section 2 on G1 refinement, along the boundary
curve also t̃k,0 and t̃k,1 must be C1-connected. Setting equal the
expansions of the first derivative of the reparameterized bound-
ary t̃k,0 and t̃k,1 and

∂u t̃k,i = ∂uak,i∂vtk,i + ak,i∂vutk,i + ∂ubk,i∂utk,i + bk,i∂uutk,i,

when equating (∂u t̃k,0)(1) = (∂u t̃k,1)(0), we observe that (due
to C1 continuity of the ak,i, bk,i and tk,i) three of the four terms
agree and only

bk,0(1)∂uutk,0(1) = bk,1(0)∂uutk,1(0) (5)

has to hold. (5) holds if and only if the boundary curves
tk,0(u, 0) and tk,1(u, 0) are C2-connected – or bk,0(1) = bk,1(0) =
bk

0 + 2bk
1 + bk

2 = 0. The claim follows since the first option
means that the boundary remains a single quadratic curve un-
der refinement, i.e. the refinement does not increase flexibility.

|||

Lemma 3. The bi-3 tensor-border t̃k is binary flexibly G1-
refinable only if bk(u) ≡ 0 for all k = 0, . . . ,N. Diagonal
symmetry additionally implies all ak(u) ≡ 1.

Proof We focus on the left pieces (see Fig. 10c) of an iterated
binary split. The C1 connectedness of consecutive pieces tk,0

and tk,1 and Lemma 2 imply that bk
2 := −bk

0 − 2bk
1. Repeating

the splitting of the simplified bk,0 ∼ [bk
0,

bk
0

2 +
bk

1
2 , 0], and applying

Lemma 2 again yields 3bk
0 + bk

1 = 0 and hence for the left part

∼ [bk
0,−

bk
0

4 , 0]. Another repeat yields bk
0 := 0, i.e. bk(u) ≡ 0.

Considering the part of t̃0 marked by the left � in Fig. 10a, di-
agonal symmetry implies a0(u) ≡ 1. Since we assume that the
sectors are internally C1, t̃k and t̃k+1 are C1-connected. There-
fore equality holds for (∂v t̃k)(1) = (∂v t̃k+1)(0) and its first deriva-
tive in the u-direction. Together with bi(u) = 0 this implies that
ak and ak+1 join C1. Since all ai are linear they must equal 1.
|||

Lemma 3 implies that t̃k is tk in degree-raised form. There-
fore the first-order expansions of adjacent sectors at m (repre-
sented by 2× 2 BB-coefficients each) join C1: ṕi1 := 2p̀i0 − p̀i1,
i = 2, 3. To prove the main theorem of this section now only
requires analyzing the refinement along the sector-separating
curves.

Theorem 1. Symmetric, unbiased, multi-sided bi-3 G1 sur-
faces with internally C1 sectors that are suitable for inclusion
into C1 bi-2 splines are not flexibly G1-refinable.

Proof Neighboring polynomial pieces p̀, ṕ of degree bi-3 join
without bias the tensor-borders t̀N , t́0 (see the right � in Fig. 10a
and the indices in Fig. 10d) with constraints ∂vṕ = −∂vp̀ +
b(u)∂up̀ (3). Since ṕi1 := 2p̀i0 − p̀i1, i = 2, 3, the least degree
b(u) , 0 is b(u) := γ(1 − u)2 for some constant γ. Compari-
son of degrees then implies that the actual degree of the sector-
separating curve is at most 2.

Similarly as in Lemma 2, one refinement step implies that
the sector-separating curve must be C2-connected and without
increased flexibility, or γ = 0 and hence ṕi1 := 2p̀i0 − p̀i1, for
all i = 0, 1, 2, 3. But the latter means that no progress is made
to meet the constraints of the n-sided configuration at o, and
further partitioning is useless. |||

4. A geometric bi-4 construction

This section defines a flexibly G1-refinable, diagonally sym-
metric, unbiased, multi-sided G1 bi-4 construction suitable for
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qs qs+1
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(a) bi-4 layout

↓
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10
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01
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40

41

t

t̃

(b) bi-2 t→ bi-4 t̃

Figure 11: (a) Layout of bi-4 G1 cap. (b) Reparameterization ρ̄ of input bi-2
tensor-border t to t̃.

inclusion into bi-2 C1 spline complex. While imposing formal
smoothness is easy, achieving good surface quality requires ad-
ditional effort such as enforcing well-defined curvature at the
extraordinary point. Another key is to carefully merge the G1-
join via ρ between sectors and the G1-join via the reparameter-
ization ρ̄, defined as in (2), to the input bi-2 data by combining
the re-parameterizations as a map τ.

Fig. 11a shows the layout of the new construction. Each of n
sectors is a single bi-4 polynomial patch. The BB-coefficients
marked as ◦ represent Hermite data up to order 2 at the extraor-
dinary point; that is they represent the quadratic expansion q
obtained from a map q̃ of total degree 2 reparameterized by τ.
Between sectors (along o, ms) and along the green boundary to
the input data (ms−1, cs, ms) G1-continuity is enforced by the
choice of the BB-coefficients delineating the gray strips.

00
01 01v v

u u

p̀ ṕ
2021 21

4041 41

(a)

00
01 01

p̀ ṕ
1011 11

2021 21

4041 41

3031 31

(b)

p̀k ṕk

p̀k+1 ṕk+1

o

00

20

40
00

20

40

11
21
31

11
21
31

(c)

Figure 12: G1 constraints between sectors along sector-separating curve from
o to m. (a) Generic piece. (b) Initial piece with 00 corresponding to o and 40
corresponding to m. (c) Generic pieces k and k + 1 during refinement.

Fig. 12a shows a generic refined piece along a sector-
separating curve constrained by

∂vṕ = −∂vp̀ + b(u)∂up̀, b(u) := b0(1 − u) + b1u.

A solution, whose unconstrained BB-coefficients are marked as
• in Fig. 12a, has the form

ṕi1 := 2p̀i0 − p̀i1 +
1
4

fi, i = 0, . . . , 4, [f0, . . . , f4] ∼ b(u)∂up̀. (6)

For initial cap in Fig. 11a we take b(u) := 2c(1 − u) and

re-arrange the solution (6) into the form

ṕi0 :=p̀i0, i = 0, . . . , 4,
ṕ01 := − p̀01 + 2cp̀10 + 2(1 − c)p̀00,

(7)

p̀20 :=
(3c − 4)p̀10 + 2(p̀11 + ṕ11)

3c
,

ṕ21 := − p̀21 + (2 − c)p̀20 + cp̀30,

(8)

p̀30 :=
2(p̀31 + ṕ31) − cp̀40

4 − c
, p̀40 :=

p̀41 + ṕ41

2
. (9)

The assignment of ṕ01 enforces tangent plane continuity at
the extraordinary point; the relation that determines p̀30 triggers
the reparameterization ρ̄ := [u, a(u)v], a(u) ∼ [1, 1, 2/(2 − c)],
of the input tensor-border t, see Fig. 11b. Among the possible
choices for b(u), the b(u) = 0 is not only the simplest option but
also yields the best shape.

The unconstrained middle BB-coefficient p22, marked as ×
in Fig. 11a, is defined as in [4], i.e.

p22 :=
1
2
(2
3

(p21 + p23) −
1
6

(p20 + p24)
)
+

1
2
(2
3

(p12 + p32) −
1
6

(p02 + p42)
)
.

(10)

Here the pattern 2
3 (p1 + p3) − 1

6 (p0 + p4) indicates reduction
to degree 3. Reducing the degree is a heuristic that reduces
the number of free parameters and so impedes high-frequency
fluctuations of the surface.

�

(a) sector of τ

↓̄ρ

↓H4

(b) bi-3→ bi-4

τs

20

10

000102
11

21
12

o

ms

ms−1

cs

(c) labels

τ

q̃

1
2

4
3

5

6

(d) q̃ ◦ τ

Figure 13: Reparameterization τ. (a) Marked by thick lines are the first-order
Hermite data (tensor-border) of the characteristic map [2] (Catmull-Clark sub-
division). The map is normalized so that a distance between � and ◦ equals
1. (b) Transformation H4 ◦ ρ̄. (c) Setting • := 1

2 • +
1
2 • (for all valencies n)

improves the distribution of the BB-coefficients of τ and simplifies the techni-
cal formulas. (d) When sampling q̃ ◦ τ, only the circled BB-coefficients, τi j,
i + j ≤ 2, of q̃ are involved.

4.1. Parameterization τ and quadratic expansion q
The map τ is a planar, rotationally-symmetric version of

the general bi-4 construction: the transformation H4 ◦ ρ̄ (see
Fig. 13b) is applied to the first-order Hermite data (in Fig. 13a
indicated by thick lines) of the tensor-border of the character-
istic map of Catmull-Clark subdivision (shown in Fig. 8). Due
to normalization of characteristic map, the points ms are the
vertices of a regular unit n-gon with center o = o. The BB-
coefficients of τ satisfy (7), (8), (9) and (10). The free parame-
ters of this setup allow to set • := 1

2•+
1
2•, see Fig. 13b. Due to

rotational and diagonal symmetry of τ, there are only two free
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parameters remaining and they are set to minimize the func-
tional F4, see (1), over one sector. In summary, with the labels
in Fig. 13b, and unlisted BB-coefficients obtained by symmetry,
ρ̄ and formula (10),

τ00 := o, κ :=
4 + 3c

8(1 + c)

τ10 :=
1
2

(τ00 + τ02), τ11 := κ(τ20 + τ02) + (1 − 2κ)τ00,

τ21 := µτ20 + µ̄τ02 + (1 − µ − µ̄)τ00, τ20 := (1 − ν)o + νms.

The parameters µn, µ̄n and νn are (5-digits surfice)
µ3 := 1.218, µ̄3 := 0.69516, ν3 := 0.48921;
for n > 4
µn := 0.99816 − 0.23281c + 0.13699c2 − 0.04629c3,
µ̄n := 0.49489 − 0.16062c + 0.08887c2 + 0.01305c3,
νn := 0.50233 − 0.02008c − 0.00511c2 − 0.03876c3.

Let q̃ be a map of total degree 2 defined on a regular unit
n-gon with a center o and BB-coefficient labels displayed in
Fig. 13d. The following lemma is checked by inspection.

Lemma 4. (quadratic expansion q at o). For i+ j ≤ 2, denote
as qs

i j, qs+1
i j the BB-coefficients obtained from converting the

partial derivatives of h := q̃ ◦ τ up to order 2 to bi-4 BB-form:(
∂2

v h ∂vh h
. ∂u∂vh ∂uh
. . ∂2

uh

)
→

( qs
02 qs

01 qs
00

. qs
11 qs

10
. . qs

20

)
,qs+1

0i = qs
i0, i = 0, . . . , 2. (11)

Then the quadratic expansions qs and qs+1 join G1.

Explicitly, by symbolic calculation, qs is obtained from the
quadratic map q̃s as

qs
00

qs
01

qs
02

qs
10

qs
11

qs
20

 :=


1 0 0 0 0 0

1−κ κ 0 0 0 0
1−2κ+ 2κ2

3
2κ(3−2κ)

3
2κ2

3 0 0 0
1−κ 0 0 κ 0 0

1−4κν+ κ2
2

κ(4ν−κ)
2 0 κ(4ν−κ)

2
κ2
2 0

1−2κ+ 2κ2
3 0 0 2κ(3−2κ)

3 0 2κ2
3




q̃s
1

q̃s
2

q̃s
3

q̃s
4

q̃s
5

q̃s
6

 , (12)

where κ := (4 + 3c)/(8(1 + c)) and the BB-coefficients of each
sector of the quadratic map q̃ can be defined iteratively via C2-
constraints from an initial sector q̃0

i , i = 1, . . . , 6.

4.2. The Algorithm

With the indexing of Fig. 13b,

S := {q̃0
i , i = 1, . . . , 6; ps

21, s = 0, . . . , n − 1},

the BB-coefficients of patch ps are set as follows (cf. Fig. 11a).

(i) ◦ by formula (12);
(ii) ps+1

12 by formulas (8), (9);
(iii) ρ̄-reparameterized input bi-2 tensor-borders;
(iv) × by (10);
(v) the 6+n BB-coefficients in S by minimizing the functional
F3, see (1), over all n bi-4 patches ps.

Since the overall construction is linear, it can be executed as
a matrix multiplication.

5. G1-refinability of the bi-4 cap

In this section, we exhibit the unconstrained BB-coefficients
of a binarily refined representation.

The refinement amounts to uniform knot insertion for tensor-
product bi-4 C1 splines in the interior of each sector. In Fig. 14,
the new unconstrained BB-coefficients are marked as •.

o

mscs

ms−1 p̀0

p̀1

ṕ0

ṕ1

(a)

q̃
q̃re f

1

4

6

2
3

5

(b)

k
k + 1

(c)

Figure 14: (a) Bi-4 G1 surface once-refined: new inner degrees of freedom are
marked •. (b) Refinement of the quadratic map q̃. (c) The control point groups
of the refined bi-4 G1 surface.

Along o, m, the maps bk(u) of ρk are split into

bre f ,0(u) := bk(
u
2

), bre f ,1(u) := bk(
1
2
+

u
2

)

and then re-label

b2k(u) := bre f ,0(u), b2k+1(u) := bre f ,1(u).

Along c, m, the analogous split and re-labelling is applied to
ak(u) of ρ̄k. Then at m, where the refinements along c, m and
o, m overlap, the 2 × 2 jets of BB-coefficients agree. Consider
Fig. 14c. Along c m, uniform knot insertion refines the green
control points of the C1 bi-2 spline complex; and B-to-BB con-
version followed by reparameterizations ρ̄k generates the green-
underlaid BB-coefficients of the bi-4 sector. Along the sector-
separating curves, using (6) for adjacent pieces ρk, ρk+1, the
following lemma is checked by inspection.

Lemma 5. For i = 0, . . . , 4, the layer curves ṕk
i1 and ṕk+1

i1 are
C1-connected if the layer curves p̀k

i0 and p̀k+1
i0 are C2-connected

and p̀k
i1 and p̀k+1

i1 are C1-connected.

The new unconstrained BB-coefficients are marked as • in
Fig. 12c.

5.1. Refinement of quadratic expansion
Defining the quadratic expansion q by the quadratic map q̃

and the reparameterization τ, a uniform split (knot insertion) of
the bi-4 cap results in qre f := q̃◦τ( u

2 ,
v
2 ). Setting q̃re f := q̃( u

2 ,
v
2 )

(see Fig. 14b), we observe that
q̃re f

1

q̃re f
2

q̃re f
3

q̃re f
4

q̃re f
5

q̃re f
6


:=

1
4


4 0 0 0 0 0
2 2 0 0 0 0
1 2 1 0 0 0
2 0 0 2 0 0
1 1 0 1 1 0
1 0 0 2 0 1




q̃1
q̃2
q̃3
q̃4
q̃5
q̃6

 (13)

Setting κre f := 1
4 +

κ
2 , we calculate qre f according to (12), with

q̃ replaced by q̃re f and κ by κre f .
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5.2. Linearly independent basis functions

Considering one coordinate and setting the unconstrained
control point values to zero, except for the control point with
index α to 1 and then applying the bi-4 cap construction yields
a collection of piecewise polynomial functions denoted gα. The
gα form four separate groups, see Fig. 14c.

(a) Control points • of the surrounding bi-2 splines;
(b) internal C1-spline coefficients •;
(c) six control points • of the quadratic map q̃ at o;
(d) the subset of unconstrained BB-coefficients ◦ in the gray

G1-strip that are neither defined by (a) nor (c).

Theorem 2. The functions gα are linearly independent.

Proof Assume that a linear combination
∑
α xαgα of functions

gα from all four groups is the zero function, i.e. all BB-
coefficients of the resulting cap are zero. We show that then
all xα must be zero.

- The green BB-coefficients of bi-4 cap are obtained by B-
to-BB conversion followed by reparameterizations ρ̄k. The
control points of B-splines are linearly independent, and
none of green BB-coefficients are set by groups (b), (c),
(d). Therefore the xα = 0 for α in group (a).

- None of BB-coefficients • in group (b) are set by groups
(a), (c), (d). Hence xα = 0 for α in group (b).

- The derivatives up to order 2, evaluated at the o-corner of
bi-4 patch, vanish if and only if the 6 control points ◦ of qs

vanish, i.e. xα = 0 for α in group (c).
- Since the α within group (d) were chosen so that the asso-

ciated gα are linearly independent, all xα = 0.

|||

Since the construction is flexibly G1-refinable the surfaces
are also ‘analysis-suitable’ in the sense of [16]. As later exam-
ples will demonstrate, the resulting surfaces are also ‘geometry-
suitable’ in the sense that the highlight line distribution is on par
or better than that of the underlying C1 bi-2 splines. However
the new degrees of freedom are not directly suited for geometric
manipulations such as adding the detail by local modifications
along or across sector separating curve.

6. An alternative guided flexibly G1-refinable construction

With a focus on local geometric manipulation akin to sub-
division surfaces, this section shows how the G1 bi-4 cap can
define a C1 map of total degree 5 that in turn can guide a se-
quence of contracting bi-4 surface rings. A tiny cap of the same
degree make the construction finite. This yields surfaces that
offer uniform parameters for both engineering analysis and for
adding geometric detail.

gs gs+1

o

ms

(a) guide g

n

s
w e1

2c
1
2c

1 − 1
c

(b) C1 pattern

gs

τs

(c) sector sampling

Figure 15: (a) C1 guide of total degree 5. The red part represents a quadratic
map q̃ in degree raised form. (b) C1 join between sectors enforces a pattern of
constraints on the coefficients. (c) Sampling the guide g with parameterization
τ.

6.1. A C1 guide of total degree 5

Fig. 15a shows the structure of C1 map g of total degree 5
with a central red quadratic map q̃ (in degree-raised form) de-
fined by six BB-coefficients • of one sector. To enforce a C1-
join across sector-separating curve, starting with n as outermost
red BB-coefficient, the relation illustrated in Fig. 15b is repeat-
edly applied to set s := (1− 1

c )n+ 1
2c (w+e). The BB-coefficients

marked as • remain unconstrained, as do those marked ◦ since
they do not affect C1-join of the sectors. We initialize g as
follows.

- The central point o of g is the extraordinary point o of bi-4
cap; the remaining 5 + 9n free BB-coefficients: 5 marked
•, 6n marked • and 3n marked ◦, form a set S .

- The coefficients in S are set to minimize the sum of
squared distances |as

i j− ãs
i j|

2 for all i, j and sectors s, where
as := H5(gs ◦ τs) are auxiliary bi-5 patches and ãs is the
s-th sector of the bi-4 cap of Section 4, degree-elevated to
bi-5.

6.2. L-shaped tensor-borders form contracting rings

t̂0,s

t̂1,s

(a) σ := 1
2

t̂r−1,s

t̂r,s

(b) σ := 3
4 (c) C1 extension

Figure 16: Construction of p̂r,s of degree bi-4 by merging the tensor-borders
t̂r−1,s and t̂r,s. (a) For r = 1, t̂0,s (dark gray) is the input tensor-border ts,
degree-raised and split. The ring p̂1,s is assembled from t̂0,s and the uniform
backwards C2-extension (light-gray) of t̂1,s. (b) For r > 1, dark-gray represents
t̂r−1,s (split) and light-gray the backwards C1-extension of t̂r,s. (c) Enlargement
of the backward C1-extension.

The L-shaped tensor-borders H4(g ◦ χ̃σ) (see Fig. 6c) vary
with σ and are the same for each (diagonally symmetric) sec-
tor. Therefore they can be implemented as a multiplication
with a pre-calculated matrix, expressing the BB-coefficients of
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the sampled tensor-borders as affine combinations of 21 BB-
coefficients of one sector of the guide. Given a maximal antic-
ipated level ` of refinement, the guided rings p̂r,s, r = 1, . . . , `
(where s labels the sectors) are assembled by merging the sam-
pled tensor-borders t̂r−1,s, t̂r,s, see Fig. 16.

Algorithm.

(1) Choose a sequence of speeds (σ1, σ2, . . . , σ`).
(2) Set ġ0,s := gs and iterate ġr,s(u, v) := ġr−1,s(λσr u, λσr v).

Each iteration amounts to computing the BB-coefficients
of ġr,s by de Casteljau’s algorithm, see e.g. [20].

(3) Due to λσ-scalability of χ̃σ, the tensor-borders t̂r,s can be
obtained multiplying pre-calculated matrices to the coeffi-
cients of ġr,s, followed by C2 correction.

(4) Fig. 16 shows p̂r,s constructed from consecutive tensor-
borders t̂r−1,s and t̂r,s.

(a) For r = 1, see Fig. 16a, t̂0,s is the degree-raised and
evenly split input tensor-border ts. The first ring p̂1,s

combines t̂0,s with the uniform backward (towards
the surrounding surface) C2-extension of t̂1,s.

(b) For r > 1 (see Fig. 16b) t̂r−1,s is split in the ratio σr :
σ̃r while t̂r,s is backward C1-extended (towards t̂r−1,s)
by applying, in vertical and horizontal directions, the
stencil
◦ := 1

1−σr � −
σr

1−σr
� (see Fig. 16c).

Default sequence σr. Formally, σr can take any value in
(0..1). For n ≤ 8 the sequence ( 1

2 ,
3
4 ,

7
8 ) performs well. The

initial σ1 := 1
2 yields a stable transition and so allows doubling

the contraction speed in the two remaining rings. The size of
the remaining hole is then as for six steps with σ := 1

2 , the
‘speed’ of Catmull-Clark subdivision. For n > 8, σ = 7

8 can
cause unwanted oscillations in the highlight lines (see Fig. 25)
so that the sequence ( 1

2 ,
3
4 , . . . ,

3
4 ) is recommended.

6.3. An efficient but inferior tiny cap with G1 transition

↓

→

↗

(i)

(ii) (iii)

(iv)

(a) Modification of last ring (b) BB-net and highlight lines

Figure 17: The tiny cap with G1 transition. (a) Modification of the last guided
ring. (b) The BB-net of bi-4 cap and its highlight lines for the same configura-
tion as in Fig. 2e.

Filling the remaining tiny hole with a G1 bi-4 surface that
preserves the good highlight line distribution of the guided bi-4
rings is surprisingly challenging. The simplest option, detailed
in Fig. 17a, is to modify the last guided ring and apply the G1

construction of Section 4:

(i) Convert the corner 2 × 2 jets of the last bi-4 tensor-border
t̂` to bi-2 form • in (ii).

(ii) Join the jets C1 to form the bi-2 tensor-border t by setting
� as averages of neighboring •.

(iii) Raise the degree of t to bi-4 and C1-extend towards t̂`−1.
(iv) Reverse the B-to-BB-conversion to obtain a DS-net from

t. The DS-net serves as input to the geometric bi-4 con-
struction of Section 4.

However this simplest option introduces oscillations and
propagates sharp highlight line transitions from the last ring
into the tiny cap (see the zoom in Fig. 17b). We therefore build
the tiny cap from 2 × 2 bi-4 macro-patches per sector and join
the tiny cap C1 to the last guided ring.

6.4. A superior tiny cap with C1 transition

The cap p̂ is derived by pre-solving the G1-constraints be-
tween the sectors, determining a planar parameterization τ̂ with
the same layout and continuities as the tiny cap and construct-
ing an auxiliary guiding cap paux by sampling jets of the guide
g composed with τ̂. Then p̂ is a least-squares fit to paux and so
as to satisfy all smoothness constraints.

G1-constraints between the sectors. With the u- and v-
directions as in the main construction (see Fig. 12) the con-
straints (3)

∂vp̀ = a∂vṕ + b∂uṕ, a(u) := −1, b(u) := 2c(1 − u) +
2c
3

u,

∂vp̀ = a∂vṕ + b∂uṕ, a(u) := −1, b(u) :=
2c
3

(1 − u)2, (14)

can be solved as

ṕi0 := p̀i0, ṕi0
:= p̀

i0
, i = 0, . . . , 4;

ṕ01 := p̀01 + 2cp̀10 + 2(1 − c)p̀00;

p̀20 :=
1
9c

(
cp̀00 + 4(2c − 3)p̀10 + 6(p̀11 + ṕ11)

)
;

ṕi1 := 2p̀i0 − p̀i1 +
1
4

fi, i = 2, 3, 4, [f0, . . . , f4] ∼ b(u)∂up̀;

p̀
0 j

:= p̀4 j, ṕ
0 j

:= ṕ4 j, (join top and bottom C1)

p̀
1 j

:= 2p̀4 j − p̀3 j, ṕ
1 j

:= 2ṕ4 j − ṕ3 j, j = 0, 1

p̀
i0

:=
p̀

i1
+ ṕ

i1

2
, i = 3, 4 (C1 consistent with last ring)

p̀
20

:=
−1
6

(p̀
00
+ p̀

40
) +

2
3

(p̀
10
+ p̀

30
);

ṕ
21

:= 2p̀
20
− p̀

21
+

1
4

f2, [f0, . . . , f4] ∼ b(u)∂up̀;

p̀30 :=
1

20
(
6p̀20 + 17p̀40 − 4p̀

30
+ p̀

40

)
leaving unconstrained the BB-coefficients marked • and � in
Fig. 18a. Here the linear b(u) and the quadratic b(u) are C1-
connected and the sector-separating curve with coefficients p̀

i0
,

i = 0, . . . , 4 is of actual degree 3 (due to the assignment p̀
20

);
and it is C2-connected (due to assignment p̀30) to the adjacent
sector-separating curve with coefficients p̀i0, i = 0, . . . , 4.
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00
01 01

10

20

p̀ ṕ

p̀ ṕ

11 11

4041 41

2021 21
3031 31
4041 41

(a) G1-constraints (b) τ̂ (c) paux → p̂

Figure 18: Tiny G1 cap, C1-connected to the last sampled ring. (a) G1-
constraints between sectors. (b) Parameterization τ̂. (c) Derivation of the cen-
tral cap p̂ from the auxiliary cap paux.

The 2 × 2 parameterization τ̂. In Fig. 18b, the BB-coefficients
of the gray strips are set to enforce G1-constraints between adja-
cent sectors and the BB-coefficients marked • represent evenly
split, partly second-order tensor-borders χ̃σ` . The four BB-
coefficients, marked ◦, are unconstrained and define the remain-
ing orange-underlaid BB-coefficients so that the four orange-
underlaid 3 × 3 BB-nets join C2. The diagonally symmetric,
unbiased construction leaves free 10 scalars that are fixed to
minimize the functional F4, see (1), over all four patches of the
sector.

Choosing partly second-order Hermite data from the tensor-
border χ̃σ` and joining the orange-underlaid BB-nets C2 repre-
sents a geometric heuristic to evenly distribute BB-coefficients
of τ̂ and so reduce the number of parameters to be set by F4.

A map paux is constructed by assembling the auxiliary 2 ×
2 bi-4 per cap H4(ġ` ◦ τ̂) per sector and replacing its BB-
coefficients, marked • in Fig. 18c by BB-coefficients of the
evenly split tensor-border t̂`.

Then the tiny cap p̂ inherits the BB-net of paux except that �

and the 14 BB-coefficients ◦ are replaced by the G1-solution of
(14) and the 5 unconstrained coefficients • are set to minimize
the sum of squared distances between the BB-coefficients of p̂
and paux at the 14 locations ◦.

The last step can be efficiently implemented as multiplication
with a pre-calculated 5 × 14 matrix.

6.5. The superior tiny cap is flexibly G1-refinable
The tiny cap refines like the main construction in Section 5:

the internal C1 refinement is identical, the outer refinement is
simpler since it is the C1-extension of the C1-refined last guided
ring, and the refinement along the sector-separating curves only
differs slightly from the main construction.

The tiny cap uses the layout of the once-refined main con-
struction, see Fig. 14a, and the linear b0(u) := b(u) and
quadratic b1(u) := b(u) are split into bk(u) as in Section 5, i.e.
so that by (6)

ṕi1 := 2p̀i0 − p̀i1 +
1
4

fi, i = 0, . . . , 4, [f0, . . . , f4] ∼ bk(u)∂up̀.

That is, the sector-separating curves closer to ms are of actual
degree 3 and their bk(u) of degree 2 so that Lemma 5 holds.
For the sector-separating curves closer to o, the bk(u) are linear

and the refinement is structurally the same as in Section 5: the
magenta ◦ BB-coefficients in Fig. 19a stem from a quadratic
map q̃ (obtained from the magenta BB-coefficients of the tiny
cap by reversing the formula (12) with κ := κ̂ := 6+5c

12(1+c) ). Then
with κ := κ̂, Eq. (12) applies and the refinement of the quadratic
expansion follows Section 5.1.

(a) main bi-4

a1
a2

a1
a2

dk−1

dk

d̃0

d̃s

(b) tiny bi-4

Figure 19: Structure of the G1-refinement along a sector-separating curve.

Fig. 19b illustrates the refined uniform C2 spline sector-
separating curve from ms to just beyond the spline control point
dk half ways to o. At dk the degree of the sector-separating
curve switches from 4 to 3: dk−1 and dk are B-spline control
points of a degree 4 spline C2-joined to a degree 3 spline using
the stencil of Fig. 7b: a1 := 1

5 (−2dk−1 + 6dk + a2); and setting
a2 := 1

9 (−2dk−1 + 6dk + 5d̃0) yields d̃0 = 2a2 − a1 so that d̃0 is
a free B-spline control point of a uniform degree 3 spline.

Representing the C1-extension of the last bi-4 ring in degree
3 form (see ◦) and choosing a1 := 1

2 (a2 + d̃s) leaves d̃s as a free
B-spline control point of a degree 3 spline so that the degree 3
C2 B-spline from ms to dk has the elegant standard sequence of
B-spline control points. (Univariate B-to-BB conversion yields
the BB-coefficients.)

In summary, the refined tiny cap is defined by

(a) independent control points of the surrounding bi-4 C1-
spline ring;

(b) independent BB-coefficients internal to (not in the two
boundary layers of) each bi-4 C1-spline macro-patch;

(c) six control points of the quadratic map at the extraordinary
point o;

(d) independent control points of a C2-spline sector-
separating curve with

- d j of degree 4 (and not defined by (c)),
- d̃i of degree 3; and

(e) independent control points, marked • in Fig. 19b, of a C1-
spline of degree 4 (and not defined by (a) nor (c)).

Similarly as in Section 5.2, we can define the associated basis
functions and prove their linear independence.

7. Examples

The input net of Fig. 20a can define a C1 surface ring of 2n =
6 bi-2 patches. This bi-2 ring is colored green in Fig. 20b while
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the bi-4 cap Section 4 is red. Fig. 20c shows the alternative
sequence of guided rings with default speeds ( 1

2 ,
3
4 ,

7
8 ) and a tiny

central cap, so small that one could opt for just two rings. The
highlight line distribution of the alternative construction as well
as at the tiny cap, shows no blemish, and is visually identical to
that of the default construction of Section 4.2

(a) n = 3 net (b) default (c) alternative layout (d) near cap

Figure 20: Bi-4 constructions for n = 3: (b) default of Section 4.2 and (c)
alternative layout. (d) highlight lines of the alternative layout near the tiny cap.

The color conventions of Fig. 20 are applied to all following
surfaces.

(a) n = 6 (b) default (c) alternative

Figure 21: Bi-4 constructions for n = 6. (a) Input net. (b) default bi-4 con-
struction and highlight lines of the multi-sided surface. (c) Alternative guided
hybrid: highlight lines as in (b) and zoomed in on the tiny cap.

(a) n = 7 (b) default (c) alternative

Figure 22: Bi-4 constructions for n = 7. (b) Default construction. (c) Alter-
native guided hybrid: highlight lines from far and enlarged to focus on the tiny
cap.

The convex n = 6 net of Fig. 21a yields uniformly-spaced
highlight lines across the caps, and the same can be said about
the three-beam input net of Fig. 22. Remarkably, the zoom fo-
cused on the neighborhood of the tiny cap, betrays neither the
C1 transitions between the guided rings nor the G1 transitions
of the tiny cap.

Fig. 23 displays the alternative surface with various tiny caps
for n = 8 net. In the view of Fig. 23b the caps look alike; only
by zooming into area of tiny cap Fig. 23c shows the differences.
The G1 transition Fig. 23d is clearly worse and artifacts increase
with valence (compare to Fig. 17b).

Fig. 24 demonstrates good quality also for exotic shapes and
valencies. Fig. 24c illustrates how portions of BB-net can be
manipulated freely in the subdivision part of the alternative con-
struction. Similar editing of the default G1-refinable construc-
tion would be very cumbersome.

Fig. 25 demonstrates that the speed sequence ( 1
2 ,

3
4 ,

7
8 ), that

works very well for the common valences n = 3, 5, 6 and up to

(a) n = 8 net (b) alternative

(c) tiny cap (d) G1 transition (e) C1 transition

Figure 23: Guided rings plus tiny cap hybrid for n = 8. bottom: highlight lines
of alternative tiny caps.

(a) n = 9 net (b) alternative

(c) localized design

Figure 24: Guided plus tiny cap construction for n = 9 with local edits.

n = 8, can yield unwanted oscillations of highlight lines for
very high valencies, here n = 10, in the narrow area along
the sector-separating curve for σ = 7

8 . In Fig. 25c, ↓ points
to one such spot. The oscillations disappear for the sequence
( 1

2 ,
3
4 ,

3
4 ,

3
4 ), see Fig. 25d.

8. Conclusion

The curious phenomenon that refined control nets of gener-
alized spline surfaces fail to offer additional degrees of free-
dom for modelling or engineering analysis along certain curves
was shown to be the result of the G1 constraints combined with
low degree. In particular, Theorem 1 proved that G1 refinement
of symmetric, unbiased, multi-sided bi-3 G1 surfaces with in-
ternally C1 sectors, suitable for inclusion into C1 bi-2 splines,
does not increase flexibility along the sector-separating curves
or input boundary.

On the constructive side, an explicit multi-sided bi-4 spline
surface exhibits good highlight line distributions and was
proven to be flexibly G1-refinable. This solution was comple-
mented by an alternative hybrid construction that supports re-
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(a) n = 10 net (b) alternative, ( 1
2 ,

3
4 ,

7
8 )

↓

(c) ( 1
2 ,

3
4 ,

7
8 ), last ring + cap (d) ( 1

2 ,
3
4 ,

3
4 ,

3
4 ), last two rings + cap

Figure 25: Comparison of different speed sequences for n = 10. (b) Speed
sequence ( 1

2 ,
3
4 ,

7
8 ): layout and highlight lines. (c) The last guided ring and tiny

cap with overlaid BB-nets. (d) Speed sequence ( 1
2 ,

3
4 ,

3
4 ,

3
4 ): the last two guided

rings plus tiny cap.

finement with simpler C1 transitions, except inside a final tiny
cap. This hybrid has uniformly distributed degrees of freedom
along the sector-separating curves and is flexibly G1-refinable
as is desirable for engineering analysis and editing fine geomet-
ric details.
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[15] K. Karčiauskas, J. Peters, Adjustable speed surface subdivision, Com-

puter Aided Geometric Design. 26 (2009) 962–969.
[16] A. Collin, G. Sangalli, T. Takacs, Analysis-suitable G1 multi-patch

parametrizations for C1 isogeometric spaces, Computer Aided Geomet-
ric Design 47 (2016) 93–113.

[17] P. Alfeld, L. Schumaker, The dimension of bivariate spline spaces of
smoothness r and degree d ≥ 4r+1, Constructive Approximation 3 (1987)
189–197.

[18] M.-J. Lai, L. L. Schumaker, Spline functions on triangulations, Vol. 110
of Encyclopedia of mathematics and its applications, Cambridge Univer-
sity Press, 2007.

[19] B. Mourrain, On the dimension of spline spaces on planar t-meshes, Math.
Comput 83 (286).
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Appendix: Proof of Proposition 1

For completeness, this section adapts the argument of [6, Ap-
pendix C] to the G1 case. The argument uses (R): If f is a poly-
nomial and g is a rational, then h = f + g is rational.

Lemma 6 (along cs,ms). If the BB-coefficients ti j of the
tensor-border t can be independently chosen and if both t and
t̃ := t ◦ ρ are polynomial, then the scalar functions a, b defining
ρ in (3) are polynomials.

Proof For deg(t) = m, the G1 constraints (3) can be written as

∂v t̃(u, 0) =
m∑
i

a(u)Bm
i (u)mti1︸                ︷︷                ︸

E1(u)

−

m∑
i

a(u)Bm
i (u)mti0︸                ︷︷                ︸

E2(u)

+

m∑
i

b(u)(Bm
i (u))′mti0︸                    ︷︷                    ︸

E3(u)

If we set all ti j to zero except one ti1 for fixed i then the G1

constraints (3) simplify to ∂vt̃(u, 0) = a(u)Bm
i (u)mti1 implying

that a(u)Bm
i (u) is a polynomial. If a(u) := a(u)

a(u) is rational then
the denominator a(u) must be a factor of Bm

i (u) for all i. Since
the gcd of the Bernstein polynomials is 1, this implies that a(u)
is a polynomial.

Since now ∂v t̃(u, 0) − E1(u) + E2(u) is a polynomial, by (R)
so is E3(u), and by setting all ti j to zero except for one ti0 for
fixed i, we see that b(u)(Bm

i (u))′ must be polynomial for each i.
Since the gcd of the (Bm

i (u))′ =
(

m
i

)
(1 − u)m−1−iui−1(i −mu) is 1,

b(u) must be a polynomial. |||

Now consider the sector-separating curves.

Lemma 7 (along ms, o). If both p̀ and ṕ := p̀ ◦ ρ are polyno-
mial, and a(u) in ρ(u, v) := (u+b(u)v, a(u)v) is polynomial then
b(u), too, is polynomial.

Proof Applying (R) to the G1 constraint ∂vṕ := a ∂vp̀ + b ∂up̀
when a(u) is polynomial implies that b(u)∂up̀(u, 0) is polyno-
mial. Presenting p̀(u, 0) in BB-form of least degree (sector-
separating curves may be of lower degree than the patches that
join) and setting the corresponding independent coefficient of
∂up̀(u, 0) to zero except for one, we conclude as in Lemma 6
that the denominator of b(u) must be 1. |||

Proof of Proposition 1. B-to-BB conversion transforms the
3×2 independently choosable control points of the surrounding

12

http://dx.doi.org/https://doi.org/10.1016/j.cad.2020.102867
http://dx.doi.org/https://doi.org/10.1016/j.cad.2020.102867


bi-2 B-spline to 3 × 2 independently choosable BB-coefficients
of the tensor-border t, see Fig. 3b. Therefore Lemma 6 proves
claim (i); and since no bias implies a(u) ≡ −1, Lemma 7 proves
claim (ii).
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